首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In August 2006, bluetongue virus (BTV) was detected in the Netherlands, Belgium, western Germany, Luxembourg and northern France for the first time. Consequently, a longitudinal entomological study was conducted in the affected region of northern France (Ardennes) throughout the autumn of 2006. Data on the spatio-temporal distribution of Culicoides (Diptera: Ceratopogonidae) associated with livestock were collected and an attempt was made to identify the vector(s) involved in BTV transmission by means of virus detection in wild-caught biting midges. Weekly sampling using standardized Onderstepoort-type blacklight traps were performed simultaneously both outdoors and indoors in one BTV-free and three BTV-affected farms between September and December 2006.Culicoides were sorted according to farm, location (outdoors vs. indoors), time point (in weeks), species and physiological stage. BTV detection was conducted by RT-PCR on monospecific pools of non-bloodfed parous female Culicoides.The principal results showed: (i) the absence of the Mediterranean vector, C. imicola, (ii) the relatively low abundance of C. dewulfi and C. pulicaris, (iii) the widespread occurrence and abundance of C. obsoletus/C. scoticus with longevity and behaviour compatible with BTV transmission, and (iv) all Culicoides pools tested for BTV were negative.In France, the very low levels of BTV-8 circulation were probably due to the limited introduction of the virus from affected neighbouring countries, and not due to the absence of local vector populations. A key finding has been the substantiation, for the first time, that Culicoides, and particularly the potential vectors C. obsoletus/C. scoticus and C. dewulfi, can be active at night inside livestock buildings and not only outside, as originally believed.The endophagic tendencies of members of the Obsoletus group are discussed in light of the prolonged period of BTV transmission during the autumn of 2006 and the risk of BTV overwintering and resurgence in the spring of 2007. Overall, there is an urgent need to improve our knowledge on the ecology of local Culicoides species before any clear, effective and reliable recommendations can be provided to the veterinary authorities in terms of prevention and control.  相似文献   

2.
3.
After bluetongue (BT) appeared in northern Europe in August 2006 entomological studies were implemented in all five affected Member States (MSs) to establish which species of Culicoides had acted as vectors. The findings can be summarised as follows: (i) C. imicola the principal southern European/African vector of BTV has not penetrated into northern Europe, (ii) three pools of C. obsoletus/C. scoticus and one of C. dewulfi assayed RT-PCR-positive to BTV-8, (iii) in support of these results it was found that both potential vectors had also high parity rates (approximately 40%) indicating increased longevity favouring BTV virogenesis and transmission, (iv) furthermore, C. obsoletus/C. scoticus and C. dewulfi occurred also widely and abundantly on sheep and cattle holdings across the entire affected region, (v) and during the latter part of the season showed strong endophily readily entering livestock buildings in significant numbers to bite the animals inside (endophagy), (vi) which demonstrates that housing at best offers only limited protection to livestock from Culicoides attacks, (vii) in contrast the potential vector C. pulicaris sensu stricto was restricted geographically, was captured rarely, had a low parity rate (10%) and was exophilic indicating it played no role in the outbreak of BT, (viii) the incrimination of C. dewulfi as a novel vector is significant because it breeds in cattle and horse dung this close association raising its vectorial potential, but (ix) problems with its taxonomy (and that of the Obsoletus and Pulicaris species complexes) illustrates the need for morphological and molecular techniques to become more fully integrated to ensure progress in the accurate identification of vector Culicoides, (x) midge densities (as adjudged by light traps) were generally low indicating northern European Culicoides to have a high vector potential and/or that significant numbers of midges are going undetected because they are biting (and transmitting BTV) during the day when light traps are not effective, and (xi) the sporadic capture of Culicoides in the winter of 2007 invites re-examination of the current definition of a vector-free period. The re-emergence of BT over a wide front in 2007 raises anew questions as to precisely how the virus overwinters and asks also that we scrutinise our monitoring systems in terms of their sensitivity and early warning capability.  相似文献   

4.
Schmallenberg virus (SBV), a novel arboviral pathogen, has emerged and spread across Europe since 2011 inflicting congenital deformities in the offspring of infected adult ruminants. Several species of Culicoides biting midges (Diptera: Ceratopogonidae) have been implicated in the transmission of SBV through studies conducted in northern Europe. In this study Culicoides from SBV outbreak areas of mainland France and Italy (Sardinia) were screened for viral RNA. The role of both C. obsoletus and the Obsoletus complex (C. obsoletus and C. scoticus) in transmission of SBV were confirmed in France and SBV was also discovered in a pool of C. nubeculosus for the first time, implicating this species as a potential vector. While collections in Sardinia were dominated by C. imicola, only relatively small quantities of SBV RNA were detected in pools of this species and conclusive evidence of its potential role in transmission is required.  相似文献   

5.
The impact of head and neck position (HNP) on horse welfare has received much attention in the scientific literature within the last two decades. Studies have identified physiological and behavioral signs of distress in horses ridden for prolonged time in an HNP with their noseline behind the vertical (BTV), which may compromise their welfare. The objective of this study was to compare potential differences of HNPs shown in horse sales photographs advertised in an Australian horse sales magazine (Horse Deals) from the years 2005 and 2018. In addition, factors potentially impacting HNPs, such as type of tack presented in (e.g., noseband type), riding discipline, and competition experience of the horse, were investigated. The sample population (n = 570) comprised horses ridden with headgear and bit in walk, trot, or canter/gallop, advertised in an Australian horse sales magazine. Issues from April 2005 and October/November 2018 were selected. Head and neck position was categorized as BTV, on the vertical (OV), slightly in front of the vertical (IFV), or extremely in front of the vertical (EIFV; any HNP >30° IFV). Data were analyzed using the chi-squared test and post hoc testing via a multiple regression approach through SPSS and test of proportions via the Z-score calculator for two independent population proportions. Analysis of combined data from years 2005 and 2018 showed 47.0% (n = 570) of the horse sample population were advertised with HNPs BTV. Behind-the-vertical HNP was observed as the predominant HNP (57.8%; n = 268) in the warmblood/eventers/show/performance (WESP) category (P < .0005). In 2005, 53.4% (n = 303) of the sample population were ridden BTV compared with 39.7% (n = 267) in 2018 (P < .001), 12.9% (n = 303) were OV in 2005 compared with 15.0% (n = 267) in 2018 (P > .05), and 10.9% (n = 303) were IFV in 2005 compared with 27.3% (n = 267) in 2018 (P < .0004). These results suggest a positive development with fewer vendors/riders selecting images where the horse’s nose was BTV. However, this may be explained by the larger proportion of horses advertised in the WESP category in 2005 (63.0%; n = 303) versus 2018 (28.5%; n = 267), and the WESP category predominantly comprised of dressage, jumper, and eventing horses. In addition, the reduction of HNPs BTV from 53.4% (n = 303) in 2005 to 39.7% (n = 267) in 2018 could be attributed to the observation that in 2018, a larger proportion of horses were listed in categories that do not require the horses to be worked with a flexed HNP referred to as “on-the-bit” (e.g., western, endurance, Australian sStock horses). The HNP BTV remains preferential by a substantial proportion of the horse-owning public when advertising horses for sale, particularly in disciplines where the horse is worked in a flexed HNP or “on-the-bit.”  相似文献   

6.
Bluetongue (BT) is a reportable re-emerging vector-borne disease of animal health concern. Enzyme-linked immunosorbent assays (ELISA) are frequently used in BT surveillance programs in domestic ruminants, but their diagnostic accuracy has not been evaluated for wild ruminants, which can play an important role as natural reservoirs of bluetongue virus (BTV). The aim of this study was to assess two commercial ELISAs for BT diagnosis in wild ruminants using control sera of known BTV infection status and field samples. When control sera were tested, the double recognition ELISA (DR-ELISA) showed 100 % sensitivity (Se) and specificity (Sp), while the competitive ELISA (C-ELISA) had 86.4 % Se and 97.1 % Sp. Using field samples, the selected latent-class analysis model showed 95.7 % Se and 85.9 % Sp for DR-ELISA, 58.2 % Se and 95.8 % Sp for C-ELISA and 84.2 % Se for the serum neutralization test (SNT). Our results indicate that the DR-ELISA may be a useful diagnostic method to assess BTV circulation in endemic areas, while the C-ELISA should be selected when free-areas are surveyed. The discrepancy between control and field samples point out that the inclusion of field samples is required to assess the accuracy of commercial ELISAs for the serological diagnosis of BTV in wild ruminants.  相似文献   

7.
Lyme borreliosis (LB) is caused by a group of pathogenic spirochetes – most often Borrelia burgdorferi, B. afzelii, and B. garinii – that are vectored by hard ticks in the Ixodes ricinus-persulcatus complex, which feed on a variety of mammals, birds, and lizards. Although LB is one of the best-studied vector-borne zoonoses, the annual incidence in North America and Europe leads other vector-borne diseases and continues to increase. What factors make the LB system so successful, and how can researchers hope to reduce disease risk – either through vaccinating humans or reducing the risk of contacting infected ticks in nature? Discoveries of molecular interactions involved in the transmission of LB spirochetes have accelerated recently, revealing complex interactions among the spirochete-tick-vertebrate triad. These interactions involve multiple, and often redundant, pathways that reflect the evolution of general and specific mechanisms by which the spirochetes survive and reproduce. Previous reviews have focused on the molecular interactions or population biology of the system. Here molecular interactions among the LB spirochete, its vector, and vertebrate hosts are reviewed in the context of natural maintenance cycles, which represent the ecological and evolutionary contexts that shape these interactions. This holistic system approach may help researchers develop additional testable hypotheses about transmission processes, interpret laboratory results, and guide development of future LB control measures and management.  相似文献   

8.
Bluetongue (BT) can cause severe livestock losses and large direct and indirect costs for farmers. To propose targeted control strategies as alternative to massive vaccination, there is a need to better understand how BT virus spread in space and time according to local characteristics of host and vector populations. Our objective was to assess, using a modelling approach, how spatiotemporal heterogeneities in abundance and distribution of hosts and vectors impact the occurrence and amplitude of local and regional BT epidemics. We built a reaction–diffusion model accounting for the seasonality in vector abundance and the active dispersal of vectors. Because of the scale chosen, and movement restrictions imposed during epidemics, host movements and wind-induced passive vector movements were neglected. Four levels of complexity were addressed using a theoretical approach, from a homogeneous to a heterogeneous environment in abundance and distribution of hosts and vectors. These scenarios were illustrated using data on abundance and distribution of hosts and vectors in a real geographical area. We have shown that local epidemics can occur earlier and be larger in scale far from the primary case rather than close to it. Moreover, spatial heterogeneities in hosts and vectors delay the epidemic peak and decrease the infection prevalence. The results obtained on a real area confirmed those obtained on a theoretical domain. Although developed to represent BTV spatiotemporal spread, our model can be used to study other vector-borne diseases of animals with a local to regional spread by vector diffusion.  相似文献   

9.
Bluetongue (BT) is a vector-borne animal disease of economical importance due to the international trade restrictions likely to be put into place in a country once the infection is discovered. The presence of BT and its vectors in countries adjacent to Switzerland stresses the need of implementing a surveillance system and to raise disease awareness among potential stakeholders. A national survey in Switzerland 2003 indicated freedom of Bluetongue virus (BTV), although a single individual of the main BT vector Culicoides imicola was caught in the canton of Ticino. The survey also demonstrated that potential BT vectors, C. obsoletus and C. pulicaris are locally abundant in Switzerland. Therefore, a new surveillance method based on sentinel herds in high risk areas was implemented in 2004 for the early detection of both an incursion of BT vectors into Switzerland, and potential virus circulation among cattle.  相似文献   

10.
Culicoides were captured at a BTV-infected dairy near Gulpen in the province of Limburg (south-east Netherlands) between 14 September and 4 October 2006. Onderstepoort-type blacklight traps were used to sample Culicoides both inside and outside a partially open shed housing 11 cattle. A total of 28 light trap collections were made at the shed and yielded:
• 9371 Culicoides representing 11 species; >90% comprised five potential vectors of BTV and in order of abundance were Culicoides obsoletus and Culicoides scoticus (of the Obsoletus Complex), Culicoides dewulfi, Culicoides pulicaris and Culicoides chiopterus; Culicoides imicola, the principal Mediterranean (and African) vector of BTV, was absent.
• 2339 Culicoides representing seven species were captured inside (endophily) the cattle shed; >95% comprised the Obsoletus Complex and C. dewulfi. Conversely, the Pulicaris Complex, represented by five species and including C. pulicaris, showed strong exophily with >97% captured outside the shed.
• 7032 Culicoides were captured outside the shed, approximately threefold more than inside. This trend was reversed on an overcast day, when eightfold more Culicoides were captured inside; this indicates that when the light intensity outdoors is low Culicoides will attack (i) earlier in the day while cattle are still at pasture, and (ii) might follow cattle into the sheds in the late afternoon leading to elevated numbers of biting midges being trapped inside the shed during the subsequent hours of darkness.
Culicoides were captured inside the shed on all 14 sampling nights. On occasion up to 33% were freshly blood fed indicating they had avidly attacked the cattle inside (endophagy); because half the cattle had seroconverted to BTV, and because no cattle were left outdoors at night, the data indicate that (i) the housing of animals in partially open buildings does not interrupt the transmission of BTV, and/or (ii) BTV is being transmitted while cattle are grazing outdoors during the day.
• The capture of partially engorged midges inside the shed shows they are being disturbed while feeding; this may lead to cattle being attacked repeatedly, and if these attacks include older parous BTV-infected Culicoides, may enhance virus dissemination (particularly in sheds where cattle stand close together).
• Endo- and exophagy by potential vector Culicoides – coupled to increased adult longevity and multiple feeding events in single (potentially) infected midges – would ensure an R0 of >1, resulting in the continued maintenance and spread of BTV within local vertebrate populations.
• Four light trap collections made additionally in a mature deciduous forest 70 m from the shed yielded a high proportion (48%) of gravid females amongst which 10% had incompletely digested blackened blood meals in their abdomens; the absence of this age category in Culicoides captured at the sheds indicates that all Culicoides, after engorgement, exit the buildings to undergo oogenesis elsewhere.
In Europe, the blacklight trap is used widely for the nocturnal monitoring of Culicoides; a drawback to this approach is that this trap cannot be used to sample midges that are active during the day. Because diurnal biting in vector Culicoides may constitute a significant and underestimated component of BTV transmission a novel capture methodology will be required in future and is discussed briefly.  相似文献   

11.
In August 2006, bluetongue virus (BTV) was detected in the Netherlands, Belgium, western Germany, Luxembourg and northern France for the first time. Consequently, a longitudinal entomological study was conducted in the affected region of northern France (Ardennes) throughout the autumn of 2006. Data on the spatio-temporal distribution of Culicoides (Diptera: Ceratopogonidae) associated with livestock were collected and an attempt was made to identify the vector(s) involved in BTV transmission by means of virus detection in wild-caught biting midges. Weekly sampling using standardized Onderstepoort-type blacklight traps were performed simultaneously both outdoors and indoors in one BTV-free and three BTV-affected farms between September and December 2006. Culicoides were sorted according to farm, location (outdoors vs. indoors), time point (in weeks), species and physiological stage. BTV detection was conducted by RT-PCR on monospecific pools of non-bloodfed parous female Culicoides. The principal results showed: (i) the absence of the Mediterranean vector, C. imicola, (ii) the relatively low abundance of C. dewulfi and C. pulicaris, (iii) the widespread occurrence and abundance of C. obsoletus/C. scoticus with longevity and behaviour compatible with BTV transmission, and (iv) all Culicoides pools tested for BTV were negative. In France, the very low levels of BTV-8 circulation were probably due to the limited introduction of the virus from affected neighbouring countries, and not due to the absence of local vector populations. A key finding has been the substantiation, for the first time, that Culicoides, and particularly the potential vectors C. obsoletus/C. scoticus and C. dewulfi, can be active at night inside livestock buildings and not only outside, as originally believed. The endophagic tendencies of members of the Obsoletus group are discussed in light of the prolonged period of BTV transmission during the autumn of 2006 and the risk of BTV overwintering and resurgence in the spring of 2007. Overall, there is an urgent need to improve our knowledge on the ecology of local Culicoides species before any clear, effective and reliable recommendations can be provided to the veterinary authorities in terms of prevention and control.  相似文献   

12.
The outbreak of bluetongue (BT) in northern Europe 2006 initiated the monitoring of vectors, biting midges of the genus Culicoides in Sweden. In order to determine the diversity, distribution and seasonal dynamics of Culicoides, weekly collections were made during 2008 and during March-December 2009 using the Ondestepoort Veterinary Institute black light trap. Twenty sampling sites were selected in 12 provinces. In total of 30,704 Culicoides were collected in 2008 and 32,252 in 2009. The most abundant species were the potential vectors of BTV Culicoides obsoletus/C. scoticus that comprised of 77% of the total catches. Other biting midges collected were Culicoides impunctatus (9%), Culicoides grisescens (3%), Culicoides punctatus (2%), Culicoides chiopterus (2%) and Culicoides pulicaris (2%). Culicoides obsoletus/C. scoticus were most abundant during May-June and August-September. The majority of the species were active from March to November in 2008 and April to October in 2009. Species considered as potential vectors of bluetongue virus (BTV) occurred as far north as latitude 65°N (Kalix).  相似文献   

13.
Using data from bluetongue (BT) outbreaks caused by viral serotype 4 (BTV-4) in Spain during 2004–2005, a predictive model for BTV-4 occurrence in peninsular Spain was developed. An autologistic regression model was employed to estimate the relationships between BTV-4 presence and bioclimatic-related and host-availability-related variables. In addition, the observed abundances of the main potential Culicoides vectors during 2004–2005, namely Culicoides imicola, Culicoides obsoletus group, and species of the Culicoides pulicaris group, were compared between BTV-4 presence/absence areas predicted by the model.BTV-4 occurrence was mainly explained by bioclimatic variables, although a consideration of host-availability variables led to improved fit of the model. The area of BTV-4 presence predicted by the model largely resembled the core distribution area of C. imicola, and this species was the most abundant Culicoides spp. in predicted BTV-4 presence areas. The results suggest that the spatial expansion of BTV-4 took place only as far as those areas in which C. imicola populations efficiently transmitted the virus.  相似文献   

14.
Zoonotic Vector-Borne Diseases (VBDs) represent a relevant health issue for pets and humans. Italy is a major epidemiological hub for feline VBDs, because of suitable conditions for vector biology and disease transmission patterns. The present study investigated the exposure to major zoonotic arthropod-borne pathogens of cats in Italy, along with the evaluation of clinic-pathological features and a risk factor analysis. Out of 167 examined cats, 52 (31.1%) were seropositive for at least one vector-borne pathogen, being positivity for Bartonella henselae the most recorded (18%). Also, various cats seroreacted for Rickettsia felis (10.8%) and Rickettisa typhi (4.2%), Leishmania infantum (3%), Anaplasma phagocytophilum (2.4%) and Ehrlichia canis (2.4%). Forty-six cats were tested also for antibodies against D. immitis and two (4.3%) scored positive. The statistical analysis showed a positive association between flea infestation and seropositivity to B. henselae, other than an association between the administration of monthly ectoparasiticide treatments and seronegativity for Rickettsia spp.; seropositive cats were older than negative animals and the lifestyle (i.e. indoor vs outdoor) was not correlated with exposure to vector-borne pathogens. The majority of seropositive cats appeared clinically healthy or showed aspecific clinical signs. Around 80% of seropositive cats had one or more biochemical and/or complete blood count abnormalities. The present data confirm the endemicity of zoonotic feline VBDs in Italy and indicate that awareness on arthropod infections and transmitted pathogens should be kept high and possible implemented, towards the protection of animal and human health with adequate surveillance plans.  相似文献   

15.
Between January and December, 1974, Culicoides species were collected with a mercury vapour light trap at three sites where wild animals were kept at the University of Ibadan. A total of 33 species were identified. Females of all the species and males of nine species were collected. Culicoides imicola was the most predominant female species, constituting 36.9% of the total catch. Other common species were C. quinquelineatus, C. milnei, C. endelini, C. neavi and C. similis. About 40% of the total catch was fed and most of the members of the milnei group contained a greater number of fed than unfed. The periods when peak numbers were obtained were recognized during the catches. These were the “early rains” peak in April and a higher “late rains” peak in October. Wind force and rainfall appeared to be the important factors influencing the population of Culicoides. The probability that the epizootiology of the bluetongue in Nigeria is affected by the Culicoides—wild life cycle was discussed.  相似文献   

16.
Bluetongue virus (BTV) serotype 17 was isolated from cattle with clinical signs of bluetongue disease during 1978 and 1979 epizootics. Bovine sera from 6 herds located in an epizootic region were examined in 1979 for antibodies, using an immunodiffusion (ID) test. Of 300 sera, 164 (54.7%) were seropositive. Sera from statewide surveys of Louisiana cattle in July to August 1980 and December 1980 to January 1981 were tested for BTV antibodies, using the ID test. Fifty-eight of 70 herds (82.9%) and 164 of 597 (27.5%) individual cattle tested in July to August 1980 were seropositive. Fifty-four of 63 (85.7%) herds and 170 of 600 (28.3%) individual cattle tested in December 1980 to January 1981 were seropositive. Significant differences (P less than 0.01) were found in the seropositive rates between the various geographic regions of the state during each survey. Adult breeding-age cattle in 3 sentinel herds were tested for BTV antibodies beginning in 1976 and continuing through January 1981. During this interval, the seropositive rate in 2 of 3 herds was increased. Also, individual cattle in all 3 of these herds converted from seronegative to seropositive, indicating exposure during a particular interval for each herd. The age distribution of seropositive cattle in a dairy indicated that 2-year-old cattle had a seropositive rate comparable with that of older animals in the herd, suggesting that the 2-year-old animals had been exposed to a BTV before they entered the breeding herd.  相似文献   

17.

Background

Bluetongue virus (BTV) is an insect-transmitted virus, which causes bluetongue disease (BT) in sheep and a fatal hemorrhagic infection in North American white-tailed deer. However, in cattle the disease is typically asymptomatic and no overt clinical signs of disease appear to be associated with BTV infection. Serological evidence and isolation of different BTV serotypes have been reported in Sudan, however, no information is currently available in regard to previous exposure of Sudanese livestock to BTV infection in East Darfur State, Sudan.

Aims

To determine the prevalence of BTV antibodies and to identify the potential risk factors associated with BTV infection among cattle in East Darfur State, Sudan.

Methods

A total of 224 blood samples were collected randomly from five localities in East Darfur State, Sudan. The serum samples were screened for detection of BTV-specific immunoglobulin G (IgG) antibodies using a competitive enzyme-linked immunosorbent assay (c-ELISA).

Results

Serological evidence of BTV infection was observed in 150 out of 224 animals accounting for a 67% prevalence rate among cattle in East Darfur State. Older cattle (>2 years of age) were six times more likely to be infected with BTV (OR = 6.62, CI = 2.87-15.26, p-value = 0.01). Regarding animal source (contact with other herds) as a risk factor, it was shown that cattle purchased from market or introduced from other herds were 3 times at higher risk of being infected with BTV (OR = 3.87, CI = 1.07-13.87, p value = 0.03). Exposure of cattle to the insect vector increased the risk of contracting BTV infection by six times compared to non-exposed cattle (OR = 6.44, CI = 1.53-27.08, p value = 0.01).

Conclusion

The present study indicated that age, animal source and the intensity of the insect vector are influential risk factors for BTV infection in cattle in the Darfur region. Surveillance for BTV infection should be extended to include other susceptible ruminants and to study the distribution of the insect vectors to better predict and respond to a possible BTV outbreak in the State of East Darfur, Sudan.  相似文献   

18.
The distribution of bluetongue virus has changed, possibly related to climate change. Vaccination of domestic ruminants is taking place throughout Europe to control BT expansion. The high density of wild red deer (Cervus elaphus) in some European regions has raised concerns about the potential role that unvaccinated European wild ungulates might play in maintaining or spreading the virus. Most species of wild ruminants are susceptible to BTV infection, although frequently asymptomatically. The red deer population density in Europe is similar to that of domestic livestock in some areas, and red deer could account for a significant percentage of the BTV-infection susceptible ruminant population in certain regions. High serum antibody prevalence has been found in red deer, and BTV RNA (BTV-1, BTV-4 and BTV-8) has been repeatedly detected in naturally infected European red deer by means of RT-PCR. Moreover, red deer may carry the virus asymptomatically for long periods. Epidemiological studies suggest that there are more BT cases in domestic ungulates in those areas where red deer are present. Vector and host density and environmental factors are implicated in the spatial distribution of BT. As in domestic ruminants, BTV transmission among wild ruminants depends almost exclusively on Culicoides vectors, mainly C. imicola but also members of the C. obsoletus and C. pulicaris complex. However, BTV transmission from red deer to the vector remains to be demonstrated. Transplacental, oral, and mechanical transmissions are also suspected. Thus, wild red deer contribute to the still unclear epidemiology of BTV in Europe, and could complicate BTV control in domestic ruminants. However, further research at the wildlife host-vector-pathogen interface and regarding the epidemiology of BT and BT vectors in wildlife habitats is needed to confirm this hypothesis. Moreover, red deer could be used as BT sentinels. Serum and spleen tissue of calves sampled from late autumn onwards should be the target samples when establishing a BTV surveillance program.  相似文献   

19.
Bluetongue virus (BTV) is a vector-borne disease of ruminants disseminated in the tropic and sub-tropic zone of the world. It is also an important problem in the Middle East. Three serotypes (4–9–16) of the virus have been isolated so far in Turkey. Gazella subgutturosa subgutturosa (Goitred Gazella) is native species of Anatolia. Due to risk of extinction, captured Gazelles have been taken under protection in a restricted area at Ceylanpinar state farm. In this study, the presence of Bluetongue virus (BTV) was investigated serologically in 82 Goitred Gazella, 684 sheep and 100 cattle. Seropositivity rates in Gazella, sheep and cattle were detected as 40.2%, 295% and 88%, respectively.  相似文献   

20.
Culicoides species (Diptera: Ceratopogonidae) belonging to the Obsoletus and Pulicaris groups are considered to be the main vectors of bluetongue virus (BTV) in non Mediterranean Europe. Selected terrestrial microhabitats (n = 17) on a farm in northern Spain were sampled repeatedly over a year-long period and characterized for use by Culicoides species for immature development. Concurrent use of CDC light traps showed the presence of 37 species and 66,575 specimens of adult Culicoides. A total of 28 species and 11,396 individuals emerged from laboratory-maintained soil samples. Culicoides obsoletus and Culicoides scoticus (pooled as Obsoletus complex) were particularly abundant (comprising 58.6% and 74.5% of the total collections in light traps and emergence traps respectively). Potential key vectors of animal viruses (such as BTV) were found in two main terrestrial types of microhabitats. In the case of C. obsoletus, different types of manure (old and composted manure, manure mixed with organic matter, and fresh manure) produced most of the specimens. In contrast, larvae of C. scoticus and Culicoides lupicaris were associated with soil substantially comprised of rotting leaf litter that included the parasitic plant Lathraea clandestina. Several species, Culicoides festivipennis, Culicoides punctatus and Culicoides brunnicans, were very common in mud at pond margins. Indeed, pond microhabitats and runoff below barn rooflines supported the greatest species richness. In the pond habitat, 49.4% of Culicoides specimens emerged from mud at the water edge, as opposed to 50 cm above (32.4%) and 1 meter above waterline (18%). Similar species richness, but statistically significant differences in abundance, were observed among the four pond microhabitats. Overall, the majority of the specimens were found in the upper layer (0–3 cm), except in manure, where they preferred deeper layers (>6 cm). Maximum peaks of abundance occurred in both light traps and soil samples in summer months, whereas increased captures in autumn were noticed only in light traps. Both trapping systems failed to collect adult Culicoides midges in the coldest months of December, January and February. The literature on immature habitats of species suspected in BTV transmission in Europe, the Pulicaris group and particularly the Obsoletus group, is briefly reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号