首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于高光谱的喀斯特地区典型农田土壤有机质含量反演   总被引:1,自引:0,他引:1  
【目的】利用高光谱数据定量反演喀斯特地区土壤有机质含量,为喀斯特地区快速、大范围、实时地监测土壤有机质含量提供更多的技术手段。【方法】利用机载高光谱成像系统和便携式地物光谱仪分别获取土壤光谱数据,基于原始光谱反射率和不同光谱变换数据,分析其与土壤有机质含量的相关性,以偏最小二乘法建立模型预测土壤有机质含量。【结果】2种数据源都可以用于土壤有机质含量预测,其中,基于ASD光谱一阶微分变换建立的模型预测精度较高,验证集决定系数(Rv~2)为0.910,相对分析误差(RPD)为2.68;基于GS光谱二阶微分变换建立的模型预测效果较好,验证集Rv~2为0.772,RPD为1.49。【结论】ASD光谱与GS光谱建模预测精度相差较大,ASD光谱客观条件影响较小、光谱波段更宽、光谱分辨率更高,具有更好的预测能力;低空无人机获取的GS光谱也具有一定的预测能力。  相似文献   

2.
基于最优模型的荒地土壤有机质含量空间反演   总被引:1,自引:0,他引:1  
本研究采用Landsat OLI多光谱遥感影像数据,结合实测土壤有机质含量,利用原始影像反射率(A)、反射率一阶微分(A')、反射率二阶微分(A″)建立单波段和多波段回归模型,估算研究区土壤有机质含量,反演其空间格局。结果显示,经微分处理后的影像反射率,与土壤有机质含量相关系数增大。其中A'处理后的遥感影像反射率与土壤有机质含量的相关系数达到-0.850,比原始的提高了0.401,增强了有机质的光谱信息。多波段回归建模效果优于单波段建模。且A'的多波段回归模型预测精度最好,其建模集R~2为0.80,RMSE为3.66,预测集R~2为0.79,RMSE为3.65,RPD为1.96,表明该模型精度高,误差最小,预测效果最优,可以很好地估算该区域的土壤有机质含量。基于一阶微分的多波段回归模型:SOM=23.12-470.94B3-24.35B4-43.06B6,对研究区的SOM含量空间分布格局进行反演,发现反演结果与实际情况吻合,因此,利用多波段回归模型能很好反演研究区SOM含量空间分布格局,表达其不同有机质含量的土壤空间分布与其对应的空间位置,这为土壤有机质面状参数的获取提供了快速而有效的方法。  相似文献   

3.
本文以钢城区2个丘陵村耕地土壤为研究对象,通过野外采样、自然风干、化验分析、高光谱测定及数据处理等,确定最佳高光谱变换方式并筛选显著性波段,建立随机森林(RF)、支持向量机(SVM)、偏最小二乘回归(PLSR)和多元逐步回归(SMLR)4种估测模型,对比分析确定最佳估测模型。结果表明:高光谱变换处理可以扩大光谱曲线特征,提高与机质含量的相关性;一阶微分R’为最佳高光谱变换方式,筛选出706、1002、1359、1415、1886、1914和2221 nm 7个波段作为估测土壤有机质含量的显著性波段;建立的4种估测模型中,RF模型精度最高,其训练样本集R~2和RPD分别达到0.93、3.13,验证样本集R~2和RPD为0.73、1.87。因此,研究构建的R’-RF土壤有机质含量高光谱估测模型可为该丘陵区有机质含量的快速监测提供参考。  相似文献   

4.
快速测定土壤重金属的含量,对防治土壤环境污染具有重要意义。本文以山东省烟台市的70个棕壤样本为研究对象,对室外光谱数据进行多种数学变换,根据极大相关性原则从光谱的一阶微分、对数倒数的一阶微分和倒数的一阶微分三种变换中选取5个波段作为反演因子,即:R_(1910.5)(一阶微分)、R_(674.1)(对数倒数的一阶微分)、R_(1609.4)、R_(1231.3)、R_(1127.3)(倒数的一阶微分),然后利用多元统计分析方法和BP神经网络方法分别建立土壤金属铬含量高光谱估测模型。实验结果表明,当利用多元统计分析方法建立估测模型时,14个检验样本的平均相对误差为4.906%,模型的决定系数R~2=0.971,其效果优于BP神经网络模型。研究表明,利用多元统计分析法建立土壤金属铬含量高光谱估测模型是有效的。  相似文献   

5.
为解决遥感技术在监测耕层土壤有机质方面的应用问题,利用表层土壤光谱对耕层土壤有机质含量进行估测。以山东省济南市章丘区的表层、耕层各76个土壤样本为研究对象,首先对表层光谱数据进行小波变换去噪、剔除异常样本等处理,然后对处理后的光谱反射率进行一阶微分等10种数学变换,在对数倒数一阶微分和对数一阶微分变换后的反射率数据中选取43个与土壤有机质含量相关系数较高的波段,通过主成分分析以累计贡献率大于90%的标准选取5个主成分作为反演因子,利用BP神经网络(BPNN)、支持向量机回归(SVR)和多元线性回归(MLR)方法建立耕层土壤有机质含量间接估测模型。结果表明,耕层土壤与表层土壤有机质含量之间决定系数R~2达到0.839,显著性P0.01,存在着较强的相关性BPN估测模型的精度最优,决定系数R~2为0.845,平均相对误差为7.642%,RMSE分别为1.622g·kg~(-1)。研究表明,利用表层土壤光谱信息间接估测耕层有机质含量是可行有效的,为耕层土壤有机质的估测问题提供了一种新思路。  相似文献   

6.
不同类型土壤的光谱特征及其有机质含量预测   总被引:17,自引:1,他引:17  
 【目的】构建适合土壤有机质含量估测的高光谱参数及定量反演模型。【方法】系统分析中国中、东部地区5种不同类型土壤风干样本有机质含量与350~2 500 nm波段范围高光谱反射率之间的关系,利用特征光谱参数和BP神经网络建立土壤有机质的定量估测模型。【结果】光谱一阶导数构成的两波段光谱参数与土壤有机质含量的相关性明显优于原始光谱,尤其采用Norris平滑滤波后导数光谱效果更好。光谱参数构成形式以差值指数最好,其次为比值和归一化指数。与土壤有机质含量相关程度最高的光谱参数是由可见光区554 nm和近红外区1 398 nm两个波段的一阶导数组合而成的差值指数DI(D554,D1398),两者呈显著指数曲线关系,拟合方程为y= 184.2 ×exp[-1297×DI(D554,D1398)],决定系数为0.90。经不同类型土壤的观测资料检验,模型预测决定系数为0.84,均方根误差RMSE为3.64,相对分析误差RPD为2.98,显示估测模型具有较好的预测精度。另外,利用BP神经网络结合偏最小二乘法(PLS)对导数光谱进行分析,提取贡献率达到99.56 %的前6个主成分建立了三层BP 神经网络模型,模型决定系数为0.98,经不同类型土壤的观测资料检验,模型预测决定系数为0.96,RMSE为2.24,相对偏差RPD为4.83。比较利用DI(D554,D1398)和BP网络进行土壤有机质含量的预测结果,前者精度低于后者,但可以满足土壤有机质监测的需要。【结论】利用差值光谱指数DI(D554,D1398)和BP神经网络模型均可实现对土壤有机质的精确估测。  相似文献   

7.
以托克托县境内120个土壤有机质含量以及对应光谱数据为数据源,探究了不同土壤类型与土地利用类型下土壤有机质高光谱反演研究的可行性,采用连续小波变换对原始光谱(R)、光谱倒数(1/R)、光谱对数(LnR)、光谱一阶微分(R′)进行分解生成小波系数并与土壤有机质进行相关系分析,提取特征波段建立BP神经网络与支持向量机模型(SVM)。结果表明:①R、1/R、LnR、R′与土壤有机质相关系数经过连续小波变换后,较之前增加了0.204、0.090、0.199、0.252,表明连续小波变换可深度挖掘光谱潜在信息,提升与有机质含量之间的相关系数。②未经过连续小波处理前,SVM无法实现对当地土壤有机质含量的预测,经过处理后,模型SVM-CWT-R与SVM-CWT-R′的精度决定系数分别达到了050、0.56,均方根误差为0.17、0.15,相对分析误差为1.62、1.53,实现了对土壤有机质的有效估算。③经过连续小波变换后BP神经网络预测模型结果得到提升,其中BP-CWT-LnR预测模型效果最佳,精度决定系数达到0.76,较之前BP-LnR提升了0.2;均方根误差达到015,降低0.04;相对分析误差为2.12,增加了0.87。因此利用BP-CWT-LnR高光谱反演模型进行区域土壤有机质遥感监测,可为当今精准农业提供理论参考与技术支持。  相似文献   

8.
土壤有机碳含量的高光谱估算,可快速、准确监测土壤肥力,为农业生产进行合理施肥提供科学依据。以博斯腾湖西岸湖滨绿洲为研究区,应用ASD FieldSpec3光谱仪测定表层土壤的高光谱反射率,采用重铬酸钾-外加热法测定表层土壤有机碳(SOC)含量;运用连续小波变换(CWT)分别对土壤高光谱反射率(R)及其一阶微分变换(R′)进行尺度分解,分析不同尺度分解后的数据与表层SOC含量的相关性,筛选敏感波段,分别建立偏最小二乘回归(PLSR)、随机森林(RF)和支持向量机(SVM)3种模型估算表层SOC含量。研究结果表明,土壤高光谱反射率与SOC含量呈负相关,经过一阶微分变换后,通过极显著性检验(P<0.01)的波段数由1 689个降低为227个,最大相关系数绝对值(|r|)由0.39提高至0.54;土壤高光谱数据CWT处理后,与表层SOC含量的相关性随分解尺度的增加呈现先增后降的趋势。R′-CWT-SVM模型估算效果最优,建模集和验证集R2分别为0.83和0.80,RMSE分别为5.24和3.56,RPD值为2.12,能够有效估算研究区表层SOC含量。  相似文献   

9.
【目的】为更快速准确地估算土壤全钾含量。【方法】本文以土壤高光谱数据和实验室分析所得的土壤全钾含量数据为数据源,研究土壤光谱与土壤全钾含量的关系。在土壤原始光谱预处理的基础上,对其进行光谱平滑、一阶微分、二阶微分和倒数对数等光谱变换处理,筛选出与对土壤全钾含量相关性最高的光谱指标,最终建立模型预测土壤全钾含量。【结果】基于一阶微分变换的光谱变量是估算土壤全钾含量的最佳光谱指标,其构建的土壤全钾高光谱反演模型(y=2E+06x~2+11328x+16.372)效果最佳,决定系数R~2为0.64,均方根误差RMSE为4.850 g/kg。【结论】利用该模型快速估算广东省土壤全钾含量是可行的。  相似文献   

10.
为实现对土壤有机质含量的快速监测,在对土壤有机质含量作倒数变换的同时将土壤高光谱数据进行多种数据变换处理,筛选出与土壤有机质含量倒数变换后相关性最高的光谱指标,最后构建了土壤有机质含量高光谱反演的最佳模型,实现对土壤有机质含量的反演。结果表明:估算土壤有机质含量的最佳光谱指标为反射率一阶微分波段组合R_((587,126)*R_((734,049))*R_((1 095,892)),相关系数为0.769;在此基础上构建的土壤有机质含量高光谱反演模型最佳(Y=5×10~(16)x~3-5×10~(10)x~2+59 471.000 0x+0.101 1),其决定系数R~2为0.65,均方根误差(RMSE)为0.040 mg/kg。将其验证样本预测值与实测值进行比较,平均相对误差为27.00%,RMSE为4.19 mg/kg。该验证结果证明利用该模型进行华南地区土壤有机质含量的快速监测是可行的。  相似文献   

11.
叶绿素含量是绿色植物生长状态的一个重要指标。首先在实验室采集玉米叶片高光谱数据和测定叶绿素含量,并对光谱数据进行对数一阶微分变换,对比选取建模反演因子。根据选定的反演因子采用线性回归、模糊识别和BP神经网络方法建立了玉米叶片叶绿素含量高光谱反演模型,并计算出模型的精度。结果表明,有较好非线性映射能力的BP神经网络反演模型能够高精度地反演出玉米叶片中的叶绿素含量。BP神经网络模型叶绿素含量预测和实测叶绿素含量的平均绝对误差(e)为1.126,决定系数(R2)为0.902,均方根误差(RMSE)为1.375。玉米叶片叶绿素含量与高光谱数据并非线性关系,BP神经网络反演模型能够较好地运用到叶片叶绿素含量反演中。  相似文献   

12.
对高光谱数据进行预处理是提升高光谱建模精度十分必要且有效的途径。利用高光谱技术分析春小麦作物光谱及其叶绿素含量的变化,对原始光谱反射率及对应的对数、倒数、平方根、对数倒数等4种数学变换及其一阶、二阶微分进行预处理运算,分析春小麦叶片叶绿素含量与预处理后的光谱数据相关性,基于选取的敏感波段对春小麦抽穗期叶绿素含量进行偏最小二乘回归法、BP神经网络2种方法建模并进行模型验证及比较。结果表明:对原始光谱数据数学变换的微分预处理可以明显提高春小麦叶片叶绿素含量与光谱反射率的相关性;通过显著性检验的敏感波段数量经一阶、二阶微分预处理呈现明显增加趋势,对应数学变换的波段数量有所不同;对数变换的二阶微分处理所建立的PLSR模型为最优模型,该模型精度参数为决定系数R■=0.93,校正均方根误差RMSE_c=2.53,预测决定系数R~2_p=0.91,预测均方根误差RMSE_p=2.41,相对分析误差RPD=3.20。说明数学变换的微分预处理过后的模型精度和稳健性有了大幅度的提升,并且运用在高光谱遥感反演春小麦抽穗期叶片叶绿素含量上是可行的。  相似文献   

13.
牛奶中蛋白质含量的检测关系到牛奶品质的高低及牛奶的口感状况,试验对牛奶蛋白质含量进行研究,利用高光谱成像系统获取试验数据实现对牛奶蛋白质含量的无损检测。本文通过使用基线校正、散射校正、平滑处理和尺度缩放4个方向的8种光谱预处理算法分别对光谱进行单一方法优化,以及利用0.1阶微分为步长进行0~0.9阶分数阶微分(factional order differerntial,FOD)的数学变换,并分别使用偏最小二乘法(partial least squares,PLS)、随机森林(random forest,RF)和反向传播算法(back propagation,BP)分别对上述处理后的17种预处理结果进行建模。结果表明,采用RF的0.2阶微分建立的牛奶蛋白质含量反演模型预测精度最高,测试集的决定系数R2=0.999 8,均方根误差RMSE=0.003 1,相对分析误差RPD=85.110 9。研究为进一步实现牛奶蛋白质含量精准检测提供了参考依据。  相似文献   

14.
蜜柚叶片磷素(phosphorus,P)含量是准确诊断和定量评价生长状况的重要指标,为快速、无损、精确地估测磷素含量,需要建立蜜柚叶片磷素含量高光谱估算模型。基于蜜柚叶片高光谱数据和磷素含量实测数据,提取原始光谱及一阶微分光谱特征波段和光谱特征变量,构建单变量估算模型、偏最小二乘回归模型和BP神经网络回归模型,并确定蜜柚叶片磷素含量最佳估算模型。在350~1 050 nm波段,原始光谱和一阶微分光谱与叶片磷素含量在可见光范围内有多波段相关性显著,并出现多个极值。原始光谱敏感波长为549和718 nm,一阶微分的敏感波长为528、703和591 nm。在建立的回归模型中,选择决定系数较高的模型进行精度检验,其中BP神经网络模型的拟合R2(0.775 9)最大,偏最小二乘估算模型的拟合R2(0.749 9)次之。综合建模精度和模型检验精度,确定BP神经网络模型为蜜柚叶片磷含量的最佳估算模型,建模和验证的R2分别为0.71和0.775 9;其次为偏最小二乘估算模型,建模和验证的R2分别为0.64和0.74...  相似文献   

15.
【目的】随着工业发展和城市化推进,土壤重金属不断富集,污染范围迅速扩大,及时精准掌握土壤重金属分布和含量至关重要。通过高光谱数据处理分析和估算方法优化,结合植被指数,增加特征因子数量,提高建模预测精度,为鄱阳湖滨湖区耕地土壤质量监测和农业生产提供技术支撑。【方法】以珠海一号高光谱遥感卫星影像和采样点土壤Cr含量检测数据为基础,对原始土壤反射光谱数据进行一阶微分(FD-R)、二阶微分(SDR)、对数(LogR)和对数一阶微分(LogR-FD)变换,分析土壤Cr含量与光谱变量及植被指数之间的相关性,从而确定土壤特征光谱组合;利用偏最小二乘回归模型(partial least square regression,PLSR)和支持向量机模型(support vector machine,SVM)进行土壤Cr含量的预测建模,对建模集和验证集进行模型精度和稳定性分析;根据模型精度对比分析,确定预测的最佳光谱变换、植被指数组合及预测模型。【结果】(1)土壤原始反射光谱、经FD-R、SD-R、LogR和LogR-FD变换后的反射光谱与Cr含量相关系数在b1-b18波段整体上高于b19-b32波段。经L...  相似文献   

16.
快速监测土壤重金属污染程度,对发展精细农业、保障食品安全和社会经济可持续发展具有重要意义。本文基于山东省烟台市的70个土壤样本数据,首先分析了土壤重金属镍的分组光谱特性;对土壤光谱反射率进行一阶微分、倒数的一阶微分、对数的一阶微分等六种变换并计算出光谱反射率变换值与土壤镍含量的相关系数,根据极大相关性原则选取光谱特征;然后建立基于BP神经网络的土壤重金属镍含量光谱估侧模型;并利用其它2种建模方法对镍含量进行建模,验证BP神经网络模型的有效性。结果表明,土壤光谱反射率随镍含量的升高而降低,呈现负相关性;以(1/R1015)′、(1/R2286)′、(1/ln(R925))′和(1/ln(R1911))′为估测因子,所建镍含量估侧模型的决定系数为R2=0.912,平均相对误差为14.279%。研究表明,利用高光谱技术定量估测土壤镍含量是可行的。  相似文献   

17.
针对目前干旱半干旱区存在的土壤盐渍化问题,以新疆维吾尔自治区渭干河-库车河三角洲绿洲为研究区,对土壤样品总盐含量及其光谱反射率进行测量。经过15种数学变换,遴选出达到0.01显著性检验的变换形式,利用偏最小二乘回归、主成分回归和多元逐步线性回归方法建立土壤盐分的估算模型。结果表明,(1)多种光谱数据变换形式中,以微分为基础的变换方法具有很好的效果;(2)基于多元逐步线性回归的立方根一阶微分光谱特征波段所构建的模型最优,模型的稳定性和预测精度最高,R2=0.85,RMSEc=1.8 g/kg,RPD=2.36。本研究所建立的模型将为估算土壤盐渍化提供理论依据。  相似文献   

18.
【目的 】结合分数阶微分和异常值识别,提高土壤有机质模型反演精度,实现土壤有机质含量的快速、准确估计。【方法 】文章以吉林省伊通县黑土区为研究区,基于实地采集的213个土壤样本和HyMap-C机载高光谱传感器获取高光谱影像,选择S-G函数和分数阶微分进行光谱预处理,竞争性自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)提取特征波段建立土壤有机质含量偏最小二乘回归(Partial Least Squares Regression,PLSR)反演模型,并使用蒙特卡洛交叉验证(Monte Carlo Cross-Validation,MCCV)进行异常值识别。【结果 】(1)将分数阶微分用于机载高光谱可以放大光谱特征,阶数越高、特征越明显,低阶分数微分对噪音不敏感;(2) CARS方法能有效压缩光谱信息;全样本建模中0.4阶分数阶微分CARS-PLSR建模表现较优,但总体精度仍然不高;(3)使用MCCV剔除异常值后,0.6阶分数阶微分CARS-PLSR建立的土壤有机质含量反演模型精度最高,训练集和测试集的均方误差分别为0.219%...  相似文献   

19.
针对土默川平原地区的土壤盐分含量提出了偏最小二乘与随机森林相结合(RF-PLSR、PLSR-RF)对土壤盐分含量进行预测的回归反演模型.该研究共采集45份土壤样本,随机选取35份为建模集,10份为验证集.试验首先对采集到的高光谱土壤图像进行分割处理提取出土壤在400~1000 nm的原始反射光谱,其次对原始反射光谱进行4种光谱变换(一阶微分、多元散射校正的一阶微分、SG平滑去噪的一阶微分、对数的一阶微分),并与土壤的实测盐分量进行相关性分析(CA),利用相关系数选取敏感波段,最后建立偏最小二乘与随机森林结合的回归反演模型.结果表明,与偏最小二乘回归、随机森林回归单独建模相比,2种模型结合后的预测精度有明显的改善.光谱经过对数的一阶微分变换建立的PLSR-RF反演模型更为明显,其建模集决定系数Rc 2为0.852,均方根误差RMSEc为0.102 g/kg,相对分析误差RPDc为2.600,验证集决定系数Rv 2为0.941,均方根误差RMSEv为0.049 g/kg,相对分析误差RPDv为4.117.  相似文献   

20.
为了探寻快速、准确估测土壤有机质含量的方法以推动精准农业化进程,以北疆绿洲农田灰漠土为研究对象,通过野外实地调查收集土壤样品,室内化学分析测得土壤样品有机质含量,暗室内利用SVC HR-768高光谱仪测定土壤样品光谱反射率。通过对土壤光谱反射率进行倒数、对数、一阶微分、倒数的一阶微分、对数的一阶微分变换,运用单相关分析法提取土壤光谱特征波段,采用多元逐步方法对土壤有机质含量定量反演,分析研究土壤有机质含量和室内土壤光谱的特征关系。结果表明,在波长567、1 697 nm和2 221 nm处,采用反射率对数的一阶微分建立的土壤有机质含量反演模型预测精度最高,模型决定系数达到0.82。北疆绿洲农田灰漠土土壤有机质含量高光谱反演模型的建立为土壤有机质的快速测定提供了新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号