首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Emerging forests on abandoned land: Puerto Rico’s new forests   总被引:1,自引:0,他引:1  
The species composition of forests change continuously as the earth’s biota evolves and adjusts to environmental change. Humans are accelerating the rate of species turnover by moving species around the planet and dramatically changing environmental conditions. Our focus is on new forests in Puerto Rico that emerge naturally on abandoned lands previously converted to agriculture and degraded. These forest stands have combinations of species that are new to the island’s landscapes. New forests exhibit high species dominance during forest establishment, which includes dominance by alien tree species. These alien tree species establish and maintain forest cover, which may facilitate regeneration of native tree species. Landscape analysis and literature review revealed that these emerging stands are highly fragmented (60% were <1 ha in 1991), function as refugia for native organisms, and at 60–80 years old have similar species richness and structural features as native stands of similar age. However, the island’s new forests exhibit important differences from mature native forests on unconverted forestlands. New forests have fewer endemic species and fewer large trees (≥55 cm dbh) than mature native forests; they have higher soil bulk density and lower soil carbon and litter stocks; and they accumulate aboveground biomass, basal area, and soil carbon more slowly than native forests of similar age. We suggest that new forests will become increasingly prevalent in the biosphere in response to novel environmental conditions introduced to the planet by humans.  相似文献   

2.
The African tulip tree, Spathodea campanulata Beauv., is an introduced species forming novel forest types in Puerto Rico. These forests develop naturally after deforestation, agricultural use and land abandonment, and there are many questions as to their ecological characteristics. We sampled structure and species composition of large, small, and juvenile trees (≥10, ≥2.5 to <10, and <2.5 cm diameter at breast height, respectively) in nine secondary forests dominated by S. campanulata on alluvial, karst, and volcanic substrates in northcentral Puerto Rico. No differences were found in S. campanulata forest structure between substrates. Of a total of 79 species found, 17 were introduced. Forests on karst and alluvium had the highest and lowest global species richness, respectively. Species richness increased from large to small to juvenile trees in most sites, but more so on karst. The percentage of introduced species was inversely related to species richness of tree size classes on all substrate types. The dominance of S. campanulata in the large tree size class was highest and lowest in alluvial and volcanic sites, respectively, and decreased from large to small to juvenile trees on all substrate types. Species richness of S. campanulata forests is lower than that of native forests on equivalent substrates. Although land use history affects composition, the juvenile tree species established in S. campanulata forests seems to correspond to the geological substrate were sites are found. This study shows S. campanulata restores forest structure and native tree species on abandoned agriculture and grazing lands in Puerto Rico. Management of these novel forests should consider them as resources were natural processes have the potential of making them more diverse.  相似文献   

3.
Forest biomass pools are the major reservoirs of atmospheric carbon in both coniferous and broad-leaved forest ecosystems and thus play an important role in regulating the regional and global carbon cycle. In this study, we measured the biomass of trees, understorey, and detritus in temperate (coniferous and broad-leaved) forests of Kashmir Himalaya. Total ecosystem dry biomass averaged 234.2 t/ha (ranging from 99.5 to 305.2 t/ha) across all the forest stands, of which 223 t/ha (91.9–283.2 t/ha) were stored in above- and below-ground biomass of trees, 1.3 t/ha (0.18–3.3 t/ha) in understorey vegetation (shrubs and herbaceous), and 9.9 t/ha (4.8–20.9 t/ha) in detritus (including standing and fallen dead trees, and forest floor litter). Among all the forests, the highest tree, understorey, and detritus biomass were observed in mid-altitude Abies pindrow and Pinus wallichiana coniferous forests, whereas the lowest were observed in high-altitude Betula utilis broad-leaved forests. Basal area has showed significant positive relationship with biomass (R2 = 0.84–0.97, P < 0.001) and density (R2 = 0.49–0.87). The present study will improve our understanding of distribution of biomass (trees, understorey, and detritus) in coniferous and broad-leaved forests and can be used in forest management activities to enhance C sequestration.  相似文献   

4.
Nutrient losses during slash-and-burn clearing in tropical forests, coupled with demand by food crops, can deplete nutrients and result in crop abandonment after 1–2 years. Slash-and-mulch technology prevents nutrient losses from burning, while mulch decomposition may serve as a nutrient source. This research investigates the release of nutrients from the mulch and potential uptake of released N by plant biomass after a multi-species agroforestry system was planted in June 2005, following the clearing of a 1 ha of 7-year-old forest with a mulching tractor in Igarapé Açu, Brazil. The study evaluated soil conditions, mulch decomposition, and nutrient concentrations of Manihot esculenta and native vegetation under treatments of P+K fertilization in combination with four native tree species and N-fixing Inga edulis, or with three native tree species without I. edulis. Mulch layer N, Ca and Mg content decreased in response to fertilization, while mulch layer P and K content increased. Nutrient content increased in M. esculenta stems and tubers with fertilization and in the presence of I. edulis, and in competing vegetation with fertilization. Estimated tree N content increased 311 % with fertilization, but by 154 % in the presence of I. edulis. Fertilization with P+K, as well as the presence of I. edulis, increased N stocks in total biomass.  相似文献   

5.
This study assessed the net above-ground carbon stock in six community forests in the Dolakha district, Nepal. A survey was conducted of above-ground timber species, using random sampling. A tree-ring chronology for Pinus roxburghii was created to construct a growth model representative of the various mainly-pine species. The allometric model combined with tree ring analysis was used to estimate carbon stock and annual growth in the above-ground tree biomass. The out-take of forest biomass for construction material and fuelwood was estimated on the basis of interviews and official records of community forest user groups. The average annual carbon increment of the community forests was 2.19 ton/ha, and the average annual carbon out-take of timber and fuelwood was 0.25 ton/ha. The net average carbon balance of 1.94 ton/ha was equivalent to 117.44 tons of carbon per community forest annually. All the community forests were actively managed leading to a sustainable forest institution, which acts as a carbon sink. It is concluded that community forests have the potential to reduce emissions by avoiding deforestation and forest degradation, enhance forest carbon sink and improve livelihoods for local communities.  相似文献   

6.
We estimated forest biomass carbon storage and carbon density from 1949 to 2008 based on nine consecutive forest inventories in Henan Province,China.According to the definitions of the forest inventory,Henan forests were categorized into five groups: forest stands,economic forests,bamboo forests,open forests,and shrub forests.We estimated biomass carbon in forest stands for each inventory period by using the continuous biomass expansion factor method.We used the mean biomass density method to estimate carbon stocks in economic,bamboo,open and shrub forests.Over the 60-year period,total forest vegetation carbon storage increased from34.6 Tg(1 Tg = 1×10~(12)g) in 1949 to 80.4 Tg in 2008,a net vegetation carbon increase of 45.8 Tg.By stand type,increases were 39.8 Tg in forest stands,5.5 Tg in economic forests,0.6 Tg in bamboo forests,and-0.1 Tg in open forests combine shrub forests.Carbon storageincreased at an average annual rate of 0.8 Tg carbon over the study period.Carbon was mainly stored in young and middle-aged forests,which together accounted for 70–88%of the total forest carbon storage in different inventory periods.Broad-leaved forest was the main contributor to forest carbon sequestration.From 1998 to 2008,during implementation of national afforestation and reforestation programs,the carbon storage of planted forest increased sharply from 3.9 to 37.9 Tg.Our results show that with the growth of young planted forest,Henan Province forests realized large gains in carbon sequestration over a 60-year period that was characterized in part by a nation-wide tree planting program.  相似文献   

7.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

8.
Managed forest stands are typically younger and structurally less diverse than natural forests. Introduction of non-native tree species might increase the structural changes to managed forest stands, but detailed analyses of tree- and stand-structures of native and non-native managed forests are often lacking. Improved knowledge of non-native forest structure could help clarify their multiple values (e.g. habitat for native biodiversity, bioenergy opportunities). We studied the structural differences between the introduced, non-native Pinus contorta and the native Pinus sylvestris and Picea abies over young forest stand ages (13–34 years old) in managed forests in northern Sweden. We found that P. contorta stands had greater mean basal areas, tree heights, diameters at breast height, and surface area of living branches than the two native species in young stands. The surface area of dead attached branches was also greater in P. contorta than P. abies. Although this indicates greater habitat availability for branch-living organisms, it also contributes to the overall more shaded conditions in stands of P. contorta. Only one older 87 years old P. contorta stand was available, and future studies will tell how structural differences between P. contorta and native tree species develop over the full forestry cycle.  相似文献   

9.
Standing and downed deadwood at different stages of decay provides a crucial habitat for a wide range of organisms. It is particularly abundant in unmanaged forests, such as strictly protected areas of national parks and nature reserves. The present work used the available data for such sites in Poland, analyzing a total of 113 studies concerning 79 sites to determine the causes contributing to variation in deadwood volume based on the duration of conservation, changes in deadwood volume over time (for those sites which were examined multiple times), elevation above sea level, forest type, stage of forest development, input of dead trees from the years preceding deadwood measurements, live tree volume, and the proportion of downed to standing deadwood). Depending on species composition and site altitude, most tree stands fell into one of four categories: subalpine spruce forests, montane beech-fir forests, low altitude beech-fir forests, or oak-hornbeam and riparian forests. The mean deadwood volume for all forest types amounted to 172.0 m3/ha. The mean volume of deadwood in montane beech-fir forests (223.9 m3/ha) was statistically significantly greater than in the other three forest types, for which it ranged from 103.5 to 142.5 m3/ha. A direct effect of the duration of conservation on deadwood volume was not identified. Nevertheless, analysis of repeated measurements on the same sample plots at 10-year intervals showed a consistent rise in mean deadwood volume. A linear regression model for all the analyzed factors reported from montane beech-fir forests and subalpine spruce forests showed that in addition to site altitude, another statistically significant variable was the input of dead trees (R2?=?63.54%).  相似文献   

10.
We report results of new research on (1) community composition of novel subtropical dry forests developing on abandoned pastures and agricultural fields in both private and protected public lands and (2) seed germination and growth rates of plantings of native tree species on degraded soils. We found that novel dry forests were dominated by introduced species, which accounted for 59 percent of the Importance Value (IV) of stands. These forests had high species dominance, with the most dominant species averaging 51 percent of the IV but reaching values as high as 92 percent. The floristic similarity between novel and mature native forests was low (5.6 percent) compared with the similarity among novel forest stands (26 percent). Collectively, the emerging novel forests had relatively high species richness (39 species/1.2 ha). After 45-60 years of growth and development, novel forests lagged mature native forests in basal area, tree density, and species richness, and lagged stands of similar age and past land use inside a protected area. Novel forest stands inside the protected Guánica Forest had higher species richness than those located outside in private lands. Most regeneration was from seed (67 percent of the new stems were single stems). The results from the germination and planting experiment show that seeds of 17 of 21 native tree species germinated in the laboratory and grew successfully in abandoned pastures when planted and watered for a period of 13 months. Our research shows that after the initial invasion and dominance of introduced species on degraded sites, the stands diversify with native species thus evolving towards new forest types with novel species combinations.  相似文献   

11.
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory and analysis (FIA) measured tree diameter and height, and then destructively sampled 30 trees from 6 species at an upland deciduous dry forest site near Ponce, Puerto Rico. This data was used to develop best parsimonious equations fit with ordinary least squares procedures and additive models fit with nonlinear seemingly unrelated regressions that estimate subtropical dry forest leaf, woody, and total AGB for Bucida buceras and mixed dry forest species. We also fit equations for estimating inside and outside bark total and merchantable stem volume using both diameter at breast height (d.b.h.) and total height, and diameter at breast height alone for B. buceras and Bursera simaruba. Model fits for total and woody biomass were generally good, while leaf biomass showed more variation, possibly due to seasonal leaf loss at the time of sampling. While the distribution of total AGB into components appeared to remain relatively constant across diameter classes, AGB variability increased and B. simaruba and B. buceras allocated more carbon into branch biomass than the other species. When comparing our observed and predicted values to other published dry forest AGB equations, the equation developed in Mexico and recommended for areas with rainfall >900 mm/year gave estimates substantially lower than our observed values, while equations developed using dry forest data from forest in Australia, India and Mexico were lower than our observed values for trees with d.b.h. <25 cm and slightly higher for trees with d.b.h. >30 cm. Although our ability to accurately estimate merchantable stem volume and live tree AGB for subtropical dry forests in Puerto Rico and other Caribbean islands has been improved, much work remains to be done to sample a wider range of species and tree sizes.  相似文献   

12.
Ecological invasions are a major driver of global environmental change. When invasions are frequent and prolonged, exotic species can become dominant and ultimately create novel ecosystem types. These ecosystems are now widespread globally. Recent evidence from Puerto Rico suggests that exotic-dominated forests can provide suitable regeneration sites for native species and promote native species abundance, but this pattern has been little explored elsewhere. We surveyed 46 sites in Hawai’i to determine whether native species occurred in the understories of exotic-dominated forests. Native trees smaller than 10 cm in diameter were absent in 28 of the 46 sites and rare in the others. Natives were never the dominant understory species; in fact, they accounted for less than 10% of understory basal area at all but six sites, and less than 4% on average. Sites with native species in the understory tended to be on young lava substrate lacking human disturbance, and were mostly located close to intact, native-dominated forest stands. Even where we found some native species, however, most were survivors of past exotic encroachment into native forest, rather than products of active recolonization by native species. In contrast with successional trajectories in Puerto Rico, Hawaii's exotic-dominated forests can emerge, via invasion, without human disturbance and native Hawaiian plants are largely unable to colonize them once they appear. We suggest that a wide diversity of growth strategies among the exotic species on Hawai’i may limit the opportunities for native plants to colonize exotic-dominated forests.  相似文献   

13.
Climate change and carbon mitigation through forest ecosystems are some of the important topics in global perspective. Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research. The soil organic carbon (SOC) stock was quantified on a large scale (30 1-ha plots) in the dry deciduous forest of the Sathanur reserve forest of Eastern Ghats. The SOC stock ranged from 16.92 to 44.65 Mg/ha with a mean value of 28.26 ± 1.35 Mg/ha. SOC exhibited a negative trend with an increase in soil depth. A significant positive correlation was obtained between SOC stocks and vegetation characteristics viz. tree density, shrub basal area, and herb species richness, while a significant negative correlation was observed with bulk density. The variation in SOC stock among the plots obtained in the present study could be due to differences in tree abundance, herb species richness, shrub basal area, soil pH, soil bulk density, soil texture etc. The present study generates a large-scale baseline data of dry deciduous forest SOC stock, which would facilitate SOC stock assessment at the national level as well as to understand its contribution on a global scale.  相似文献   

14.
Abstract

This paper presents estimations of aboveground tree biomass (combined for boles and branches) in Nepal's Schima-Castanopsisdominated warm-temperate forests. The biomass estimations are presented for five forest stands purposively sampled in a larger study to represent different harvesting intensities. Two categories of biomass estimates are provided: (1) for living trees that are standing, and (2) for cut trees that have been removed. Biomass of standing trees were estimated by using diameter at breast height (dbh) and total height measurements as predictor variables in appropriate regression models. Biomass of cut trees were estimated in two steps: measurements of stump diameters and heights were used first to predict dbh and total heights of cut trees; these values were then regressed to obtain biomass estimates for the missing trees. Data were gathered from 2,361 live trees and 2,962 stumps in 170 sample plots across the five forest stands. Estimates of mean standing-alive biomass ranged from a minimum of 16 ton/ha in the severely disturbed forest to a maximum of 479 ton/ha in a relatively undisturbed (reference) forest. Estimates of mean cut biomass ranged from a minimum of 24 ton/ha in a second reference forest to a maximum of 183 ton/ha in the severely disturbed forest. The biomass estimates in the relatively-undisturbed, reference forests are well above the 95% upper confidence interval of the global mean. Similar findings of high productivity have been reported for temperate forests of the Central Himalaya in India and Eastern Himalaya in Sik-kim. The findings of this study in the Nepalese Central Himalaya support the conclusion that productivity potential is high in the temperate Himalayan forests. The study's findings and methodology should be useful for preliminary development of guidelines in the region to regulate forest biomass growth, yield, and harvest.  相似文献   

15.
Tropical forests are the world’s largest terrestrial storehouses of carbon and are recognized as rich, diverse and highly productive ecosystems. The present study was conducted to characterize the land use, diversity and biomass of tropical forest in Western Ghat of Maharashtra State in India through satellite remote sensing and GIS. The study has been designed and implemented to promote analysis on Western Ghat biodiversity resources including trees, shrubs and herbs based on inventorying, monitoring and mapping. Field measured biomass is integrated with spectral responses of various bands and indices of the Landsat TM satellite image for estimation of above-ground biomass in a 36,046 km2 area of relic forest in the Central Western Ghat. The above-ground biomass from field-based inventory varied from 30.2 to 151.1 ton/ha in moist deciduous forest, 9.2–99.1 ton/ha in dry deciduous forest, 42.1–158.6 ton/ha in semi-evergreen forest, and 160.9–271 ton/ha in evergreen forest. The total above-ground biomass of the study area was estimated to be 95.2 M tons. A regression equation between field above-ground biomass and a Normalized Difference Vegetation Index was used for spectral modeling to estimate and prepare the above-ground biomass map in the region. A total 120 plant species in 81 genera and 31 families were identified in the study area. This study emphasizes the importance of relic forests for their biodiversity, carbon sequestration and total biomass.  相似文献   

16.
In order to restore biodiversity in the degraded forest landscape and to use forest plantations for climate change mitigation, experimental plantations of indigenous trees (including mahogany species) and important exotic trees species like Tectona grandis have been established in pure and in mixed stands in the degraded Tain Tributaries Block II Forest Reserve in the dry semi-deciduous forest zone of Ghana. This study assessed the performance of an important indigenous species, Khaya grandifoliola, in pure and in mixed stands, and compared its performance to the exotic tree species, T. grandis. The results from the study indicated that after 4 years, there was a significant difference in the diameter of K. grandifoliola (P = 0.001) between pure and mixed stands with the pure stands having an average diameter of 9.15 ± 0.19 cm compared with 7.81 ± 0.33 cm for mixed stands. Pure stands had a correspondingly higher basal area at breast height for individual trees in pure stands compared with mixed stands. K. grandifoliola also recorded average total height of 5.50 ± 0.13 m and merchantable height 3.63 ± 0.09 m in pure stands, compared to total height of 5.04 ± 0.24 m and merchantable height of 3.52 ± 0.18 m in mixed stands. However, these values were not significantly different between the stands (P > 0.05). Basal area at breast height for K. grandifoliola grown in pure stands was 5.5 ± 0.3 m2/ha at age four, which was significantly higher than the basal area of 1.1 ± 0.4 m2/ha at breast height for K. grandifoliola in mixed stands. Also total volume per hectare was higher in pure stands (17.8 ± 0.9 m3/ha) than in mixed stands (3.4 ± 0.6 m3/ha). Consequently, K. grandifoliola accumulated more carbon in pure stands (10,126 ± 557.2 kg/ha) than in mixed stands (1,976 ± 335.1 kg/ha), but the mixture of the tree species, including K. grandifoliola, accumulated more carbon (11,929 ± 401.3 kg/ha) than the K. grandifoliola in pure stands though not statistically different. Overall, K. grandifoliola performed better in pure stands than in mixed stands. With regards to the tolerance to pest attacks on K. grandifoliola, it was more tolerant to pests’ attacks in mixed stands than in pure stands. There was no statistical difference in diameter growth between K. grandifoliola (9.15 ± 0.19 cm) and T. grandis (9.61 ± 0.26 cm) in pure stands. The values of total height, merchantable height and total volume for T. grandis were 8.22 ± 0.20 m, 5.38 ± 0.18 m and 22.5 ± 1.7 m3/ha respectively which differed significantly from 5.50 ± 0.13 m, 3.63 ± 0.09 m and 17.8 ± 0.9 m3/ha for K. grandifoliola for the same parameters (P < 0.05). However, there was no significant difference between the two species with respect to basal area per hectare (P = 0.189); K. grandifoliola grew to 5.5 ± 0.3 m2/ha and T. grandis grew to 4.8 ± 0.3 m2/ha. T. grandis in pure stands accumulated slightly more aboveground biomass than K. grandifoliola in pure stands after 4 years though not statistically different.  相似文献   

17.

? Context

A large area of abandoned land in the semiarid temperate region of China has been converted into plantations over the past decades. However, little information is available about the ecosystem C storage in different plantations.

? Aim and methods

Our objective was to estimate the C storage in biomass, litter, and soil of four different plantations (monospecific stands of Larix gmelinii, Pinus tabuliformis, Picea crassifolia, and Populus simonii). Tree component biomass was estimated using allometric equations. The biomasses of understory vegetation and litter were determined by harvesting all the components. C fractions of plant, litter, and soil were measured.

? Results

The ecosystem C storage were as follows: Picea crassifolia (469 t C/ha)?>?Larix gmelinii (375 t C/ha), Populus simonii (330 t C/ha)?>?Pinus tabuliformis (281 t C/ha) (P?<?0.05), 59.5–91.1 % of which was in the soil. The highest tree and understory C storage were found in the plantation of Pinus tabuliformis (247 t/ha) and Larix gmelinii (1.2 t/ha) respectively. The difference in tree C fraction was significant among tree components (P?<?0.05), following the order: leaf?>?branch?>?trunk?>?root. The highest soil C (SC) was stored in Picea crassifolia plantation (411 t C/ha), while Populus simonii plantation had a higher SC sequestration rate than others.

? Conclusion

C storage and distribution varied among different plantation ecosystems. Coniferous forests had a higher live biomass and litter C storage. Broadleaf forests had considerable SC sequestration potential after 40 years establishment.  相似文献   

18.
In the modern forestry paradigm, many factors influence the amount of coarse woody debris (CWD). The present paper analyzes the effects of both local (national) programs (special functions of forests) and European programs (Natura 2000 sites), as well as the individual characteristics of forest stands. The study was conducted on 2,752 sampling plots distributed over an area of about 17,500 ha and located in lowland stands having a species composition typical of large areas in central Europe. Natura 2000 areas contained significantly more CWD (8.4 m3/ha) than areas not covered by the program (4.8 m3/ha). However, this is due to the fact that Natura 2000 sites involve well-preserved forest areas, such as nature reserves (26.6 m3/ha). In the managed forests that have been covered by the Natura 2000 program over the past several years, the volume of CWD has not increased. Forests with ecological and social functions differed slightly in the amount of CWD. More CWD occurred in protected animal areas (8.7 m3/ha) than in stands damaged by industry (3.9 m3/ha). Intermediate CWD levels were found in water-protection forests and in forests located around cities and military facilities. In managed forests, the lowest CWD volume was observed in middle-aged stands. The species composition of the stand had little effect on the volume of CWD. Only stands with a predominance of ash and alder had higher CWD levels (13.5 m3/ha). More CWD was found in stands whose species composition did not represent the potential site quality (6.4 m3/ha) than in habitats with the optimum species composition (3.8 m3/ha). CWD volume should be systematically increased taking into consideration local natural conditions. Such efforts should be focused on particularly valuable regions, and especially on Natura 2000 sites, where the threshold values reported from other European forests should be reached. Leaving some trees to die naturally and retaining reasonable amounts of such trees ought to be incorporated into CWD management practice in Poland.  相似文献   

19.
We describe methods and results for broad-scale estimation and mapping of forest biomass for the Canadian province of Alberta. Differences over successive decades provided an estimate of biomass change. Over 1500 permanent sample plots (PSP) were analyzed from across the range of lodgepole pine (Pinus contorta var. latifolia Engelm.), the major forest tree species of Alberta. The PSP network is densest in stands aged between 70 and 100 years and is well-represented by stands of all ages to 150 years of age. Stand biomass (Mg ha(-1)) was estimated for each PSP plot as the sum of the respective biomass components for each tree (live and standing dead). The biomass components for live trees were stem, bark, branches, foliage and roots. The components for standing dead trees excluded foliage. Equations from previous biomass studies were used for biomass component estimation. Biomass estimates of additional non-tree components were attempted, but without much success. Biomass of the soil organic layer was estimated once on 452 PSPs and a mean estimate of total dead fuels on the ground (28.4 Mg ha(-1)) was available only for the entire distribution of lodgepole pine. However, values of these two components were essentially constant over time and therefore did not alter the analysis or conclusions obtained by analyzing total tree biomass alone. We then used this spatial network of 1549 plots as the basis for mapping biomass across Alberta. Mapping methods were based on Australian National University SPLINe (ANUSPLIN) software, Hutchinson's thin-plate smoothing spline in four dimensions (latitude, longitude, elevation and biomass). Total tree biomass (mean = 172 Mg ha(-1)) was dominated by stem biomass (mean = 106 Mg ha(-1)), which was an order of magnitude greater than the mean estimates for the bark (11 Mg ha(-1)), branch (12 Mg ha(-1)) and foliage (12 Mg ha(-1)) components. A close relationship was found between total tree biomass and stand stem volume (R(2) = 0.992 with n = 3585; note that volume and biomass were calculated independently). We compared total tree biomass for two decades, the 1980s and the 1990s. After correcting for changes in harvest removals over time, the mean change in total biomass was positive (0.99 Mg ha(-1) year(-1)) and differed significantly from zero (n = 421; P < 0.001). Estimates ranged from -13.9 to 8.0 Mg ha(-1) year(-1). The heart of the lodgepole pine distribution (primarily the Foothills subregions) showed an increase in biomass, whereas isolated pockets of lodgepole pine in the boreal northern subregion indicated a decline in biomass.  相似文献   

20.
Changes in biomass and soil carbon with nitrogen fertilization were simulated for a 25-year loblolly pine (Pinus taeda) plantation and for three consecutive 7-year short-rotation cottonwood (Populus deltoides) stands. Simulations were conducted for 17 locations in the southeastern United States with mean annual temperatures ranging from 13.1 to 19.4 °C. The LINKAGES stand growth model, modified to include the “RothC” soil C and soil N model, simulated tree growth and soil C status. Nitrogen fertilization significantly increased cumulative cottonwood aboveground biomass in the three rotations from a site average of 106 to 272 Mg/ha in 21 years. The equivalent site averages for loblolly pine showed a significant increase from 176 and 184 Mg/ha in 25 years with fertilization. Location results, compared on the annual sum of daily mean air temperatures above 5.5 °C (growing-degree-days), showed contrasts. Loblolly pine biomass increased whereas cottonwood decreased with increasing growing-degree-days, particularly in cottonwood stands receiving N fertilization. The increment of biomass due to N addition per unit of control biomass (relative response) declined in both plantations with increase in growing-degree-days. Average soil C in loblolly pine stands increased from 24.3 to 40.4 Mg/ha in 25 years and in cottonwood soil C decreased from 14.7 to 13.7 Mg/ha after three 7-year rotations. Soil C did not decrease with increasing growing-degree-days in either plantation type suggesting that global warming may not initially affect soil C. Nitrogen fertilizer increased soil C slightly in cottonwood plantations and had no significant effect on the soil C of loblolly stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号