首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Juniperus thurifera L. is an endemic conifer of the western Mediterranean Basin where it is subjected to a severe climatic stress characterized by low winter temperatures and summer drought. Given the trend of increased warming-induced drought stress in this area and the climatic sensitivity of this species, we expect a negative impact of climate change on growth and ecophysiological performance of J. thurifera in the harsh environments where it dominates. To evaluate this, we measured long- and short-term radial growth using dendrochronology, photosynthesis and water-use efficiency in males, females and juveniles in three sites in Central Spain. Climate was monitored and completed with historical records. Mean annual temperature has increased +0.2?°C per decade in the study area, and the main warming trends corresponded to spring (+0.2?°C per decade) and summer (+0.3?°C per decade). Radial growth and maximum photosynthesis peaked in spring and autumn. Positive photosynthetic rates were maintained all year long, albeit at reduced rates in winter and summer. Radial growth was enhanced by wet conditions in the previous autumn and by warm springs and high precipitation in summer of the year of tree-ring formation. Cloud cover during the summer increased growth, while cloudy winters led to impaired carbon gain and reduced growth in the long term. We argue that maintenance of carbon gain under harsh conditions (low winter temperatures and dry summer months) and plastic xylogenesis underlie J. thurifera's ability to profit from changing climatic conditions such as earlier spring onset and erratic summer rainfall. Our results highlight that not only the magnitude but also the sign of the impact of climate change on growth and persistence of Mediterranean trees is species specific.  相似文献   

2.
Robakowski P 《Tree physiology》2005,25(9):1151-1160
Susceptibility to photoinhibition of the evergreen conifers Abies alba Mill., Picea abies (L.) Karst. and Pinus mugo Turra was investigated in an unheated greenhouse during winter and spring 2003. Photosynthetic performance of the seedlings was assessed by chlorophyll a fluorescence and analyses of chlorophyll and total carotenoid concentrations in needles. During winter months, maximum quantum yield of PSII photochemistry (ratio of variable to maximum fluorescence, Fv/Fm) was significantly greater in A. alba than in P. abies and P. mugo. Abies alba also sustained higher maximum apparent electron transport rate (ETRmax) than P. abies and P. mugo. Total concentrations of chlorophyll and carotenoids in needles decreased during the winter in P. mugo and P. abies, but remained stable in A. alba. For all species, Fv/Fm decreased from December until February and then increased to a maximum in April. Photoinhibition was greatest (Fv/Fm < 0.80) in all seedlings in February, the month with the lowest mean temperature. Saturating photosynthetic photon flux (PPFsat) and ETRmax were positively related to air temperature. All species had lower values of ETRmax and PPFsat in winter than in spring. Non-photochemical quenching of chlorophyll fluorescence (NPQ) was highest at low air temperatures. Differences among species in susceptibility to winter photoinhibition resulted from their specific light preferences and led to different mechanisms to cope with photoinhibitory stress. The more shade-tolerant A. alba sustained a higher photosynthetic capacity in winter than P. abies and P. mugo. Winter photoinhibition in P. abies, P. mugo and, to a lesser extent, in A. alba may reflect adaptive photoprotection of the photosynthetic apparatus in winter.  相似文献   

3.
Aranda I  Castro L  Alía R  Pardos JA  Gil L 《Tree physiology》2005,25(8):1085-1090
Populations of cork oak (Quercus suber L.) were assessed for seasonal and inter-population variability in, and temperature responses of, the ratio between light-induced variable and maximum fluorescence of chlorophyll, Fv/Fm, considered a surrogate for the maximum photochemical efficiency of photosystem II (PSII). Seedlings from 10 populations throughout the distribution range of Q. suber in the Mediterranean basin were grown in a common garden in central Spain. The Fv/Fm ratio of dark-adapted leaves was measured at dawn every month for 2 years. Air temperature was recorded at a nearby climatic station. During the summer, when maximum air temperatures reached 40 degrees C, there were no significant differences in Fv/Fm among populations, but significant differences were seen during the winter. In colder months, Fv/Fm ranged in all populations between 0.5-0.6 and 0.2-0.3 in 2001 and 2002, respectively. The variance explained by the population effect was greatest during winter months, especially in 2002, reaching a peak value of 10% when minimum air temperature was below -10 degrees C. Populations originating from warmer sites showed the largest decline in Fv/Fm between the end of 2001 and the beginning of 2002. Thus, a negative linear relationship was established between mean annual temperature at the population source and population mean Fv/Fm recorded in the coldest month in 2002 and normalized by the Fv/Fm spring measurement.  相似文献   

4.
Seedlings from a northern and a southern provenance of black spruce (Picea mariana Mill. BSP) from eastern Canada were exposed to 37 or 71 Pa of carbon dioxide (CO2) during growth, cold hardening and dehardening in a greenhouse. Bud phenology, cold tolerance and photosynthetic efficiency were assessed during the growing and over-wintering periods. Bud set occurred earlier in elevated [CO2] than in ambient [CO2], but it was later in the southern provenance than in the northern provenance. An increase in seedling cold tolerance in early fall was related to early bud set in elevated [CO2]. Maximal photosystem II (PSII) photochemical efficiency (F(v)/F(m)), effective quantum yield (phi(PSII)), photochemical quenching (q(P)), light-saturated photosynthesis (Amax), apparent quantum efficiency (alpha'), light-saturated rate of carboxylation (Vcmax) and electron transport (Jmax) decreased during hardening and recovered during dehardening. Although Amax and alpha' were higher in elevated [CO2] when measured at the growth [CO2], down-regulation of photosynthesis occurred in elevated [CO2] as shown by lower F(v)/F(m), phi(PSII), Vcmax and Jmax. Elevated [CO2] reduced gene expression of the small subunit of Rubisco and also decreased chlorophyll a/chlorophyll b ratio and nitrogen concentration in needles, confirming our observation of down-regulation of photosynthesis. Elevated [CO2] increased the CO2 diffusion gradient and decreased photorespiration, which may have contributed to enhance Amax despite down-regulation of photosynthesis. Total seedling dry mass was higher in elevated [CO2] than in ambient [CO2] at the end of the growing season. However, because of earlier bud formation and cold hardening, and down-regulation of photosynthesis during fall and winter in elevated [CO2], the treatment difference in dry mass increment was less by the end of the winter than during the growing season. Differences in photosynthetic rate observed during fall, winter and spring account for the inter-annual variations in carbon assimilation of black spruce seedlings: our results demonstrate that these variations need to be considered in carbon budget studies.  相似文献   

5.
Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from < 1 micromol g(dw) (-1) in control trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all treatments.  相似文献   

6.
Photosynthesis in evergreen conifers is characterized by down-regulation in autumn and rapid up-regulation in spring. This seasonal pattern is largely driven by temperature, but the light environment also plays a role. In overwintering Scots pine (Pinus sylvestris L.) trees, PSII is less down-regulated and recovers faster from winter stress in shaded needles than in needles exposed to full sunlight. Because the effect of light on the seasonal acclimation of PSII has not been quantitatively studied under field conditions, we used the rate constants for sustained thermal energy dissipation and photochemistry to investigate the dynamics and kinetics of the seasonal acclimation of PSII in needles exposed to different light environments. We monitored chlorophyll fluorescence and needle pigment concentration during the winter and spring in Scots pine seedlings growing in the field in different shading treatments, and within the crowns of mature trees. The results indicated that differences in acclimation of PSII in overwintering Scots pine among needles exposed to different light environments can be chiefly attributed to sustained thermal dissipation. We also present field evidence that zeaxanthin-facilitated thermal dissipation and aggregation of thylakoid membrane proteins are key mechanisms in the regulation of sustained thermal dissipation in Scots pine trees in the field.  相似文献   

7.
The evergreen holm oak Quercus ilex L. is the most representative tree in Mediterranean forests. Accurate estimation of the limiting factors of photosynthesis for Q. ilex and the prediction of ecosystem water-use efficiency by mechanistic models can be achieved only by establishing whether this species shows heterogenic stomatal aperture, and, if so, the circumstances in which this occurs. Here, we collected gas-exchange and chlorophyll fluorescence data in Q. ilex leaves from a nursery to measure the effects of stomatal oscillations on PSII quantum yield (Φ(PSII)) under water stress. Stomatal conductance (g(s)) was used as an integrative indicator of the degree of water stress. Images of chlorophyll fluorescence showed heterogeneous Φ(PSII) when g(s) was <50 mmol H(2)O m(-2) s(-1), representative of severe drought and corresponding to a container capacity <45%. Stomatal patchiness was related to a coefficient of variation (CV) of Φ(PSII) values >2.5%. A parallel study in the forest confirmed heterogeneous Φ(PSII) values in leaves in response to declining water availability. Three kinds of Q. ilex individuals were distinguished: those resprouting after a clear-cut (resprouts, R); intact individuals growing in the same clear-cut area as resprouts (controls, C); and intact individuals in a nearby, undisturbed area (forest controls, CF). Patchiness increased in C and CF in response to increasing drought from early May to late July, whereas in R, Φ(PSII) values were maintained as a result of their improved water relations since the pre-existing roots were associated with a smaller aerial biomass. Patchiness was related to a % CV of Φ(PSII) values >4 and associated in the summer with mean g(s) values of 30 mmol H(2)O m(-2) s(-1). Under milder drought in spring, Φ(PSII) patchiness was less strictly related to g(s) variations, pointing to biochemical limitants of photosynthesis. The occurrence of heterogenic photosynthesis caused by patchy stomatal closure in Q. ilex during severe drought should be taken into account in ecosystem modelling in which harsher water stress conditions associated with climate change are predicted.  相似文献   

8.
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.  相似文献   

9.
Summer water stress is the main limiting factor for Pinus pinaster growth under Mediterranean climate, but no information on limiting physiographic and climatic factors under Atlantic conditions is available for this species. We hypothesize that water availability during the active period limits P. pinaster growth, with stands nearby the Atlantic–Mediterranean boundary being more sensitive to summer drought stress. We analyzed the inter- and intra-annual climatic response of this species at ten monospecific stands in a transitional area between the Atlantic and Mediterranean biogeographical regions in Galicia, NW Spain. Mean sensitivity of radial growth consistently decreased with increasing elevation, and growth variation was quite similar for the earlywood, latewood or total ring widths, suggesting a strong intra-annual coherency of radial growth. Growth patterns were site dependent and geographically structured, with three groups of stands showing different climatic responses. As expected for sites suffering from summer drought stress, water availability enhances growth in western and southern Galicia, showing negative responses to maximum temperatures and positive to water availability. In northern Galicia, away from the Atlantic-Mediterranean boundary, water surplus in the rainy seasons negatively influenced growth. This was probably due to the combined effects of seasonal water-logging stress and the reduction of solar radiation associated with cloudiness, which would limit photosynthetic rates in winter and spring. Local variations of water availability strongly controlled the physiological processes that determine growth dynamics of P. pinaster in NW Spain, contributing to its geographical structure and contrasting sensitivity.  相似文献   

10.
Leaves developing in different irradiances undergo structural and functional acclimation, although the extent of trait plasticity is species specific. We tested the hypothesis that irradiance-induced plasticity of photosynthetic and anatomical traits is lower in highly shade-tolerant species than in moderately shade-tolerant species. Seedlings of two evergreen conifers, shade-tolerant Abies alba Mill. and moderately shade-tolerant Picea abies Karst., and two deciduous angiosperm species, highly shade-tolerant Fagus sylvatica L. and moderately shade-tolerant Acer pseudoplatanus L., were grown in deep shade (LL, 5% of full irradiance) or in full solar irradiance (HL) during 2003 and 2004. Steady state responses of quantum yield of PSII (Phi(PSII)), apparent electron transport rate (ETR), nonphotochemical quenching (NPQ) and photochemical quenching (qP) were generally modified by the light environment, with slower declines in Phi(PSII) and qP and greater maximal ETR and NPQ values in HL plants in at least one season; however, no link between quantitative measures of plasticity of these traits and shade tolerance was found. Plasticity of nine anatomical traits (including palisade cell length, which was reduced in LL) showed no relationship with shade tolerance, but was less in conifers than in deciduous trees, suggesting that leaf life span may be a significant correlate of plasticity. When LL-acclimated plants were exposed to HL conditions, the degree and duration of photoinhibition (measured as a decline in maximum quantum yield) was greatest in F. sylvatica, much lower in P. abies and A. alba, and lowest in A. pseudoplatanus. Thus, as with the other traits studied, vulnerability to photoinhibition showed no relationship with shade tolerance.  相似文献   

11.
Acclimation of the partitioning of absorbed light energy in Photosystem II (PSII) between photochemical and non-photochemical processes includes short-term adjustments that are rapidly reversed in the dark and seasonal acclimation processes that are unaffected by dark acclimation. Thus, by using dark-acclimated leaves to study the seasonal acclimation of PSII, the confounding effect of short-term adjustments is eliminated. The maximum quantum yield of photochemistry, estimated by chlorophyll fluorescence analysis as F(v)/F(m), where F(v) = (F(m) - F(o)), and F(m) and F(o) are maximum and minimum chlorophyll fluorescence, respectively, has been widely used to follow the seasonal acclimation of PSII, because it is measured in dark-acclimated leaves. Seasonal changes in F(v)/F(m) can be caused by adjustments in either the photochemical capacity in PSII, or the capacity of thermal dissipation in PSII, or both. However, there is a lack of chlorophyll fluorescence parameters that can distinguish between these processes. In this study, we introduce two new parameters: the rate constants of sustained thermal energy dissipation (k(NPQ)) and of photochemistry (k(P)). We estimated k(NPQ) and k(P) from dark-acclimated F(o) and F(m) measured during spring recovery of photosynthesis in Scots pine (Pinus sylvestris L.) trees. We suggest that k(NPQ) and k(P) be used to study the mechanisms underlying the observed seasonal acclimation in PSII, because these parameters provide quantitative data that complement and extend F(v)/F(m) measurements.  相似文献   

12.
Climatic constraints on diurnal variations in photosynthetic traits were investigated in oaks (Quercus pubescens Willd.) growing in the Swiss Alps. The measurement period included the summer of 2003, when central Europe experienced a record-breaking heat wave. During the summer, a combination of moderate heat and drought caused a reduction in photosynthetic CO(2) assimilation rate (P(n)) by mid-morning, which increased by the afternoon. More extreme drought and heat caused a sharp day-long reduction in P(n). These effects were closely related to changes in stomatal conductance (g(s)), but low g(s) was unaccompanied by low intercellular CO(2) concentrations (C(i)). Around midday, a combination of heat and drought increased C(i), indicating metabolic limitation of photosynthesis. Chlorophyll a (Chl a) fluorescence measurements revealed reversible down-regulation of photosystem (PS) II activity during the day, which was accentuated by heat and drought and correlated with diurnal variation in zeaxanthin accumulation. A combination of heat and drought reduced leaf Chl a + b concentrations and increased ratios of total carotenoids, xanthophyll-cycle carotenoids and lutein to Chl a + b. The combination of summertime heat and drought altered the 77 K Chl fluorescence emission spectra of leaves, indicating changes in the organization of thylakoid membranes, but it had no effect on the amounts of the major light-harvesting Chl-a/b-binding protein of PSII (LHCII), Rubisco, Rubisco activase, Rubisco-binding protein (cpn-60), phosphoribulokinase and chloroplast ATP synthase. The results demonstrate that Q. pubescens can maintain photosynthetic capacity under adverse summer conditions.  相似文献   

13.
Photoinhibition was examined in four co-occurring Mediterranean evergreen tree species during two consecutive winters. In response to low temperatures and saturating light, Juniperus phoenicea L., Pinus halepensis Mill., Quercus coccifera L. and Q. ilex ssp. ballota (Desf.) Samp. exhibited marked chronic photoinhibition, indicated by low predawn maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm). Low Fv/Fm values were correlated with high concentrations of xanthophyll cycle components (VAZ) and with the maintenance of high concentrations of zeaxanthin overnight (DPSpd). In all species, however, chronic photoinhibition was enhanced as the winter progressed in the absence of changes in DPSpd, suggesting cumulative damage toward the end of winter. Photoinhibition differed among species: P. halepensis always displayed significantly higher Fv/Fm values; and Q. coccifera had the lowest Fv/Fm values, showing a high sensitivity to the combination of high light and low temperatures. Differences among species were not fully explained by differences in the xanthophyll pool or its de-epoxidation state. Chronic photoinhibition overlapped with a dynamic photoinhibition as shown by the low values of photochemical efficiency of the open reaction centers of PSII at midday. Winter photoprotective strategies differed among species and may involve photoprotective mechanisms in addition to those associated with xanthophylls. The observed species-specific differences matched results obtained for the same species in summer; however, comparison of the two seasons suggests that the higher VAZ concentration observed in winter has an additional structural photoprotective role.  相似文献   

14.
Photoprotective responses during photosynthetic acclimation in Daphniphyllum humile Maxim, an evergreen understory shrub that grows in temperate deciduous forests, were examined in relation to changes in light availability and temperature caused by the seasonal dynamics of canopy leaf phenology. Gradual increases in irradiance in the understory from summer to autumn as overstory foliage senesced were accompanied by increased concentrations of xanthophyll cycle pigments (VAZ) in understory leaves. The chlorophyll (Chl) a/b ratio in understory leaves also increased from summer to autumn, reflecting the change in ratio of the light-harvesting antenna to the reaction center. However, low temperatures following overstory leaf fall reduced Rubisco activity. In contrast, the photosynthetic capactiy of leaves of D. humile growing at the forest border, which was higher in summer than that of leaves of understory plants, decreased in autumn. In autumn, Fv/Fm ratios decreased and concentrations of zeaxanthin (Z) and especially antheraxanthin (A) increased in leaves of both forest-border and understory plants. Although VAZ was twice as high in leaves of forest-border than of understory plants, NPQ was similar in both. We conclude that leaves of understory plants are able to acclimate to seasonal changes in light and temperature by varying their photosynthetic and photoprotective functions, thereby taking advantage of the favorable light conditions caused by overstory leaf fall.  相似文献   

15.
Net CO(2) assimilation (A(net)) of canopy leaves is the principal process governing carbon storage from the atmosphere in forests, but it has rarely been measured over multiple seasons and multiple years. I measured midday A(net) in the upper canopy of maturing loblolly pine (Pinus taeda L.) trees in the piedmont region of the southeastern USA on 146 sunny days over 36 months. Concurrent data for leaf conductance and photosynthetic CO(2) response curves (A(net)-C(i) curves) were used to estimate the relative importance of stomatal limitations to CO(2) assimilation in the field. In fully expanded current-year and 1-year-old needles, midday light-saturated A(net) was constant over much of the growing season (5-6 &mgr;mol CO(2) m(-2) s(-1)), except during drought periods. During the winter season (November-March), midday A(net) of overwintering needles varied in proportion to leaf temperature. Net CO(2) assimilation at light saturation occurred when daytime air temperatures exceeded 5-6 degrees C, as happened on more than 90% of the sunny winter days. In both age classes of foliage, winter carbon assimilation accounted for approximately 15% of the daily carbon assimilation on sunny days throughout the year, and was relatively insensitive to year-to-year differences in temperature during this season. However, strong stomatal limitations to A(net) occurred as a result of water stress associated with freezing cycles in winter. During the growing season, drought-induced water stress produced the largest year-to-year differences in seasonal CO(2) assimilation on sunny days. Seasonal A(net) was more drought sensitive in current-year needles than in 1-year-old needles. Relative stomatal limitations to daily integrated A(net) were approximately 40% over the growing season, and summer drought rather than high temperatures had the largest impact on summer A(net) and integrated annual CO(2) uptake in the upper crown. Despite significant stomatal limitations, a long duration of near-peak A(net) in the upper crown, particularly in 1-year-old needles, conferred high seasonal and annual carbon gain.  相似文献   

16.
5种箬竹属竹种叶绿素荧光特性的比较   总被引:2,自引:0,他引:2  
利用叶绿素荧光成像技术研究了5种箬竹属(Indocalamus Nakai)竹种叶片光合作用的横向异质性,结果表明,吸光系数Abs、PSⅡ最大量子产量Fv/Fm、光化学淬灭qP的异质性较低,非光化学淬灭NPQ的异质性较高。比较稳态荧光和荧光日变化,胜利箬竹的Fv/Fm、PSⅡ实际量子产量Yield、相对电子传递速率ETR都保持相对较高水平,矮箬竹和小叶箬竹则较低。  相似文献   

17.
We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.  相似文献   

18.
Photosynthetic performance was monitored during two consecutive summers in four co-occurring evergreen Mediterranean tree species growing on a south-facing rocky slope. In response to midday water stress, the drought-avoiding species Pinus halepensis Mill. exhibited marked stomatal closure (g(s)) but no changes in stem water potential (Psi(s)), whereas the drought-tolerant species Quercus coccifera L., Q. ilex ssp. ballota (Desf.) Samp. and Juniperus phoenicea L. displayed declines in midday g(s) and Psi(s). The higher resistance to CO(2) influx in needles of P. halepensis compared with the other species did not result in either a proportional increase in non-radiative dissipation of excess energy or photo-inactivation of photosystem II (PSII). No significant differences were found among species either in the de-epoxidation state of the xanthophyll cycle (DPS) or in the pool of its components on a total chlorophyll basis (VAZ). Despite contrasting midday assimilation rates, the three drought-tolerant species all exhibited a pronounced drop in photochemical efficiency at midday that was characterized by a decrease in the excitation capture efficiency of the open PSII centers. Although photoinhibition was not fully reversed before dawn, it apparently did not result in cumulative photo-damage. Thus, the drought-avoiding and drought-tolerant species employed different mechanisms for coping with excess light during the midday depression in photosynthesis that involved contrasting midday photochemical efficiencies of PSII and different degrees of dynamic photoinhibition as a photo-protective mechanism. These behaviors may be related to the different mechanisms employed by drought-avoiding and drought-tolerant species to withstand water deficit.  相似文献   

19.
分析了磴口近52年(1954—2005)逐月扬沙天气。结果表明:(1)该区扬沙天气一年四季均出现,但主要发生在春季,其次为冬季;一年中扬沙天气高峰出现在4月,低谷出现在8-9月。(2)年及春季、冬季、夏季扬沙日数各年代际变化规律一致,均为逐年代递减。秋季与其他三季扬沙日数变化略有不同。(3)年及四季扬沙日数均为线性下降,线性方程均通过了置信度0.001的显著性检验,下降率为年>春季>冬季>夏季>秋季,20世纪80年代为转折期,体现为"先多后少"的特点。年扬沙日数与春季扬沙日数滑动序列的波动趋势比较接近。  相似文献   

20.
Sucrose synthase (SS) was the dominant enzyme of sucrose metabolism in both stem and root vascular cambial zone tissues of nursery-grown loblolly pine (Pinus taeda L.) seedlings. Acid invertase (AI) and neutral invertase (NT) activities were generally less than 10% of the SS activity in both tissues. In both cambial tissues, seasonal patterns of enzyme activity were observed for SS but not for AI or NI. The seasonal patterns of SS activity in stem and root cambia paralleled the periodic growth of stems and roots. Stems had high SS activity and growth during summer and early fall. Roots had substantial SS activity and growth during summer and fall, but SS activity and growth were even higher in winter. When seedlings were transplanted, about eight months elapsed before stem and root cambia resumed rates of growth and sucrose metabolism similar to those in control nontransplanted seedlings. Two months after transplanting, root SS was at its lowest, whereas AI activity in transplants was 50% higher than in control nontransplanted seedlings. In stems, SS activity decreased in response to transplanting, whereas AI and NI activities did not change appreciably. In loblolly pine tissues, SS was specific for uridylates, whereas the nucleotide triphosphate-dependent phosphofructokinase (NTP-PFK) had similar activity with either UTP or ATP. Except in winter, the NTP-PFK was less active than the pyrophosphate-dependent phosphofructokinase (PPi-PFK) during all seasons. The PPi-dependent PFK activity in nontransplanted seedlings followed similar seasonal and spatial patterns to those of SS activity. In actively growing tissues, such as stem cambial tissues in summer and root cambial tissues in winter, the measured total PFK to SS ratio ranged between 1.5/1 and 3/1. In contrast, in less actively growing tissues or transplanted seedlings, a greater decrease occurred in SS than in PFK activity, hence the ratio rose to as high as 12/1. It was concluded that: (1) SS was the dominant enzyme for sucrose metabolism in root and stem cambial tissues of loblolly pine seedlings; (2) both SS and PPi-PFK in the cambial tissues can be used as biochemical indicators of growth sink strength in stems and roots; and (3) both enzymes can be used as indicators of seedling stress caused by events such as transplanting and winter freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号