首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Grassland biomass has been identified as a potential energy source. The combustion of mature and fibrous biomass, as occurs in extensive grasslands managed with low cutting frequencies, is one possible conversion technique. This study tested the relationship between plant diversity and biomass constituents relevant for combustion, as they determine energy content, energy yield and emission and corrosion risks. The biomass from a biodiversity experiment, with a species richness (SR) gradient of 1–60 species from Central European mesophilic grasslands divided into four functional groups (grasses, legumes, small and tall herbs), was harvested twice a year (in 2008 and 2009). The higher heating value (HHV) was estimated from carbon, hydrogen and oxygen contents to give insight into the energy potential of the species mixtures. The potential risk of emission and corrosion was assessed by analysing ash content, potassium, calcium, magnesium, nitrogen, sulphur and chloride content. HHV was independent of SR, and the overall mean was 18·13 MJ kg?1 DM. Biomass and gross energy (GE) yield were positively affected by SR. The presence of legumes in a mixture resulted in increased HHV, biomass yield and GE, irrespective of the level of SR. Annual GE varied between 59 (average of monocultures) and 152 GJ ha?1 year?1 (mixture of sixty species). The concentration of ash‐forming elements was generally high, suggesting a pre‐treatment of the biomass prior to combustion. Emission‐ and corrosion‐related constituents were clearly affected by the different functional groups, and sulphur and nitrogen both declined with SR. The results of this study show that high SR in experimental grassland communities is beneficial for the energy output and that legumes play a key role for the energy potential. However, identifying a functional group as being solely beneficial or disadvantageous for fuel quality was difficult.  相似文献   

2.
Changes in livestock production systems have led to land‐use changes and abandonment, especially of semi‐natural grassland in agriculturally less favoured regions. The generation of energy from biomass of extensive, high‐diversity grasslands can be an alternative to their abandonment, and anaerobic digestion is one possible method for converting grassland biomass into energy. However, little is known about the effects of species richness (SR) and functional groups on chemical constituents relevant for anaerobic digestion and the resulting energy potential. In this study, changes in the herbage chemical constituents that are relevant for forage quality were studied along a well‐defined diversity gradient (one to sixty species) and across different combinations of functional groups (legumes, small herbs, tall herbs and grasses). Substrate‐specific methane yield (CH4 sub) was estimated through the concentrations of forage‐quality parameters such as crude fibre (CF), crude protein (CP), crude lipid, nitrogen‐free extract and their documented digestibility values, as well as the respective methane yields. Results show that with increasing SR, the CF increased and CP decreased, even though these effects could not be fully disentangled from the presence of grasses. These trends led to a negative effect of SR on CH4 sub, while the area‐specific methane yield (CH4 area = CH4 sub × biomass yield) increased due to a strong increase in biomass with increasing SR. The CH4 sub was increased when legumes were present, and it declined with the presence of grasses. Generally, CH4 sub and CH4 area varied between functional‐group monocultures and all functional‐group mixtures.  相似文献   

3.
4.
Disease perception and adequate management practices are two essential issues faced by farmers, especially in the current context of climate change which may potentially increase disease risk. We investigated the diversity of water yam cropping systems in Guadeloupe through interviews, how producers and international yam research scientists perceived anthracnose, and how this perception correlated with farmers’ risk management strategies. We found that disease perception by farmers is very close to perception by international yam experts, as both have the same perception of the hierarchy of factors translating into disease. Three different yam production strategies coexist at a local scale, where agronomic practices and socio-economic profiles are distinct and consistent with attitude toward anthracnose risk management. Six factors were perceived as decreasing the disease: associated crop species; crop rotation; staking; weeding; crop monitoring and varietal admixture. Yam producers raising crops more intensively were risk prone, while others usually sought practices to manage disease appearance and spread. Both cumulative risk and past anthracnose epidemic experiences translated into heavier reliance on chemicals. These results have practical implications for designing best yam crop management systems and control of yam anthracnose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号