首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对沼液中氮含量排放超标污染问题,为筛选出能使氮元素最大回收的有效吸附方法,以玉米秸秆、玉米芯和木屑为原料,分别于550℃、600℃、650℃下热解成生物炭,并采用NaOH+微波、FeCl3、KOH和HNO3对其进行改性处理,采用扫描电镜和压汞仪对生物炭进行表征,通过吸附动力学、吸附等温线和影响因素试验考察生物炭对NH+4-N的吸附效果。结果表明:NaOH+微波改性的550℃玉米秸秆炭(A-550-NaM)、KOH改性的550℃玉米秸秆炭(A-550-K)、NaOH+微波改性的600℃木屑炭(C-600-NaM)和FeCl3改性的550℃玉米芯炭(B-550-Fe)对NH+4-N的吸附平衡时间在60~150 min之间,其平衡吸附量分别为8.58 mg/g、8.30 mg/g、7.95 mg/g和8.01 mg/g;Langmuir模型较Freundlich模型更适合描述B-550-Fe、A-550-NaM和A-550-K对NH+4-N的吸附行为,3种改性生物炭对NH+4-N的最大吸附量分别为200.24 mg/g、101.86 mg/g和94.82 mg/g。  相似文献   

2.
本研究以园林绿化废弃物刺桐为原料,在不同的热解温度下(300、500、700 ℃)制备生物炭,用动力学方程和等温吸附方程分别拟合生物炭对氨氮和磷的吸附性能。等温吸附方程拟合结果表明:生物炭对水中氨氮和磷的吸附量均随着氨氮和磷的初始浓度的增加而增大,且均能较好地拟合Langmuir吸附方程,且BC500吸附效果最好;动力学方程拟合结果表明:不同热解温度下得到的生物炭对氨氮和磷的吸附速率较快的过程分别发生在最初的300 min和60 min内,且均能较好地拟合准二级动力学方程;此外,生物炭对不同初始pH下对氨氮和磷溶液的吸附效果分别为pH7 > pH11 > pH3和pH11 > pH7 > pH3。  相似文献   

3.
不同生物炭对氮的吸附性能   总被引:7,自引:3,他引:7  
为探究不同类型生物炭对氮的吸附性能,寻求最佳的氮素吸附材料,本文选择稻壳炭、山核桃壳炭和竹炭作为吸附剂,开展不同pH环境、反应时间、初始浓度及生物炭添加量条件下的吸附实验,研究生物炭对硝酸铵溶液中氮的最佳吸附条件,并对结果进行等温吸附拟合与吸附动力学研究。结果表明:3种生物炭对硝酸铵溶液中的氮均有一定的吸附效果,且pH环境、反应时间、初始浓度及生物炭添加量均影响生物炭对氮的吸附量。生物炭添加量为0.05 g时,在pH环境为9、吸附时间为3 h、初始浓度为100 mg·L-1的条件下,平衡吸附量达到最大,稻壳炭、山核桃壳炭和竹炭在此条件下的最大吸附量分别为23.79、13.00 mg·g~(-1)和17.60 mg·g~(-1),表明稻壳炭对氮的吸附效果最佳;Langmuir方程能更好地拟合3种生物炭对氮的等温吸附过程,表明生物炭对氮的吸附主要是单分子层吸附;准二级动力学模型能更好地描述3种生物炭吸附氮的动力学过程,表明生物炭对氮的吸附为化学吸附。综上说明,稻壳炭在最佳吸附条件下可吸附较多氮素,有望作为一种良好的吸附剂应用于土壤和水体氮素污染治理。  相似文献   

4.
生物炭对土壤氨氮转化的影响研究   总被引:4,自引:8,他引:4  
通过测定NH3挥发和氯仿灭菌试验,探讨了生物炭如何通过影响NH3挥发和微生物来影响土壤中NH4+-N的变化,为研究生物炭对土壤外加N素的影响机制提供一定理论依据.结果表明:生物炭加入稻田土后,土壤中KCI浸提态的NH+4-N含量减少34%,其中由于微生物作用受到影响而引起的NH4+-N减少约占总减少量的42%.生物炭加入红壤后,KCl浸提态的NH4+-N含量减少了13%,生物炭对红壤中微生物影响不大.生物炭使两种土壤的pH值升高,引起NH3的挥发,生物炭处理的稻田土和红壤外加NH3-N累计挥发量分别为未加生物炭时的7.8倍和1.7倍.  相似文献   

5.
玉米秸秆生物炭对Cd2+的吸附特性及影响因素   总被引:7,自引:0,他引:7  
以玉米秸秆生物炭为实验材料,研究了生物炭吸附重金属Cd2+的性能,分析了吸附温度、吸附时间、初始pH值以及生物炭粒径对吸附的影响,并对吸附前后生物炭样品进行傅里叶变换红外光谱分析(FITR)、X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征以分析吸附机理。结果表明:玉米秸秆生物炭对Cd2+的吸附可用Langmuir等温方程较好地拟合,在不同温度下其饱和吸附量分别为18.49 mg·g-1(288.15 K)、23.51 mg·g-1(298.15 K)、23.59 mg·g-1(308.15 K)和24.43 mg·g-1(318.15 K),吸附动力学过程可以由准二级动力学方程很好地拟合,约40 min即达平衡,pH值为5时吸附量最大,生物炭粒径对吸附无明显影响。结构表征表明,生物炭对Cd2+的吸附机理主要为表面羟基(-C-OH)和羰基(-C=O)与Cd2+发生络合化学反应作用。  相似文献   

6.
不同原料生物炭对铵态氮的吸附性能研究   总被引:4,自引:3,他引:4  
为探讨不同原料生物炭对铵态氮吸附量及吸附机制,以花生壳、玉米秆、杨木屑和竹屑为原料,在500℃下充N_2保护热解制备生物炭,通过电镜扫面图(SEM)与傅立叶红外光谱图(FTIR)表征NH_4~+-N在生物炭表面的吸附特征,结合批量平衡吸附试验,对比研究不同原料生物炭对NH_4~+-N的吸附性能。结果表明:吸附后生物炭表面附着颗粒或粉末物质,孔隙被填充,表面变得较为平坦。四种生物炭表面分布的-OH、-C=O、-C-O,以及花生壳生物炭与玉米秆生物炭表面的-CH_3、-CH_2、-O-参与了吸附;Langmuir方程可以较好地拟合四种生物炭对NH_4~+-N的等温吸附;吸附均在50 min内达到平衡,伪二级动力学方程均可以较好地描述生物炭对NH_4~+-N的动力学吸附过程;在溶液pH=7.00条件下,初始浓度为800 mg·L~(-1)的体系中,四种生物炭对NH_4~+-N的最大吸附量为9.5~15 mg·g~(-1),吸附能力大小为花生壳生物炭玉米秆生物炭竹屑生物炭杨木屑生物炭。研究表明,生物炭表面含氧官能团对吸附NH_4~+-N起到决定性作用,吸附为单分子层吸附,且由快速反应所控制,四种生物炭中吸附性最好的是花生壳生物炭。  相似文献   

7.
花生壳生物炭对硝态氮的吸附机制研究   总被引:6,自引:3,他引:6  
以花生壳为原料,300℃热解条件下制得生物炭。通过批量平衡吸附试验,结合吸附前后FTIR、XPS图谱表征分析探索硝态氮(NO-3-N)在生物炭表面的吸附机制。结果表明,生物炭对NO-3-N的吸附显著受溶液pH值影响,当pH6时有利于吸附的进行。随溶液初始NO-3-N浓度增加,生物炭对其吸附量逐渐增加,在初始浓度800 mg·L-1的吸附体系中,最大吸附量达40 mg·g-1,Freundlich方程可较好地拟合(R2=0.975)生物炭对NO-3-N等温吸附过程,吸附为非均一的多分子层吸附;生物炭对NO-3-N的吸附可在30 min达到平衡,伪二级动力学方程能够较好地描述吸附动力学过程,表明吸附以化学吸附为主。FTIR、XPS图谱分析表明,生物炭表面分布的羟基(-OH)、芳香环羰基(-C=O)及脂肪族醚类(-O-)等官能团参与了吸附过程,且与之相连的C原子结合能均增加。结合生物炭表面金属离子分布状况,综合分析认为,通过氢键形成和金属桥键作用是生物炭对NO-3-N吸附的主要机制。  相似文献   

8.
生物炭老化及其对重金属吸附的影响机制   总被引:3,自引:2,他引:3  
生物炭具有丰富含氧官能团、多孔结构、阳离子交换量、芳香性结构等使其对重金属具有良好的固持作用,进而在重金属污染土壤修复中具有良好的应用前景。生物炭施入土壤中在与土壤接触过程中受物理、化学和生物作用而发生老化现象,致使生物炭特性发生改变。本文综述了原料来源、热解温度和老化方法对老化生物炭特性的影响,以及老化生物炭对重金属吸附的影响机制。老化作用对生物炭特性的改变主要体现在灰分、表面元素组成、含氧官能团、pH、形貌特征、孔隙结构及比表面积。老化生物炭表面含氧官能团、负电荷和CEC含量增加会促进其对重金属的吸附;而比表面积和pH的降低、酚羟基和芳香醚含量增加以及羧基数量减少则抑制其对重金属的吸附。  相似文献   

9.
为探究温度条件对生物炭吸附重金属离子特性的影响,采用吸附试验研究25、45和65 ℃ 3种温度条件下生物炭对单一重金属离子溶液和多种重金属离子混合溶液的吸附能力变化.结果表明:生物炭对4种重金属的吸附均可采用Langmuir和Freundlich方程进行描述;温度是影响生物炭吸附重金属的重要因素,生物炭对Cu的吸附能力...  相似文献   

10.
采用室内培养试验法对添加生物质炭的茶园土壤水溶性氟吸附特性进行了研究。结果表明,茶园土壤随生物质炭添加量增加对水溶性氟的吸附量和吸附率均逐渐降低,应用等温吸附Langmuir方程、Freundlich方程和Temkin方程均能够较好地描述其吸附规律,其中以Freundlich方程拟合曲线最佳。随生物质炭添加量的增加土壤氟净吸附量逐渐降低。各处理土壤的氟吸附动力学过程包含吸附快反应和慢反应阶段,平衡时间小于120 min区间为吸附量快速上升期,平衡时间达到1 440 min后0.25%和0.50%生物质炭添加量处理土壤基本达到平衡状态。从双常数方程、Elovich方程和一级动力学方程拟合方程计算得到的理论吸附量与试验实测吸附量之间的符合程度较高,可准确描述添加生物质炭土壤对水溶性氟的吸附过程。添加生物质炭使土壤pH值升高与茶园土壤对水溶性氟最大吸附量、吸附强度和净吸附量的降低密切相关。  相似文献   

11.
pH对生物质炭吸附诺氟沙星和磺胺甲恶唑的影响   总被引:1,自引:0,他引:1  
为解决水体中抗生素去除及芦苇秸秆资源化利用等问题,以芦苇秸秆制备的生物质炭为吸附材料,考察不同pH条件下诺氟沙星(NOR)和磺胺甲恶唑(SMX)在芦苇秸秆生物质炭上的等温吸附过程及吸附动力学。结果表明,生物质炭的吸附与NOR和SMX在不同溶液pH下的存在形态有关。随pH的增加,生物质炭对NOR的吸附量先增加后减小,最高吸附量为7.80 mg·g-1;生物质炭对SMX的吸附量在溶液pH 1~3时逐渐减小,在pH 3~5时逐渐增加,pH>5时吸附量逐渐降低。拟二级动力学模型可较好地拟合NOR和SMX在生物质炭上的吸附,生物质炭吸附NOR和SMX受到表面吸附、颗粒内扩散等作用的共同影响。吸附等温线符合Langmuir方程,吸附过程以单分子层吸附为主。溶液不同的pH会影响芦苇秸秆生物质炭对NOR和SMX的吸附效果,这为生物质炭吸附水中抗生素的合理应用提供一定的数据支持。  相似文献   

12.
为探索热解稻壳生物炭对尿素态氮的吸附特性,采用自制的无轴螺旋连续热解装置制备了热解温度分别为350、450、550℃和650℃的稻壳生物炭(RHB),研究了热解温度对RHB各项理化特性的影响规律,及其对水溶液中尿素态氮的吸附能力,并用吸附动力学模型和吸附等温线模型对尿素态氮的吸附过程进行拟合,结合吸附前后RHB的微观形貌特征,探讨了RHB对尿素态氮的吸附机制。结果表明,RHB的BET比表面积及孔容均随着热解温度的升高而逐渐增大,而平均孔径则逐渐减小;与热解温度为550℃和650℃制得的RHB相比,350、450℃制得的RHB保留了更多数量的酸性含氧有机官能团。650℃制得的RHB对尿素态氮的吸附能力更强(350℃和650℃RHB的平衡吸附量分别为30.59 mg·g~(-1)和33.16 mg·g~(-1)),等温吸附模型拟合及吸附动力学拟合结果表明,RHB对尿素态氮的吸附过程可用Langmuir-Freundlich模型和Elovich模型描述,其对尿素态氮的吸附同时受到物理吸附和化学吸附的作用。RHB对尿素态氮的吸附过程为尿素分子首先通过自由扩散运动穿透液膜表面抵达RHB颗粒表面,并与RHB表面的官能团吸附位点发生化学吸附反应,然后尿素分子从RHB颗粒外表面进入到内部的复杂多孔结构中并被"封锁"于孔隙内部,之后逐渐趋于动态平衡。不同热解温度制得的RHB的吸附机制表现为低热解温度RHB通过表面含氧官能团与尿素分子形成氢键发生化学吸附,而高热解温度制得的RHB通过形成更多的复杂孔隙结构与尿素分子发生物理吸附。  相似文献   

13.
本文研究了不同热解温度条件下牛骨生物炭理化性质及对 Cd2+的吸附特性,采用限氧控温慢速热裂解的方式,在 300、350、400、500、700 ℃和900 ℃条件下制备牛骨生物炭。分别采用热重分析仪、傅里叶变换红外光谱以及扫描电镜能谱仪等设备对牛骨生物炭进行表征,并通过批量吸附实验分析其对Cd2+的吸附特性。结果表明:牛骨生物炭pH值、灰分含量随热解温度提高而增加,芳构度逐渐增强,孔径与比表面积增大,而挥发分、有机碳含量与全氮含量减少;准二级动力学模型可以准确拟合5种牛骨生物炭对Cd2+的吸附动力学过程(R2>0.999),在接近吸附平衡时,吸附速率由颗粒内扩散主导;牛骨生物炭对Cd2+等温吸附过程更符合Langmuir模型,700 ℃条件下制备的牛骨生物炭对Cd2+的吸附效果最好,最大平衡吸附量为44.32 mg·g-1;随着热解温度增加,牛骨生物炭对Cd2+吸附机制中官能团络合作用减弱,表面吸附、阳离子交换以及π电子配位作用增大。在实际规模化制备牛骨生物炭过程中应充分考虑能耗成本以及尾气收集问题。  相似文献   

14.
为探究冻融过程对畜禽粪便的粒径分布及其有机质组成的影响,通过湿筛法分析了经历冻融循环前后猪粪粒径分布的变化,并采用傅里叶变换红外光谱和13C核磁共振光谱对冻融循环处理前后猪粪中提取的有机质组分(溶解性有机质、腐植酸、木质素和蛋白质)的结构进行了表征。结果表明:冻融循环使猪粪的大颗粒发生破碎,并且随着冻融循环次数的增加,破碎的效果也更加明显,经过30次冻融循环处理的猪粪与未经冻融的样品相比,>1000μm的颗粒含量降低了6.73%,38~75μm和<38μm的颗粒含量则分别增加了5.94%和6.13%;冻融循环使猪粪的总有机质含量降低,溶解性有机质含量升高,不饱和有机质增加,并产生了更多的氨基酸以及—COO—和C=O基团。其中,溶解性有机质的芳香度降低,腐植酸和木质素的芳香度基本不变,而蛋白质的芳香度增加。研究表明,冻融循环可能会增加畜禽粪便在自然环境中的溶解度和流动性。  相似文献   

15.
生物炭对噻虫胺在土壤中吸附和降解的影响   总被引:1,自引:1,他引:1  
为探究由不同热解温度和原材料制备的生物炭对噻虫胺在黑土中吸附和降解的影响,以玉米秸秆和猪粪为原材料,分别在300、500℃和700℃下限氧热解制备了六种生物炭,并将其添加到黑土中,研究生物炭对土壤理化性质与噻虫胺在土壤中吸附-降解的影响。结果表明:添加生物炭可显著提高土壤的pH、有效态磷和有机碳含量,降低土壤的H/C。噻虫胺在土壤及生物炭-土壤混合体系中的吸附过程符合Freundlich模型。添加生物炭显著提高了土壤对噻虫胺的吸附,且吸附量随生物炭热解温度的升高而增大。不同热解温度的生物炭对噻虫胺在土壤中降解的影响不同。高温生物炭-土壤混合体系的强吸附能力降低了噻虫胺被微生物降解的速率,但噻虫胺在低温生物炭-土壤混合体系中具有相对较高的微生物降解速率。因此,在利用生物炭修复农药污染土壤时应该充分考虑生物炭的类型和性质。  相似文献   

16.
为研究老化秸秆生物炭的性质及对水中诺氟沙星的吸附特性,本研究将新鲜生物炭进行自然老化、冻融循环老化和高温老化,通过元素分析、扫描电镜和红外光谱分析老化前后生物炭的组成和结构特性变化,研究老化生物炭对诺氟沙星的吸附机理以及pH、离子类型和离子浓度对吸附效果的影响。结果表明:不同老化方式均使生物炭的C元素含量降低,O元素含量显著增加,极性增加,芳香性降低,其中高温老化影响最大。高温老化使生物炭表面的—OH和C=C明显减少,冻融循环老化使—OH数量增加,自然老化对生物炭表面官能团影响较小。老化使生物炭表面破损、孔道塌陷,生物炭上的吸附点位被阻塞,不利于对诺氟沙星的吸附。老化前后生物炭对诺氟沙星的吸附更符合准二级动力学模型,等温吸附拟合发现,Langmuir模型能更好地拟合诺氟沙星在生物炭上的吸附过程。自然老化、冻融循环老化和高温老化分别使生物炭的吸附量降低了5.50%、7.70%、14.80%;在背景液pH 3.0~11.0范围内,老化前后生物炭对诺氟沙星的吸附量随pH增大先升高再降低,当pH为7.0时,吸附量达到最大值。阳离子价态越高,离子浓度越大,老化后生物炭对诺氟沙星的吸附量越小。研究表明,老化对生物炭的理化性质和吸附抗生素的能力均有影响,因此在使用生物炭去除目标污染物时需要考虑环境因素的影响。  相似文献   

17.
生物炭对冻融黑土中铵态氮和硝态氮淋失的影响   总被引:3,自引:1,他引:3  
为了深入研究冻融条件下生物质炭对东北黑土中铵态氮和硝态氮淋失的影响效果,为解决冻融作用下黑土中无机氮素的淋失问题提供科学依据,采用室内模拟土柱淋溶实验方法研究了生物质炭对经过不同冻融循环次数处理土壤中铵态氮和硝态氮淋失的影响。研究结果表明:冻融会增加土壤氮素的淋失,且淋失量与冻融次数有关,施加生物质炭可以有效降低土壤因冻融作用引起的氮素淋失;玉米秸秆炭对无机氮素淋失降低率在76.15%~85.79%之间,树枝炭在55.26%~68.09%之间,可以看出玉米秸秆炭持氮效果较树枝炭更好;在冻融次数分别为3和1时,玉米秸秆炭和树枝炭持氮能力最强;两种生物质炭对铵态氮的固持能力均优于硝态氮。  相似文献   

18.
两种秸秆生物炭对Cd的吸附特征研究   总被引:1,自引:0,他引:1  
为探究两种作物秸秆生物炭对废水中镉的吸附,利用系统的吸附试验,分析稻秸秆与麦秸秆在不同温度下热解制得的生物炭对废水中镉的吸附性能和作用机理.结果 显示,600℃热解得到的稻秸秆生物炭对镉的吸附效果最好,理论最大单层吸附量可达250mg·g-i,吸附动力学研究显示在60m in内可将溶液镉浓度由101.60mg·L-1降低至2.65 mg·L-1,去除率达到97.39%.600℃下制得的稻秸秆生物炭对镉污染废水的快速净化主要是通过生物炭表面的物理吸附和化学作用共同完成的.  相似文献   

19.
在600 ℃和无氧条件下热裂解制备山核桃木、苔藓和松针三种生物质炭,用于研究三种生物质炭吸附阴离子型染料刚果红及阳离子型染料亚甲基蓝的pH效应、吸附等温线和吸附动力学效应。结果表明,碱性条件下三种生物质炭对亚甲基蓝表现出较好的吸附绩效,而酸性条件更利于三种生物质炭对刚果红的吸附。染料的初始浓度效应研究表明,生物质炭能有效吸附亚甲基蓝、刚果红,且吸附等温线能较好地符合Freundlich方程。三种生物质炭对刚果红吸附容量均比对亚甲基蓝吸附容量高。三种生物质炭对亚甲基蓝和刚果红的吸附主要发生在1 h内,然后缓慢增加,经6 h左右达到吸附平衡,吸附过程均符合伪二级动力学模型。颗粒内扩散模型拟合结果表明,颗粒内扩散阶段是限制吸附速率的主要阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号