首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for simple and rapid determination of aflatoxins in corn, buckwheat, peanuts, and cheese. Aflatoxins were extracted with chloroform-water and were purified by a Florisil column chromatographic procedure. Column eluates were concentrated and spotted on a high performance thin layer chromatographic (HPTLC) plate, which was then developed in chloroform-acetone (9 + 1) and/or ether-methanol-water (94 + 4.5 + 1.5) or chloroform-isopropanol-acetone (85 + 5 + 10). Each aflatoxin was quantitated by densitometry. The minimum detectable aflatoxin concentrations (micrograms/kg) in various test materials were 0.2, B1; 0.1, B2; 0.2, G1; 0.1, G2; and 0.1, M1. Recoveries of the aflatoxins added to corn, peanut, and cheese samples at 10-30 micrograms/kg were greater than 69% (aflatoxin G2) and averaged 91%, B1; 89%, B2; 91%, G1; 78%, G2; and 92%, M1. The simple method described was compared with the AOAC CB method, AOAC BF method, and AOAC milk and cheese method. These methods were applied to corn, peanut, and cheese composites spiked with known amounts of aflatoxins, and to naturally contaminated buckwheat and cheese. Recoveries were much lower for the BF method compared with our simple method and the CB method.  相似文献   

2.
A liquid chromatographic (LC) technique has been developed that uses the Mycosep multifunctional cleanup (MFC) column. MFC columns provide a rapid 1-step extract purification. They are designed to retain particular groups of compounds that may create interferences in analytical methods. At the same time, MFC columns allow compounds of interest to pass through. In the method presented, test samples are extracted in a blender with acetonitrile-water (9 + 1). A portion of the extract is forced through an MFC column designed especially for analysis of numerous mycotoxins. Analytical interferences are retained, while aflatoxins pass through the column. Aflatoxins B1 and G1 are converted to their hemiacetals by heating a mixture of purified extract and water-trifluoroacetic acid-acetic acid (7 + 2 + 1) at 65 degrees C for 8.5 min. An aliquot of this mixture is analyzed by isocratic LC with acetonitrile-water mobile phase and fluorescence detection. A detection limit of less than 0.5 ng/g for aflatoxin B1 was obtained. Average recoveries greater than 95% total aflatoxins (B1, B2, G1, and G2) and coefficients of variation of less than 3% were obtained. The method was successfully applied to the following commodities: corn, almonds, pista-chios, walnuts, peanuts, Brazil nuts, milo, rice, cottonseed, corn meal, corn gluten meal, fig paste, and mixed feeds.  相似文献   

3.
Eleven laboratories collaboratively studied a modification of the official final action AOAC method, 26.048-26.056, for determining aflatoxins in cottonseed products. An aflatoxin-negative meal, 6 contaminated meals, 4 contaminated meats (kernels) samples, and 2 ammonia-inactivated meals were used. Mean aflatoxin values, mug/kg, ranged from 6 to 223 (B1), 2 to 44 (B2), and 7 to 266 (total: B1 + B2). Only one laboratory reported a false-positive for the negative meal. The mean coefficients of variation for B1, B2, and total were 28, 56, and 29%, respectively, for meals; 35, 54, and 37%, respectively, for meats; and 35, 58 and 38%, respectively, for ammoniated meals. Statistical treatment of data from triplicate sets of meals and meats showed evidence for systematic error between laboratories. Since the modified method is considerably faster than the official method and yields precision estimates consistent with previous AOAC collaborative studies on determining aflatoxins, the method has been adopted as official first action.  相似文献   

4.
A screening method for aflatoxins was collaboratively tested on 11 different agricultural and food products: white and yellow corn, peanuts, peanut butter, pistachio nuts, peanut meal, cottonseed meal, chicken, pig, and turkey starter rations, and dairy cattle feed. The method involves a rapid extraction and cleanup procedure followed by the detection of total aflatoxins (B1 + B2 + G1 + G2) as a fluorescent band on the Florisil layer of a Velasco-type minicolumn. The results of 32 collaborators from 10 different countries are presented. Samples containing 0, 5, 10, 15, 20, and 25 mug aflatoxins/kg were analyzed. Eighty-four per cent of the negative samples and 89% of the samples containing 10-25 mug total aflatoxins/kg were correctly identified. This method has been adopted as official first action for the detection of aflatoxins in corn, peanuts, peanut butter, peanut meal, cottonseed meal, mixed feeds, and pistachio nuts.  相似文献   

5.
Bee pollen is a major substrate for mycotoxins growth when no prompt and adequate drying is performed by the beekeeper after collection by bees. Regulatory limits for aflatoxins and ochratoxin A are currently in force in the European Union for a rising list of foodstuffs, but not for this. An immunoaffinity column cleanup process has been applied prior to the analysis of aflatoxins B(1), B(2), G(1), and G(2) and ochratoxin A (OTA). Optimization of the HPLC conditions has involved both a gradient elution and a wavelength program for the separation and fluorimetric quantitation of all five mycotoxins at their maximum excitation and emission values of wavelength in a single run. The higher limit of detection (mug/kg) was 0.49 for OTA and 0.20 for aflatoxin B(1). Repeatability (RSDr) at the lower limit tested ranged from 9.85% for OTA to 6.23% for aflatoxin G(2), and recoveries also at the lower spiked level were 73% for OTA and 81% for aflatoxin B(1). None of the 20 samples assayed showed quantifiable values for the five mycotoxins.  相似文献   

6.
7.
电化学免疫传感器快速检测农产品中的毒死蜱   总被引:1,自引:1,他引:1  
研究了一种无标记的电化学免疫传感器,用于农产品中的毒死蜱农药残留的快速检测。将毒死蜱人工抗原作为生物识别元件固定在金电极的表面,采用间接竞争法原理,样品中的被测组分与电极上的固定化包被抗原竞争性结合溶液中的抗体。抗体抗原结合反应通过电化学阻抗谱和石英晶体微天平进行表征。将该免疫传感器用于检测青菜、苹果等农产品中的毒死蜱农药残留。结果表明,此免疫传感器灵敏度好、准确度高;对毒死蜱农药的检测限为0.01μg/mL,回收率大于85%,检测时间小于1 h,变异系数小于5%,传感器经过再生处理后能重复使用,经济性较好。该研究可为实现快速检测农产品中农药残留传感器的商品化提供参考。  相似文献   

8.
A rapid method is described for extraction and cleanup of raw and processed milk for determination of aflatoxins M1 and M2 by using a C18 Sep-Pak/silica gel cleanup column combination. Aflatoxins are separated by normal phase liquid chromatography and their concentrations are determined by fluorescence detection in a silica gel-packed flow cell. Recoveries ranged from 99 to 103% with coefficients of variation less than 2% for M1 levels of 0.117-1.17 ng/mL added to raw milk. Similar recoveries were obtained for M2. The coefficient of variation for analysis of 5 subsamples of naturally contaminated milk was less than 1%. Agreement with the official method is satisfactory. Each sample requires less than 25 mL solvent and 10 min actual handling time. Sample chromatograms show no interferences in the M1-M2 elution region and no late-eluting peaks, which permits spacing injections at 13-20 min intervals. Aflatoxin levels as low as 0.03 ppb may be determined by this procedure. Extracts have also been analyzed by thin layer chromatography.  相似文献   

9.
Despite the existence of an AOAC official method based on an enzyme-linked immunosorbent assay (ELISA) for the determination of additions of soybean proteins in meat products, its use for quantitative assessment is limited. Accordingly, a simple and inexpensive method has been developed and validated in this work. The method involves defatting the meat samples with acetone, solubilization of soybean proteins in a 30 mM Tris-HCl buffer (pH 8) containing 0.5% (v/v) 2-mercaptoethanol, and the identification of two peaks from soybean proteins in the chromatogram obtained by perfusion reversed-phase chromatography and UV detection. Determination of soybean proteins by the proposed method did not suffer from matrix interferences, with a good linear correlation up to a concentration of 12.50 mg/mL soybean proteins being observed. The proposed method was proven to be specific, precise, accurate, robust, and sensitive, making possible the detection and the quantitation of additions of 0.07% (w/w) and 0.25% (w/w), respectively, of soybean proteins in meat products (related to 1 g of initial product). The method has been applied to the determination of the soybean protein content in commercial heat-processed meat products, obtaining results that were statistically similar to those obtained by the official ELISA method but with a higher reliability and simplicity and a lower cost and analysis time.  相似文献   

10.
A method for the determination of aflatoxin B1 in eggs was applicable for aflatoxin B1 in liver, but ineffective for aflatoxin M1 in liver because of poor recovery of added aflatoxin and interferences in thin layer chromatography. The method was modified by the addition of citric acid to the extracting solvent and ammonium sulfate to the extract solution for removing protein. The elution system for silica gel column cleanup was also changed by substituting methanol for acetone, and adding a step for confirmation of aflatoxin M1 identity. The method has been used successfully for survey and research on aflatoxin residues in animal tissues.  相似文献   

11.
The method described will detect total aflatoxins (B1, B2, G1, and G2) in mixed feeds, grains nuts, and fruit products in samples containing as little as 5-15 mug/kg. In addition, the presence of aflatoxins in the positive samples can be confirmed and the toxins can be quantitatively measured, using the same extract as that used for the screening method. In the screening method, aflatoxins are extracted with acetone-water (85+15), and interferences are removed by adding cupric carbonate and ferric chloride gel. The aflatoxins are extracted from the aqueous phase with chloroform and the chloroform extract is washed with a basic aqueous solution. A Velasco-type minicolumn is used to further purify the extract and capture the aflatoxins in a tight band. The screening method has been successfully applied to 24 different agricultural commodities. Quantitative thin layer chromatography was also performed with extracts of each of these commodities. An average recovery of 94% B1, 108% B2, 130% G1, and 103% G2 was obtained compared to the official final action AOAC method for cottonseed products, 26.048-26.056. Within-laboratory coefficients of variation of 10-15% were obtained for each of the aflatoxins and total aflatoxins in a sample of peanut meal naturally contaminated with 11 mug B1+3 mug B2+11 mug G1+5 mug G2/kg.  相似文献   

12.
农产品/食品中农药残留快速检测方法研究进展   总被引:4,自引:1,他引:4  
农药残留的识别和量化通常依赖于气相色谱法、高效液相色谱法、气/液相色谱-质谱联用法以及毛细管电泳法,这些方法需涉及大而贵重的仪器、费时的样品处理以及专门的技术培训。因此,建立在线、高灵敏度、高选择性、简单高效、低成本的农药残留快速检测方法和技术非常重要。该文综述了用于农产品/食品的农药残留分析快速检测方法,主要包括酶抑制法、免疫分析法、光谱法(包括可见/近红外、红外、拉曼和激光诱导击穿光谱等)以及各种生物传感器等,分别介绍了这些方法最新的研究进展,同时分析并总结了这些快速检测方法和技术的基本原理和特点。目前的研究在灵敏度、重复性、准确性方面存在着一些不足,商品化的农药残留检测仪器也比较单一。由于纳米生物技术、分子印迹技术和微流控技术等技术有着巨大的应用潜力,因此特别介绍了这些技术在农药残留分析中的应用。农药残留快速分析技术未来将会朝着检测仪器的小型化和集成化、多通道检测、无线通讯方向发展,提高快速检测方法和仪器的稳定性和可靠性是必然趋势。  相似文献   

13.
A simple, rapid, and specific method for determination of adrenaline bitartrate and isoprenaline sulfate was developed. The method is based on the oxidation reaction in aqueous solution of either adrenaline bitartrate or isoprenaline sulfate in the presence of silver oxide to give a red aminochrome measurable at 490 nm. The color is stable for 2 h. Beer's law is valid within a concentration range of 5-80 micrograms/mL for each drug. All variables were studied to optimize the reaction conditions. The method is specific for catecholamine drugs having a secondary amine in the side chain. Other catecholamines such as orciprenaline and noradrenaline do not interfere, and no interference was observed in the presence of common pharmaceutical adjuvants. Interference due to sodium metabisulfite and sodium chloride was circumvented. The validity of the method was tested by analyzing adrenaline injections and isoprenaline tablets. Good recoveries were obtained for these preparations. The results were comparable to those obtained by official procedures. The proposed method is also recommended as a stability indicating assay for oxidative degradation of both drugs.  相似文献   

14.
The rapid column method described, unlike AOAC method 7.056, determines both neutral ("crude") and total fat in canned pet foods, and uses nonflammable solvent mixtures and simple laboratory equipment. Neutral fat values are obtained by eluting the column with dichloromethane, whereas total fat values are determined by using dichloromethane-methanol (9 + 1). For 7 samples analyzed in triplicate, fat ranged from 2.9 to 10.8%. Neutral fat values by the dry column method were significantly lower (P less than 0.05) than were those by 7.056 (6.29 vs 6.49), although these differences were practically unimportant. Total fat determinations by the dry column method and by 7.056 yielded overall means of 7.40 and 6.49%, respectively. The 0.91% mean difference is significant (P less than 0.01) and represents a more complete extraction of polar lipids by the proposed method.  相似文献   

15.
A method is described for rapid cleanup followed by reverse-phase liquid chromatographic (LC) quantitation of aflatoxins in raw peanuts. A modified minicolumn cleanup is used for sample preparation, and a preliminary estimation of aflatoxin content by minicolumn can be made so that highly contaminated samples can be diluted before LC analysis. The use of the simple, quick minicolumn cleanup eliminates the need for further column or cartridge cleanup, thus greatly reducing sample preparation time. Sensitive quantitation is achieved using a phenyl column, a mobile phase of water-tetrahydrofuran (80 + 20, v/v), and postcolumn derivatization with water-saturated iodine followed by fluorescence detection. The recoveries of aflatoxins B1, B2, G1, and G2 from peanut meal spiked at 3 levels ranged from 71.7 to 88.3% (average 80%) with coefficients of variation from 2.7 to 10.4%.  相似文献   

16.
A liquid chromatographic method using on-line sample cleanup, reverse flow analytical column loading, gradient elution, and postcolumn derivatization with iodine permits direct, rapid determination of aflatoxins B1, B2, G1, and G2, as well as ochratoxin A and zearalenone. Limits of quantitation are 5 ppb for the aflatoxins and ochratoxin A and 30 ppb for zearalenone. This procedure performs well as a multimycotoxin screen for cereal grains and oilseeds, with more limited success in complete animal feeds.  相似文献   

17.
A new method for the detection of phenolics in food systems was developed. This method is based on interactions of phenolics with Fast Blue BB diazonium salt in alkali pH, forming azo complexes, with the absorbance measured at 420 nm after 60 min. The linear regression correlations (R(2)) of gallic acid calibration standards were >0.99. The phenolic content (gallic acid equivalent) of samples analyzed yielded higher ratios (1.7-6.6) of the total phenolics by Fast Blue BB to Folin-Ciocalteu methods in most beverages and grain samples, but in flaxseed and some juice blends, the ratios were <1. The lower ratios suggest the presence of non-phenolic reducing constituents measured with the Folin-Ciocalteu method as "total phenolics". This method is simple and inexpensive and can be used to rapidly assess the total phenolics of foods and beverages.  相似文献   

18.
In biological matrixes lipid material often poses an interference problem for determinations of nonpolar compounds, e.g., polycyclic aromatic hydrocarbons (PAHs). A newly developed supercritical fluid extraction plus adsorbent method, "SFE-plus-C(18)", offers selective extraction of PAHs in lipid-rich biological matrixes without the need for supplementary cleanup. This method eliminates the use of large volumes of toxic solvent and lengthy lipid removal procedures. This study reports the first application of the SFE-plus-C(18) method to the analysis of a genuine food product, i.e., smoked meat (beef). The procedure employs the addition of C(18) adsorbent beads to the initial sample slurry of pureed smoked meat prior to supercritical CO(2) extraction and GC/MS quantitation. During SF extraction, indigenous lipids are preferentially retained on the beads, and PAHs are selectively extracted with supercritical CO(2). In a comparison of determinations of PAHs by SFE-plus-C(18) vs the conventional SFE method, only 11-17% of the indigenous lipids observed by the conventional SFE method were co-extracted using the SFE-plus-C(18) method. The PAHs in smoked meat could thus be determined efficiently in the presence of a reduced background of co-extracted lipids. Out of 10 targeted PAHs, seven were detected with a range of 10.0-26.0 ng/g in the smoked meat sample. The other three PAHs were not present above the detection limit of the instrument (2.5-4.1 pg). The recoveries of PAHs obtained using the conventional SFE method were 63-94% lower than those achieved by SFE-plus-C(18).  相似文献   

19.
A method is described for confirming the identity of aflatoxins B1 and M1 in dairy products and liver extracts on a thin layer plate. Extracts and standards containing aflatoxins B1 and M1 are spotted on 10 x 10 cm plates, which are developed 2-dimensionally in mixtures of isopropanol-acetone-chloroform. After the first development, trifluoroacetic acid-hexane (1 + 4) is sprayed on that part of the plate containing the separated extract components and the underdeveloped standard spots of B1 and M1, and the plate is heated 6-8 min at 75 degrees C. Then the plate is developed in a second direction, and the reaction products of B1 and M1 with trifluoroacetic acid from the extract are compared with the same derivatives of the respective standards. The method has been used successfully on extracts of milk, cheese, and liver containing 0.1 ng B1 or M1/g and can be completed in 35-45 min.  相似文献   

20.
A collaborative study of a liquid chromatographic method for the determination of aflatoxins B1, B2, G1, and G2 was conducted in laboratories located in the United States, Canada, South Africa, and Switzerland. Twenty-one artificially contaminated raw peanuts, peanut butter, and corn samples containing varying amounts of aflatoxins B1, B2, G1, and G2 were distributed to participating laboratories. The test portion was extracted with methanol-0.1N HCl (4 + 1), filtered, defatted with hexane, and then partitioned with methylene chloride. The concentrated extract was passed through a silica gel column. Aflatoxins B1 and G1 were derivatized with trifluoroacetic acid, and the individual aflatoxins were determined by reverse-phase liquid chromatography with fluorescence detection. Statistical analysis of the data was performed to determine or confirm outliers, and to compute repeatability and reproducibility of the method. For corn, relative standard deviations for repeatability (RSDr) for aflatoxin B1 ranged from 27.2 to 8.3% for contamination levels from 5 through 50 ng/g. For raw peanuts and peanut butter, RSDr values for aflatoxin B1 were 35.0 to 41.2% and 11.2 to 19.1%, respectively, for contamination levels from 5 through 25 ng/g. RSDr values for aflatoxins B2, G1, and G2 were similar. Relative standard deviations for reproducibility (RSDr) for aflatoxin B1 ranged from 15.8 to 38.4%, 24.4 to 33.4%, and 43.9 to 54.0% for corn, peanut butter, and raw peanuts, respectively. The method has been adopted official first action for the determination of aflatoxins B1, B2, G1, and G2 in peanut butter and corn at concentrations greater than or equal to 13 ng total aflatoxins/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号