首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以福建沙县为研究区,融合SPOT-5多光谱影像与全色影像,基于灰度共生矩阵法提取纹理量,与光谱波段组合,采用支持向量机分类方法提取虫害信息,探讨纹理特征对于虫害监测信息提取精度的影响。结果表明:结合多尺度纹理与光谱特征的支持向量机分类方法,其虫害信息提取总精度最高,为80.48%;结合单尺度纹理与光谱特征的支持向量机分类器方法,其虫害信息提取总精度次之,为78.81%;基于光谱特征的最大似然法,其虫害信息提取总精度最低,为70.48%。结合多尺度纹理与光谱特征的支持向量机分类器方法,其图面表现也较好,减少了图面的细碎斑点。因此,提取多尺度纹理与光谱特征结合,丰富了图像信息量,有助于提高虫害信息的提取精度。  相似文献   

2.
基于高光谱成像技术的茄子叶片灰霉病早期检测   总被引:2,自引:0,他引:2  
为建立基于高光谱成像技术的茄子叶片灰霉病早期检测方法,利用高光谱成像系统获取120个茄子叶片在380~1031nm范围的高光谱图像数据,通过主成分分析(PCA)对高光谱数据进行降维,并从中优选出3个特征波段下的特征图像,截取200×150的感兴趣区域图像(ROI),并从每幅特征图像中分别提取均值、方差、同质性、对比度、差异性、熵、二阶矩和相关性等8个基于灰度共生矩阵的纹理特征变量,通过连续投影算法(SPA)提取13个特征变量, 利用最小二乘支持向量机(LS‐SVM)构建茄子叶片灰霉病早期鉴别模型,模型判别准确率为97.5%.说明高光谱成像技术可以用于茄子叶片灰霉病的早期检测.  相似文献   

3.
基于光谱和Gabor纹理信息融合的油桃品种识别   总被引:1,自引:0,他引:1  
为实现油桃品种的快速且无损鉴别,对油桃高光谱图像中的光谱和图像信息进行分析。在光谱信息提取中,采用偏最小二乘回归(partial least squares regression,简称PLSR)从全波段光谱数据提取9个特征波长。在图像信息获取中,采用主成分分析(principal component analysis,简称PCA)获得主成分图像,并提取主成分图像的Gabor纹理特征。分别建立基于特征波长光谱特征、主成分图像纹理特征和光谱纹理特征融合的最小二乘支持向量机(least squares support vector machine,简称LS-SVM)和极限学习机(extreme learning machine,简称ELM)油桃品种判别模型。结果表明,基于融合特征的LS-SVM和ELM模型识别率分别为94.7%、92.1%,较单独采用光谱信息和纹理信息的识别率都高,说明采用光谱信息和Gabor纹理信息融合的方法可以实现油桃品种判别,为农产品无损检测提供参考价值。  相似文献   

4.
提出了一种基于Curvelet变换与小波变换相结合的纹理图像分类算法.小波变换在分析点奇异信号时具有良好的性能,而Curvelet变换更适合分析图像中的曲线或直线状边缘特征.算法通过提取两者分解子波段的统计学和灰度共生矩阵特征,采用支持向量机对纹理图像进行分类.实验结果表明,和单一的多分辨率变换特征提取相比,该算法具有更高的分类准确率.  相似文献   

5.
为了提高基于数字图像识别番茄叶部病害的准确率,适应不同分辨率条件下的应用需求,并满足实践拍摄条件的不确定性,以番茄晚疫病、花叶病、早疫病叶片图像为研究对象,选择HSV模型中的4维H分量等量分割波段作为颜色特征,基于灰度差分统计的均值、对比度和熵3维特征作为纹理特征,融合7维特征向量作为支持向量机(SVM)分类器的输入,用粒子群算法(PSO)优化SVM模型参数。试验结果表明,融合灰度差分统计与H分量4维特征的病害识别模型准确率可达90%。  相似文献   

6.
为了快速、准确、无损地对糯玉米种子分类,采用可见-近红外(400~1000 nm)高光谱成像仪对5种糯玉米种子进行数据采集,使用一阶中心差分联合SG平滑对糯玉米种子的原始光谱数据进行预处理去噪,通过自优化竞争性自适应重加权采样算法筛选出56个重要的特征波段,同时采用灰度共生矩阵和Sobel算子提取糯玉米种子的相关性、能量、同致性、相关熵、灰度熵和梯度熵等6种纹理特征,将光谱特征与纹理特征融合后构建支持向量机分类模型,分别用350个训练样本、150个测试样本和50个预测样本对模型进行训练、测试和预测分类,相应得到了准确率为98.50%、95.92%和94.00%的最佳结果,表明利用高光谱成像技术对糯玉米种子分类是可行的。  相似文献   

7.
为解决传统的种子活力检测方法存在耗时长、损伤种子等问题,实现种子活力的快速无损检测,分别利用机器学习和深度学习算法结合高光谱成像技术构建玉米种子3个活力梯度分类模型,通过人工老化方式将1 012粒玉米种子分为3个活力梯度样本,采集其高光谱数据后通过卷积平滑(SG)和多元散射校正(MSC)去除高光谱噪声,分别采用主成分分析(PCA)、连续投影算法(SPA)进行光谱特征降维,再从降维后的波段中抽取1 156、1 191和1 463 nm 3个波段合成假彩色图像,用局部二值模式(LBP)提取感兴趣区域的纹理特征,并与纯光谱特征融合。分别基于纯光谱特征构建决策树(DT)和支持向量机(SVM)模型和融合特征建立随机森林(RF)、SVM和极端梯度提升树(XGBoost)模型等机器学习模型。将假彩色图像输入ResNet18、MobileNetV2、DenseNet121、Efficientb0、Efficientb2等5个深度学习模型中进行玉米种子活力预测。结果显示,就机器学习方法而言,针对纯光谱特征表现最好的是PCA-SVM模型,其测试集准确率为92.5%;针对融合特征表现最好的是SVM模型,其测...  相似文献   

8.
针对路面结构特征,提出一种颜色与纹理特征相融合并结合模糊支持向量机的路面分类识别方法。提取路面图像的HSV颜色空间的颜色矩作为颜色特征,采用灰度共生矩阵法提取纹理特征,融合路面图像的颜色特征与纹理特征,采用模糊支持向量机进行支持向量特征训练,通过训练得到能尽可能多的满足每一种图像的样本数据特征的特征向量。通过实验,对比了采用传统的支持向量机与模糊支持向量机对路面分类识别的正确率。实验表明本研究所提出方法的有效性。  相似文献   

9.
基于无人机多光谱遥感图像的玉米田间杂草识别   总被引:5,自引:0,他引:5  
【目的】为了精确高效识别玉米田间杂草,减少除草剂施用,提高玉米种植管理精准性。【方法】通过六旋翼无人机搭载多光谱相机获取玉米田块多光谱图像。为分离图像中植被与非植被像元,计算了7种植被指数,采用最大类间方差法提取植被指数图像中非植被区域,制作掩膜文件并对多光谱图像掩膜。通过主成分分析对多光谱图像进行变换,保留信息量最多的前3个主成分波段。将试验区域分为训练区域和验证区域,在训练区域中分别选取了675处玉米和525处杂草样本对监督分类模型进行训练,在验证区域选取了240处玉米样本及160处杂草样本评价模型分类精度。将7种植被指数、3个主成分波段的24个纹理特征及经过滤波的10个反射率,共计41项特征作为样本特征参数。利用支持向量机-特征递归消除算法(support vector machines-feature recursive elimination,SVM-RFE)和Relief算法从41项特征中各筛选14项特征构成特征子集,采用支持向量机、K-最近邻、Cart决策树、随机森林和人工神经网络对特征子集进行监督分类。【结果】支持向量机与随机森林对全部特征及2个特征子集分类效果较好,支持向量机总体精度为89.13%—91.94%,Kappa>0.79,随机森林总体精度为89.27%—90.95%,Kappa>0.79。【结论】SVM-RFE算法对数据降维效果优于Relief算法,支持向量机(SVM)模型对区域冠层尺度下玉米与杂草的分类效果最好。  相似文献   

10.
胡全  王霓虹  邱兆文 《安徽农业科学》2014,(12):3688-3689,3699
针对森林火场采用了新的颜色特征提取方法,融合图像的颜色和纹理特征作为图像的特征向量,并用支持向量机作为学习工具,充分利用已有森林火场的数据进行学习,提高森林火场的自动识别的准确率.结果表明,新的颜色特征提取方法适用于森林火场的识别,采用支持向量机融合多特征可成功用于森林火场的自动识别.  相似文献   

11.
基于计算机视觉的水稻叶部病害识别研究   总被引:13,自引:1,他引:12  
【目的】文章重点分析了病健交界特征参数、病害识别流程对提高病害识别准确率的影响。实现水稻叶部15种主要病害的准确识别,尤其是相似病害的判断。【方法】(1)病斑图像获取:水稻叶部病害图像来源包括水稻大田、病害图册和病害数据库,文中选用改进的mean shift图像分割算法提取病叶图像中的病斑并根据相关方程获取病斑特征信息。(2)特征参数的选择与设计:首先选取一至三阶颜色矩和颜色直方图作为病害的颜色特征参数,选取球状性、偏心率和不变矩作为病斑的形状特征参数,选取角二阶矩、对比度和相关作为病斑的纹理特征参数;然后针对相似病斑误报率高的问题提出一种病健交界特征参数,通过病斑内部、边缘和外围颜色上的差异描述该特征,并根据3个区域相互间归一化颜色直方图的欧氏距离计算该项特征参数,该参数可以用于描述病斑与健康部分交界处的特征。(3)病害识别流程的设计:根据病害在颜色、形状、纹理、病健交界4个特征上差异的显著程度设计完成病害识别流程,流程中首先通过颜色特征识别病害,对于通过颜色特征无法识别的病害再通过形态特征识别,倘若形态特征依然无法识别则通过纹理和病健交界特征进行最终识别。(4)病害识别模型的建立:将病害数据分成两部分,一部分用于建立模型,另一部分用于模型的验证;利用LibSVM程序包完成建模,其中svmtrain函数用于建立支持向量机模型,Grid程序用于优化参数,svmpredict函数用于对模型进行验证。【结果】15种水稻叶部病斑可以从复杂的背景中分割出来,并可快速准确的被识别,平均识别准确率为92.67%,平均漏报率为7.00%,最大漏报率和误报率分别为15.00%和25.00%;病健交界特征参数引入后,识别准确率提高了14.00%,平均漏报率降低了7.50%,漏报率最大降幅为20.00%,误报率最大降幅为65.00%;与用所有特征参数直接进行病害识别相比,采用本文提出的识别流程进行病害识别的准确率提高了12.67%,漏报率降低了9.33%,一些病害的漏报率和误报率降幅达30.00%以上;在识别流程各步骤中,颜色特征识别环节的平均准确率为96.71%,漏报率和误报率均未超过10.00%;形态特征识别环节的平均准确率为94.17%,漏报率和误报率均未超过15.00%;纹理和病健交界特征识别环节的平均准确率为91.50%,漏报率和误报率均未超过25.00%。【结论】利用mean shift图像分割算法可以准确分割水稻叶部病斑;基于支持向量机模型的分类方法可以对15种水稻病斑准确分类;论文中提出的病健交界特征参数以及病斑识别流程均提高了病斑的识别准确率;病健交界特征参数对提高一些相似病害的识别精度效果显著;将这些方法相结合可以有效对水稻常见叶部病害进行识别,为水稻病害的田间智能诊断提供技术支撑。  相似文献   

12.
【目的】小麦倒伏严重影响小麦光合及成熟进程,进而造成小麦减产及品质下降。为快速精确获取倒伏信息,评估无人机遥感监测小麦倒伏的能力,构建小麦倒伏监测模式,为灾情评估、保险理赔及灾后补救提供技术支持。【方法】利用近地无人机获取包含红、绿、蓝、红边和近红外5个多光谱波段图像,经过预处理飞行高度50 m的小麦冠层图像,得到分辨率为1.85(cm/像素)的数字正射影像图(DOM)和数字表面模型(DSM),从中提取光谱特征、高度特征和光谱纹理共3类特征信息;采用支持向量机(SVM)和随机森林(RF)2种分类器对6种不同特征集组合进行倒伏分类比较,使用准确率(Acc)、精确率(Pre)、召回率(Re)和调和平均数(F1)以确定较优的特征组合和分类器;同时使用3种不同的特征集筛选方法(套索算法Lasso、随机森林递归算法RF-RFE和Boruta算法)对优化的特征子集进行综合评价,确立适宜的倒伏分类评价方法。【结果】单一特征的光谱和纹理及其组合对小麦倒伏的分类评价结果较差,“椒盐现象”严重,在此基础上融合DSM信息的分类精度显著提高。采用随机森林分类器对光谱特征、纹理特征和高度特征进行特征集组合,小麦...  相似文献   

13.
针对目前检测方法特征单一、样本数量少和鲁棒性低等问题,提出了一种基于多特征融合与机器学习的鱼类摄食行为的检测方法:利用图像处理技术提取鱼群摄食图像的颜色、形状和纹理特征,并对其进行归一化和特征融合处理,通过构建3层的BP神经网络对鱼群摄食行为进行检测。与SVM和KNN检测效果进行对比,BP神经网络的效果最好,精度可达97.1%。与传统的基于单一纹理特征方法相比,在保证时效性和增强鲁棒性的同时,准确率提高了4.1%。  相似文献   

14.
以滁州市为例,结合水稻物候的特征波段,选用反映水稻物候期时相的TM数据,并基于多特征波段,构建CART决策树分类提取水稻种植面积。结果表明,植被指数、湿度因子、绿度因子、纹理特征等多特征参与CART决策树分类能够提高总体精度。基于光谱信息、植被指数和纹理特征的决策树分类的总精度比以最大似然法进行的监督分类方法提高了6.942 1百分点,Kappa系数提高了0.110 4。合理选用作物物候期数据及其遥感影像的特征波段能够有效降低分类误差,为地形复杂地区获取作物种植面积提新的方法。  相似文献   

15.
结合多尺度纹理特征的高光谱影像面向对象树种分类   总被引:1,自引:0,他引:1  
目的基于机载高光谱影像的分类研究中,利用不同尺度纹理特征与面向对象分类相结合的方法在树种分类的研究中应用较少,并且相关研究主要针对单一树种识别而不考虑多种树种,因此对于复杂林分中的树种识别能力有待进一步研究。本研究拟探究不同尺度纹理特征结合面向对象的分类技术在树种精细分类中的应用效果。方法利用机载高光谱数据进行面向对象的树种精细分类。根据研究区内地表类型情况,采用分层分类的方法区分非林地、其他林地与有林地,对有林地进行树种的精细分类。从机载高光谱图像中提取特征变量,包括独立主成分分析ICA变换光谱特征以及空间纹理特征,分析各树种的光谱反射率及所适合的纹理尺度,依据不同尺度纹理特征进行分层分类,比较不同特征利用支持向量机SVM分类的树种分类结果。结果结合单一尺度纹理特征的分类结果总体精度为87.11%,Kappa系数为0.846;结合不同尺度纹理特征的分类总体精度为89.13%,Kappa系数为0.87,相比于仅利用光谱特征的分类精度分别提升了4.03%和6.05%。说明在面向对象的分类中,纹理特征的加入对于提升树种分类的精度具有显著效果。结合不同尺度纹理特征的树种分类精度要高于单一尺度纹理特征的分类精度,尤其在其他阔叶树种和马尾松树种的分类中,制图精度较单一纹理尺度分别提高了5.48%和6.12%。结论利用不同尺度的纹理特征分类比单一尺度纹理特征分类更具优势,提高了纹理特征在树种分类中的贡献率;综合利用机载高光谱影像的光谱特征和不同尺度纹理特征的面向对象分类方法,使得树种识别更为精细和准确。该方法对于复杂林分树种的分类是有效的,能够满足机载高光谱影像树种精细识别的应用需求。   相似文献   

16.
目的针对保护区监测需求,充分发挥GF-1 WFV影像的宽幅特点和面向对象、机器学习算法在遥感影像分类中的优势,提高保护区植被类型遥感监测的精度,为保护区管理决策提供依据。方法以甘肃省白水江国家级自然保护区为研究区,主要数据源包括GF-1 WFV多光谱数据、Landsat-8 OLI遥感数据、DEM数据、野外调查数据等。首先,对GF-1 WFV数据进行多尺度分割,将研究区划分为诸多区域性的分割对象;然后,以分割对象为基本单元,研究光谱特征、几何特征、纹理特征不同组合情况下,基于CART决策树分类的结果;最后,利用训练样本建立基于TTA的精度检验,并基于混淆矩阵对分类结果进行分析。结果在多尺度分割过程中,形状因子、紧致度分别设置为0.2和0.5时地物边界显示较好;当形状因子和紧致度固定时,研究区最佳分割尺度为40。精度检验结果表明,基于CART决策树的保护区植被类型分类结果整体精度均在83%以上,Kappa系数在0.80以上,优于最邻近分类法和支持向量机分类算法,其中基于光谱特征、几何特征、纹理特征的CART决策树分类结果精度最高,总体精度为85.18%,Kappa系数为0.832 2,优于光谱特征分类、光谱特征结合几何特征分类的方法。结论基于CART决策树算法和面向对象方法的GF-1遥感影像分类方法适用于保护区植被类型分布研究,可有效辅助保护区监测工作。   相似文献   

17.
基于深度学习的5种树皮纹理图像识别研究   总被引:1,自引:0,他引:1  
目的针对在树皮图像识别时,现有的算法和识别过程过于复杂的问题,提出了基于深度学习的方法来对不同树种的树皮图像进行识别。方法本文以5种常见树种的树皮纹理图像为例,采用基于卷积神经网络的深度学习方法,将原始图像直接作为输入,通过卷积和池化层对图像的低级、高级特征进行自动提取,解决了手动提取纹理特征的困难和问题;在此基础上,对CNN模型结构进行改进,采用带Maxout的ELU激励函数来代替ReLU函数,解决模型的偏移和零梯度问题;对损失函数进行改进,通过添加规范项来优化结构参数,并使用分段常数衰减法对学习率进行动态调控;最后采用softmax分类器对图像类别进行输出。结果对5个树种的树皮图像共计10 000张图像进行实验,其中每类选取200张图像作为测试集。最终训练准确率达到93.80%,测试集识别准确率为97.70%。另外,为验证本文方法的可行性,与传统人工特征提取法,提取HOG特征、Gabor特征和灰度共生矩阵统计法,训练SVM分类器。通过实验比较,本文方法识别准确率最高。结论本文提出的基于深度学习的树皮纹理图像识别方法是可行的,提高了识别效率和精度,为树种的智能化识别提供新的参考。   相似文献   

18.
以吉林省白河林业局为中心研究区,利用星载高光谱Hyperion数据并结合其他辅助数据,综合利用影像光谱特征、纹理特征、地形特征、典型地类和主要森林类型外业调查样本数据,探究针对C5.0决策树算法的高光谱影像土地覆盖类型多层次信息提取与森林类型识别的有效方法。在分析典型地物光谱特征的基础上,优选8种纹理特征,引入主成分分量及与主要森林类型空间分布相关的敏感地形因子,采用分层分类的策略,根据光谱特征将地类划分层次,在层次间建立基于C5.0决策树算法的决策树模型,对研究区的地类进行细分。为便于对比,以相同的策略采用支持向量机(SVM)分类器进行分类。最后,结合野外采集样本并参考高分辨率影像,采用分层随机抽样的独立检验样本对森林类型精细识别结果进行精度验证。结果表明:C5.0决策树算法可综合利用高光谱影像的光谱、纹理及其他辅助数据,自动寻找出区分各类别的最佳特征变量及分割阈值,运算速度快,占用内存较小且无需人为参与,其分类精度达到优势树种级别,总体分类精度达81.9%,Kappa系数0.709 8。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号