首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungicide JS399-19 is a novel cyanoacrylate fungicide active against Gibberella zeae , and has been marketed in China for control of fusarium head blight (FHB) on wheat. Forty-three isolates sensitive to fungicide JS399-19 were collected from three commercial wheat fields in China. Forty-five isolates resistant to JS399-19, obtained from five sensitive isolates by selection for resistance to JS399-19, were selected. Three sensitivity levels were identified: sensitive (S), moderately resistant (MR) and highly resistant (HR) to JS399-19, based on a previous study. Eight isolates representing the three sensitivity-level phenotypes were randomly selected for a study on the inheritance of JS399-19 resistance by analysing the sensitivity of hybrid F1 progeny. A nitrate-non-utilizing mutant ( nit ) was used as a genetic marker to confirm that individual perithecia were the result of outcrossing. Five crosses were assessed: S × S, S × HR, MR × HR, HR × HR and MR × S. In crosses between parents with different sensitivity levels, such as S × HR, MR × HR and MR × S, the progeny fitted a 1:1 segregation ratio of the two parental phenotypes. No segregation was observed in the crosses S × S and HR × HR. It was concluded that the MR and HR phenotypes in G. zeae were conferred by different allelic mutations within the same locus. In these isolates, resistance to JS399-19 was not affected by modifying genes or cytoplasmic components.  相似文献   

2.
 本文报道了禾谷镰孢菌(Fusarium graminearum)对氰烯菌酯(2-氰基-3-氨基-3-苯基丙烯酸乙酯,JS399-19)的敏感性基线及其抗药性风险。离体条件下氰烯菌酯对51个禾谷镰孢菌菌株的平均EC50和MIC值分别为(0.153±0.050)μg/mL和小于4.0μg/mL;通过紫外线照射和药剂驯化的方法获得了14个禾谷镰孢菌对氰烯菌酯的抗药性突变体,紫外光诱变抗药性突变频率为1.67×10-7。这些突变体的抗性水平可分为低、中、高3种类型,其EC50分别为1.5~15.0μg/mL、15.1~75.0μg/mL和75.0μg/mL以上。与亲本菌株2021相比,抗药突变体间的菌丝生长量和产生子囊壳能力发生不同程度的增加或下降,而分生孢子繁殖量则显著下降。在无药培养基上菌丝体转代培养8次后,抗药水平保持不变,且与亲本菌株有相同的致病性。所测定的突变体在含1%葡萄糖的PDA上菌丝生长除UV-2021-4显著下降外,其余都表现生长速率比亲本显著增加。在含3%和4%葡萄糖的PDA上2021生长优于亲本菌株。氰烯菌酯与苯并咪唑类、麦角甾醇生物合成抑制剂类、甲氧基丙烯酸酯类、二硫代氨基甲酸盐类和取代芳烃类杀菌剂没有交互抗性。  相似文献   

3.
江苏省水稻恶苗病菌对咪鲜胺和氰烯菌酯的敏感性   总被引:1,自引:2,他引:1  
对采自江苏省姜堰、靖江和常州3个地区的水稻恶苗病样品进行了病原菌的分离和鉴定,利用菌丝生长速率法测定了病原菌对咪鲜胺和氰烯菌酯的敏感性。结果表明:分离得到77株水稻恶苗病菌Fusarium fujikuroi;咪鲜胺对水稻恶苗病菌的EC50值在0.020~1.333μg/m L之间,分离到的菌株对咪鲜胺均表现为中抗和高抗,其中中抗菌株18株,占23.38%,高抗菌株59株,占76.62%,说明咪鲜胺高抗菌株已经成为江苏省的恶苗病菌优势群体。氰烯菌酯(JS399-19)对水稻恶苗病菌的EC50值在0.012~2.040μg/m L之间,菌株的敏感性频率近似正态分布,EC50均值为(0.684±0.265)μg/m L,建议将此值作为江苏省水稻恶苗病菌对氰烯菌酯的敏感性基线。  相似文献   

4.
The sensitivity of 127 Phytophthora infestans isolates to flumorph was determined in 2003 and 2004. The isolates originated from two geographical regions and showed similar levels of sensitivity in both years. Baseline sensitivities were distributed as a unimodal curve with EC50 values for growth of mycelia ranging from 0·1016 to 0·3228  µ g mL−1, with a mean of 0·1813 (± 0·0405) µ g mL−1. There was no cross-resistance between flumorph and metalaxyl. Laboratory studies were conducted to evaluate the risk of P. infestans developing resistance to flumorph. Mutants resistant to metalaxyl or flumorph were obtained by treating mycelium of wild-type isolates with ultraviolet radiation. Metalaxyl-resistant mutants were obtained with a high frequency and exhibited resistance factor values (EC50 resistant/EC50 sensitive phenotypes) of more than 100, while flumorph-resistant mutants were obtained at much lower frequencies and had very small resistance factors (1·5–3·2). There was cross-resistance between flumorph and dimethomorph, but not with azoxystrobin or cymoxanil. Most flumorph-resistant mutants showed decreases in hyphal growth in vitro and in sporulation both in vitro and on detached leaf tissues. These studies suggested that the risk of resistance developing was much lower for flumorph than metalaxyl. However, as P. infestans is a high-risk pathogen, appropriate precautions against resistance development should be taken.  相似文献   

5.
Wheat farmers rely on fungicides to protect fields against several foliar and flowering diseases, including Fusarium head blight (FHB). A range of active ingredients is used in isolation or in dual premixes that include a dimethylation inhibitor (DMI) or a quinone outside inhibitor (QoI) fungicide. Comprehensive information about fungicide resistance in F. graminearum is available for DMIs, while for QoIs the data are scarce. We characterized 225 strains obtained from two states in southern Brazil, Rio Grande do Sul (RS) and Paraná (PR), in relation to their response to two QoIs. The median EC50 (effective concentration leading to 50% inhibition of conidial germination) value for azoxystrobin (n = 25 isolates) was 2.20 μg/ml in the PR population and 4.04 μg/ml in the RS population. For pyraclostrobin (n = 50), the median EC50 was 0.28 μg/ml in the PR population and 0.24 μg/ml in the RS population. Evidence of cross-resistance could not be detected. Screening using a discriminatory dose (DD) for azoxystrobin in a larger number of isolates from PR (n = 75) and RS (n = 100) states allowed the detection of 50% and 28% sensitive strains, respectively. Using the DD for pyraclostrobin, 33% and 18.8% were classified as less sensitive in the PR and RS isolates, respectively. In RS, the frequency of less-sensitive isolates increased over time (2007–2011). No point mutation at any of the target spots (F129L, G137R, G143A) was detected. Our results represent an important step towards the establishment of a sensitivity profile for two of the most commonly used QoIs in commercial premixes targeting FHB control.  相似文献   

6.
JS399-19 (2-cyano-3-amino-3-phenylancryic acetate), a novel cyanoacrylate fungicide, has powerful inhibition against Fusarium species, especially to Fusarium graminearum. Treated with JS399-19, mycelium of F. graminearum was distorted and swelled. The embranchment increased. In order to investigate the effect of JS399-19 on protein expression of F. graminearum, total protein of F. graminearum cultured in normal condition and that treated with 0.5 μg/mL (EC90 value) JS399-19 were extracted respectively and proteomic analysis was performed using two-dimensional gel electrophoresis. The expression levels of 38 proteins varied quantitatively at least twofold. 33 proteins out of the 38 were successfully identified by MALDI-TOF-MS/MS and MASCOT. According to the classification of physiological functions from Conserved Domain Database analysis, 19, 5, 2, 3, 2 and 2 proteins were respectively associated with metabolism, regulation, motility, defense, signal transduction, and unknown function, which indicated that energy metabolism, the synthesis and transport of proteins and DNA of F. graminearum were inhibited by JS399-19 in different degrees. The expression levels of the genes were further confirmed by quantitative real-time PCR analyses. This study represents the first proteomic analysis of F. graminearum treated by JS399-19 and will provide some useful information to find the mode of action of the fungicide against F. graminearum.  相似文献   

7.
BACKGROUND: Resistance to carbendazim and other benzimidazole fungicides in Botrytis cinerea (Pers. ex Fr.) and most other fungi is usually conferred by mutation(s) in a single chromosomal β‐tubulin gene, often with several allelic mutations. In Fusarium graminearum Schwade, however, carbendazim resistance is not associated with a mutation in the corresponding β‐tubulin gene. RESULTS: The β‐tubulin gene conferring carbendazim resistance in B. cinerea was cloned and connected with two homologous arms of the β‐tubulin gene of F. graminearum by using a double‐joint polymerase chain reaction (PCR). This fragment was transferred into F. graminearum via homologous double crossover at the site where the β‐tubulin gene of F. graminearum is normally located (the β‐tubulin gene of F. graminearum had been deleted). The transformants were confirmed and tested for their sensitivity to carbendazim. CONCLUSION: The β‐tubulin gene conferring carbendazim resistance in B. cinerea could not express this resistance in F. graminearum, as transformants were still very sensitive to carbendazim. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Fusarium graminearum andF. culmorum are capable of infecting winter cereals at all growth stages. From natural field epidemics of wheat head blight and rye foot rot, three fungal populations were collected with 21, 38 and 54 isolates, respectively; their aggressiveness was analyzed in comparison to collections ofF. graminearum (25 isolates) andF. culmorum (70 isolates) that represent a wide range of geographical locations and host species. All isolates were tested for aggressiveness on young plants of winter rye in the greenhouse and scored for disease severity on a 1–9 scale. Disease ratings of individual isolates ranged from 1.5 to 5.7 indicating quantitative variation of aggressiveness. Genotypic variance was highest in the twoFusarium collections. No substantial difference was found in the amount of genotypic variation betweenF. graminearum andF. culmorum. Individual field populations revealed 57–66% of the total genotypic variation of the collections. This implies a high degree of diversity of aggressiveness within single field populations ofF. graminearum andF. culmorum causing natural epidemics.  相似文献   

9.
Fusarium graminearum, Fusarium culmorum and Fusarium cerealis are major causal agents of Fusarium Head Blight (scab) which is a disease of global significance in all cereal growing areas. These fungi produce trichothecene mycotoxins, principally nivalenol (NIV) and deoxynivalenol (DON). Genes Tri13 and Tri7 from the trichothecene biosynthetic gene cluster convert DON to NIV (Tri13) and NIV to 4-acetyl-NIV (Tri7). We have developed positive–negative PCR assays based on these two genes, which accurately indicate a DON or NIV chemotype in F. graminearum, F. culmorum and F. cerealis. These assays are useful in assessing the risk of trichothecene contamination, and can be informative in epidemiological studies. All NIV chemotype isolates studied have functional copies of both Tri13 and Tri7, and all DON-producing isolates have both genes disrupted or deleted. We have identified several mutations in these genes, which are conserved across F. graminearum lineage, RAPD and SCAR groupings and between the three species. There appears to be evidence of inter-species hybridisation within the trichothecene biosynthetic gene cluster.  相似文献   

10.
Fungicide resistance in plant pathogens is often caused by a single point mutation in a gene encoding fungicide target proteins. Such is the case for resistance to MBI-D (inhibitors of scytalone dehydratase in melanin biosynthesis) fungicides in rice blast fungus (Magnaporthe oryzae), which is caused by a mutation in the scytalone dehydratase gene that results in a replacement of valine with methionine at codon 75 of the fungicide target protein. PCR-Luminex, a novel system developed for high-throughput analysis of single nucleotide polymorphisms (SNPs) was successfully introduced to diagnose MBI-D resistance using specific oligonucleotide probes coupled with fluorescent beads. The PCR-Luminex system was further tested for its potential in identifying species causing Fusarium head blight on wheat. Four major pathogens, Fusarium graminearum (=F. asiaticum), F. culmorum, F. avenaceum, and Microdochium nivale, known to cause the disease, were tested, and the species were identified using the PCR-Luminex method. So far, this report is the first on the application of the DNA-based PCR-Luminex system in the area of crop protection and/or agricultural sciences.  相似文献   

11.
甘肃玉米大斑病菌对嘧菌酯的敏感基线与抗药性监测   总被引:4,自引:1,他引:3  
为明确甘肃玉米大斑病菌对嘧菌酯的敏感基线和抗性水平,采用平皿法测定了采自甘肃4个典型生态区的57株玉米大斑病菌对嘧菌酯的敏感性。结果表明,甘肃玉米大斑病菌对嘧菌酯敏感性差异较大,EC50在0.03~5.21μg/m L之间,平均EC50为0.54μg/m L,其中有32个菌株EC50呈连续性正态分布,平均EC50为0.10μg/m L,即为甘肃玉米大斑病菌对嘧菌酯的敏感基线。基于此,发现12株抗性菌株,平均抗性水平为5.18,最高抗性水平为49.93,抗性频率为21.05%,其中南部湿润和陇东半湿润半干旱地区出现中、高抗菌株7株,占12.28%,陇东半湿润半干旱和中部干旱雨养地区出现低抗菌株5株,占8.77%,而河西干旱灌溉地区15株菌对嘧菌酯十分敏感,平均抗性水平为1.56,最高抗性水平为3.89,暂无抗药性。  相似文献   

12.
本研究明确了黄淮冬麦区主栽小麦品种对赤霉病的抗侵染、抗扩展、抗毒素积累和抗籽粒侵染能力以及几种抗性之间的相互关系,并检测了各品种是否带有FHB1抗性基因,旨在为该区小麦赤霉病抗性鉴定评价、抗性品种培育和利用提供科学依据。小麦赤霉病综合抗性鉴定结果表明:22个黄淮冬麦区主栽品种中,有20个为感病品种,只有‘郑麦9023’和‘西农979’为中感品种,所有品种均不含FHB1基因;长江中下游麦区的9个品种中,‘扬麦17’和‘宁麦9号’等6个品种表现中抗,‘扬麦23’表现中感,‘苏麦3号’和‘扬麦21’表现抗,‘扬麦14’‘扬麦17’和‘扬麦23’不含有FHB1基因,其他品种均含FHB1基因。小麦品种的抗扩展能力与抗侵染能力无显著相关性(r=0.27,P0.05);两种接种条件下小麦品种的病粒率与抗脱氧雪腐镰刀菌烯醇(DON)毒素积累能力呈极显著正相关(r=0.86,P0.01;r=0.88,P0.01);单小花滴注法接种条件下,小麦品种的平均病级与病粒率和籽粒中DON含量都呈极显著正相关(r=0.71,P0.01;r=0.81,P0.01);喷雾接种条件下,小麦品种的病小穗率与平均病级、病粒率、籽粒中DON含量和ZEN含量都呈极显著正相关(r=0.78,P0.01;r=0.73,P0.01;r=0.78,P0.01;r=0.63,P0.01)。在毒素积累抗性上,DON含量和ZEN含量呈极显著正相关(r=0.70,P0.01)。在目前黄淮冬麦区没有中抗品种的情况下,可以增加育种和鉴定目标为抗籽粒侵染和抗毒素积累的品种,在小麦品种推广过程中加以运用,可以达到较好的效果。  相似文献   

13.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

14.
15.
赤霉病是我国小麦上的重要病害,品种抗病性利用是控制病害发生的重要措施,明确小麦抗赤霉病资源的抗性类型,有利于小麦抗赤霉病育种。2003年和2004年对9个常用抗源在穗期进行单花滴注和喷雾接种,研究其抗侵染和抗扩展性,并对病穗中的脱氧雪腐镰刀菌烯醇(DON)的含量进行分析。结果表明,望水白和苏麦3号具较好的抗侵染和抗扩展能力,其中望水白的抗扩展性最好;感染赤霉病后,DON在5个抗源穗组织中的含量差异显著,DON在望水白和繁60096穗组织中积累量明显比在苏麦3号、延岗坊主和翻山小麦低。通过对望水白/安农8455遗传群体两年的病小穗率和病穗中DON毒素含量的比较,发现二者具有一定的相关性,且受环境影响比较大。  相似文献   

16.
Prospects of durability of resistance in lily to basal rot have been evaluated by testing the virulence and aggressiveness of 31 isolates ofFusarium oxysporum f. sp.lilii towards a number of different resistance sources inLilium spp. Isolates differed strongly in aggressiveness as did species and cultivars ofLilium spp. in resistance. Significant interactions were observed between isolates of the pathogen and genotypes ofLilium spp., but the magnitude was very small compared to the main effects. The interactions were mainly due to a small group of isolates with low aggressiveness. It is argued that the interactions might be based on minor genes. No major break down of the resistance was found. For practical purposes it will be sufficient to use highly aggressive isolates in screening tests.  相似文献   

17.
对采自浙江、湖北和安徽3省的蚕豆赤斑病样品进行了病原菌的分离和鉴定,采用菌丝生长速率法检测了引起赤斑病的2种病原菌——蚕豆葡萄孢Botrytis fabae和灰葡萄孢B.cinerea 的抗药性发生情况,并在离体条件下通过抗药性诱导试验比较了二者的抗药性风险。结果共分离得到153个菌株,其中蚕豆葡萄孢122株(占79.7%),灰葡萄孢31株(占20.3%)。共检测到37株多菌灵高水平抗药性菌株(其中蚕豆葡萄孢9株)和42株异菌脲低水平抗药性菌株(其中蚕豆葡萄孢17株);嘧霉胺对153个菌株的EC50值在0.01~5.13 μg/mL之间,平均EC50值为0.72±0.15 μg /mL;表明蚕豆赤斑病菌对常见杀菌剂已表现出一定的抗药性,且灰葡萄孢的抗药性问题比蚕豆葡萄孢要严重得多。抗药性诱导试验进一步证实,灰葡萄孢的抗药性风险明显高于蚕豆葡萄孢。  相似文献   

18.
为明确琥珀酸脱氢酶抑制剂类新型吡啶酰胺杀菌剂氟唑菌酰羟胺在中国小麦赤霉病防治中的应用潜力,分别采用菌丝生长速率法和孢子萌发法,测定了氟唑菌酰羟胺对湖北省6个地区106株禾谷镰孢菌的室内毒力、田间防效及其与多菌灵和氰烯菌酯的交互抗性。结果显示:氟唑菌酰羟胺对106株禾谷镰孢菌菌丝生长的EC50值为 (0.018 0 ± 0.209 0) mg/L,平均值为 (0.072 8 ± 0.025 9) mg/L;对分生孢子萌发的EC50值为 (0.052 7 ± 0.473 2) mg/L,平均值为 (0.176 0± 0.059 6) mg/mL;且其EC50值频率分布均呈单峰曲线,因此可分别将菌丝生长和孢子萌发的平均EC50值作为禾谷镰孢菌对氟唑菌酰羟胺的敏感性基线。初步的交互抗性测定结果表明,抗多菌灵或氰烯菌酯的菌株对氟唑菌酰羟胺均未表现出抗性。田间试验显示,氟唑菌酰羟胺有效剂量200 g/hm2处理的防效 (超过90.0%) 显著高于对照药剂氰烯菌酯600 g/hm2的防效 (78.0%),与空白对照相比增产效果在127%~135%之间。经氟唑菌酰羟胺处理后,小麦籽粒中由禾谷镰孢菌产生的毒素脱氧雪腐镰刀菌烯醇 (DON) 的含量比空白对照降低了55.09%。研究表明,氟唑菌酰羟胺对禾谷镰孢菌呈现出较高的室内活性且田间防效优越,同时还能降低小麦籽粒中DON毒素的含量及提高小麦产量,因此可作为生产中防治小麦赤霉病的替代或后备药剂,同时也可考虑用作为禾谷镰孢菌对多菌灵抗性治理的替代药剂。  相似文献   

19.
为明确河南省小麦赤霉病菌Fusarium graminearum对咯菌腈的敏感性,采用菌丝生长速率法测定了咯菌腈对从该省11个地市分离的95株菌株的毒力,通过方差分析法及聚类分析法对测定结果进行了分析,并研究了咯菌腈与多菌灵、戊唑醇对病菌毒力的相关性。结果显示:咯菌腈对小麦赤霉病菌菌丝生长的最低抑制浓度为0.1 μg/mL;咯菌腈对供试95株菌株的EC50范围在0.003~0.088 μg/mL之间,平均EC50为0.011 μg/mL;敏感性频率分布图显示,病菌群体中存在着对咯菌腈敏感性较低的亚群体,但67.4%供试菌株敏感性频率呈正态分布,将此部分菌株的EC50平均值0.007 μg/mL作为小麦赤霉病菌对咯菌腈的敏感性基线。方差分析及聚类结果均显示,同一县市内的菌株对咯菌腈EC50的最大值和最小值之比为1.1~8.3;除周口市沈丘县的菌株外,其余县市的菌株对咯菌腈敏感性差异不明显,咯菌腈EC50平均值变化范围在0.005~0.028 g/mL之间,最大值是最小值的5.6倍;小麦赤霉病菌对咯菌腈的敏感性与其对多菌灵、戊唑醇的敏感性之间无明显相关性。表明河南省小麦赤霉病菌群体中尽管存在着敏感性较低的亚群体,但可通过药剂复配进行防控。  相似文献   

20.
为明确浙江省桐乡市发生的杭白菊叶枯病的病原菌,采用传统组织分离法对采集的病样进行病原菌分离,在测定其致病性的同时,结合形态学特征及基于核糖体内部转录间隔区(ITS)、nrDNA大亚基(LSU)和β-微管蛋白基因(TUB2)的联合系统发育分析对该病原菌进行鉴定,并测定其对多菌灵的抗性。结果表明,从杭白菊叶枯病病样中共分离到35株菌株,在回接试验中杭白菊表现出的症状与田间自然发病症状一致,证明分离到的菌株为引起杭白菊叶枯病的病原菌。该病原菌菌丝生长初期为淡黄色,后为灰白色;培养25 d后菌落上的黑色球形分生孢子器产生大量液体状的淡粉色分生孢子堆;分生孢子为单胞、无色、长椭圆形,大小(n=200)为2.8~4.9μm×1.2~3.0μm,初步判断该病原菌是茎点霉属Phoma真菌P. bellidis。基于ITS、LSU、TUB2联合系统发育分析的分子鉴定结果与形态学鉴定结果一致,确定引起该病害的病原菌为P. bellidis。该病原菌对多菌灵的抗性频率为94.3%,且全部为高水平抗性菌株,抗药性机制为其TUB2的E198A突变,即TUB2的第198位密码子从GAG突变为GCG,导致第198位氨基酸从谷氨酸(Glu)突变为丙氨酸(Ala)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号