首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To compare release treatments, a randomized complete block study was established in a 7-year-old hardwood-loblolly pine (Pinus taeda L.) stand in central Louisiana established using chopping and burning. There were 5 blocks of 3 treatments each: (1) check, (2) hexazinone applied once, and (3) prescribed backfiring applied twice. The first burn in December 1985 (7 years after site preparation) had a fire intensity of 90 kJ/s/m. The hexazinone herbicide was applied in April 1986 (the 8th year after site preparation) with a metered spotgun applicator at a rate of 3.0 kg active ingredient/ha. The second burn in March 1989 (the 11th year after site preparation) had a fire intensity of 106 kJ/s/m.The two prescribed burns increased the number of stems less than 1.5 m tall from 1,380 to 2,960/ha red maple (Acer rubrum L.), blackgum (Nyssa sylvatica var. bifora), and sweetgum (Liquidambar styraciflua L.). Burning reduced the number of loblolly pines less than 2.0 m tall, which resulted in a significant increase in average loblolly pine height and diameter. Loblolly pine comprised 62 and 59% of the basal area on the check and burn treatments, respectively, 11 years after site preparation. Hexazinone reduced the number of blackgum, sweetgum, and oak (Quercus spp.) from 6,100 to 4,560 stems/ha and resulted in significantly less hardwood tree basal area than found on the check or burn treatments. Therefore, the herbicide treatment resulted in principally a loblolly pine stand (over 80% of the total tree basal area was pine) four years after hexazinone application.  相似文献   

2.
Soil drainage characteristics in winter and the heights and diameters of 10-year-old loblolly and slash pines (Pinus taeda L. and P. elliottii Engelm. var. elliottii) were measured on three poorly-drained silt loam sites that had been bedded, furrowed, or disked before planting. Quadratic response functions were used to determine the relationship between depth to water table or volume of drained soil in winter and mean tree height or diameter. These quadratic response functions (species × height or diameter: drainage characteristics) showed that diameter and height were significantly related to soil drainage in winter on these silt loams soils. Slash pines grew better than loblolly pines under more poorly drained conditions while loblolly pines grew better under the better drained conditions. On unbedded silt loams, the soil drainage in winter needed to maximize tree height was 42 cm for loblolly and 49 cm for slash pine. Pines planted on beds did not generally grow better than those on flat-disked plots because where bedding would be most benefical the practice did not form enough additional drainage to significantly influence pine development.  相似文献   

3.
Abstract

Acute (broken and leaning) and transient (bending) damage to loblolly pine (Pinus taedaL.) were assessed in a case study of experimental agroforestry plantations following a December 2000 ice storm. Stand ages were 7-, 9-, and 17-years-old and tree density ranged from 150 to 3,360 trees ha?1 in rectangular and multi-row configurations. Wider tree spacing or lower stand density of 7-year-old trees increased stem breakage, while closer spacing increased bending. There was substantial straightening of bent 7-year-old trees 8 months after the storm, and this recovery was determined more by degree of initial bend rather than height or diameter. Nine-year-old loblolly pine had 19% more top breakage and 59% more stem breakage than shortleaf pine (P. echinataMill.) (P < 0.001). Agroforestry design influenced ice damage in 7-year-old stands, but no design had catastrophic loss. Thinning from above caused an increased susceptibility of ice damage to a 17-year-old stand compared to a nonthinned stand. The case study supports the cultivation of loblolly pine in areas prone to ice damage.  相似文献   

4.
Conventional planted okra in Booneville, Arkansas and Lorman, Mississippi were mulched with loblolly pine straw (Pinus taeda L.) and longleaf pine straw (P. palustris Mill.), respectively, at a rate of 11 t/ha or left bare. At Booneville, plant stand, season yields (18.6 t/ha), pod weight (16.3 g), plant dry weight (2.3 kg), or stem diameter (3.5 cm) were not affected by the loblolly pine mulch. However, mulch application increased pod number (1.22 vs. 1.06×106/ha) and plant height (1.5 vs. 1.6 m), while reducing weed competition (0.05 vs. 0.40 t/ha) and visible plant stress, during periods of soil moisture deficits. Soil temperatures at 5 and 15 cm depth were reduced by mulch until mid-August when plant canopies covered the rows. Seasonal moisture at 30 and 45 cm depths was similar between mulched and bare soils, based upon unreplicated neutron probe measurements. At Lorman, season okra yield (29.8 vs. 24.6 t/ha), number of pods per ha (1.24 vs. 1.07×106) and weed competition were reduced and soil pH lowered 0.56 units by longleaf pine straw mulch. Mulch reduced early season yield at both locations.  相似文献   

5.
We quantified the effect of water and nutrient availability on aboveground biomass and nitrogen accumulation and partitioning in four species from the southeastern United States, loblolly pine (Pinus taeda), slash pine (Pinus elliottii), sweetgum (Liquidambar styraciflua), and sycamore (Platanus occidentalis). The 6-year-old stands received five levels of resource input (control, irrigation with 3.05 cm water week−1, irrigation + 57 kg N ha−1 year−1, irrigation + 85 kg N ha−1 year−1, and irrigation + 114 kg N ha−1 year−1). Irrigation significantly increased foliage, stem, and branch biomass for sweetgum and sycamore, culminating in 103% and 238% increases in total aboveground biomass. Fertilization significantly increased aboveground components for all species resulting in 49, 58, 281, and 132% increases in total aboveground biomass for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Standing total aboveground biomass of the fertilized treatments reached 79, 59, 48, and 54 Mg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased foliar nitrogen concentration for loblolly pine, sweetgum, and sycamore foliage. Irrigation increased total stand nitrogen content by 6, 14, 93, and 161% for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased total nitrogen content by 62, 53, 172, and 69% with maximum nitrogen contents of 267, 212, 237, and 203 kg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Growth efficiency (stem growth per unit of leaf biomass) and nitrogen use efficiency (stem growth per unit of foliar nitrogen content) increased for the sycamore and sweetgum, but not the loblolly or slash pine.  相似文献   

6.
The Southeastern United States has a robust broiler industry that generates substantial quantities of poultry litter as waste. It has historically been applied to pastures close to poultry production facilities, but pollution of watersheds with litter-derived phosphorus and to a lesser extent nitrogen have led to voluntary and in some areas regulatory restrictions on application rates to pastures. Loblolly pine (Pinus taeda L.) forests are often located in close proximity to broiler production facilities, and these forests often benefit from improved nutrition. Accordingly, loblolly pine forests may serve as alternative land for litter application. However, information on the influence of repeated litter applications on loblolly pine forest N and P dynamics is lacking. Results from three individual ongoing studies were summarized to understand the effects of repeated litter applications, litter application rates, and land use types (loblolly pine forest and pasture) on N and P dynamics in soil and soil water. Each individual study was established at one of three locations in the Western Gulf Coastal Plain region. Annual applications of poultry litter increased soil test P accumulation of surface soils in all three studies, and the magnitude of increase was positively and linearly correlated with application rates and frequencies. In one study that was established at a site with relatively high soil test P concentrations prior to poultry litter application, five annual litter applications of 5 Mg ha−1 and 20 Mg ha−1 also increased soil test P accumulation in subsurface soils to a depth of up to 45 cm. Soil test P accumulations were greater in surface soils of loblolly pine stands than in pastures when both land use types received similar rates of litter application. In one study which monitored N dynamics, lower soil organic N, potential net N mineralization, potential net nitrification, and soil water N was found in loblolly pine stands than pastures after two annual litter applications. However, increases in potential net N mineralization, net nitrification, and soil water N with litter application were more pronounced in loblolly pine than in pasture soils. Loblolly pine plantations can be a viable land use alternative to pastures for poultry litter application, but litter application rate and frequency as well as differences in nutrient cycling dynamics between pine plantations and pastures are important considerations for environmentally sound nutrient management decisions.  相似文献   

7.
对福建省宁化县20年生的火炬松与马尾松混交试验林的生长量进行调查分析,结果表明:在相同立地因子和相同经营措施条件下,火炬松与马尾松混交林的生长量与火炬松纯林、马尾松纯林的生长量间具有极显著差异。在不同混交方法中,以带状混交林的生长量最大,林分总蓄积量达166.023 m3.hm-2;块状混交林次之;株间混交林最小。在不同混交比例中,以火炬松∶马尾松=8∶2混交林和火炬松纯林的生长量较高,林分总蓄积量分别达164.277 m3.hm-2和161.217 m3.hm-2,马尾松纯林的生长量最小。  相似文献   

8.
The effects of mulching with perforated black plastic, in combination with fertilization and induced mycorrhizal symbioses, on the growth of loblolly pine (Pinus taeda L.) and yellow-poplar (Liriodendron tulipifera L.) were studied in a plantation under intensive, short rotation management. Mulching effects on soil temperature were also examined in order to assess the potential influence of this treatment on temperature-dependent processes in soils affecting tree growth. Mulching significantly increased height and stem diameter growth of both species, attributable largely to improved water relations resulting from diminished soil surface evaporation and elimination of transpirational losses from competing vegetation. Mulching effects on soil temperature were insufficient to contribute substantially to the growth response exhibited by mulched trees. Multiple applications of urea-N promoted enhanced growth in both loblolly pine and yellow-poplar, an effect accentuated by mulching, but the field performance of trees inoculated in the nursery with selected mycorrhizal fungi was poor relative to that of the other treatments investigated.  相似文献   

9.
Diversity of understory vegetation was compared among four intensities of site preparation and an adjacent 50-year-old pine-hardwood forest. The study site was a six-year-old loblolly pine (Pines taeda) plantation in the lower Piedmont of Georgia. Species richness and Shannon diversity indices were used to evaluate vine and woody (trees and shrubs) species diversity. Biomass distribution was compared among four plant categories: vines, forbs, grasses, and woody. Moderate intensity treatments (chainsaw and shear and chop) consistently ranked highest overall in diversity, with the mature pine-hardwood forest ranking lowest. Distribution of the four plant categories was not significantly affected by intensity of site preparation.Alabama Agricultural Experiment Station Series No. 9-892325P.  相似文献   

10.
Carbon allocation to soluble phenolics (total phenolics, proanthocyanidins (PA)) and total non-structural carbohydrates (TNC; starch and soluble sugars) in needles of widely planted, highly productive loblolly pine (Pinus taeda L.) genotypes could impact stand resistance to herbivory, and biogeochemical cycling in the southeastern USA. However, genetic and growth-related effects on loblolly pine needle chemistry are not well characterized. Therefore, we investigated genetic and growth-related effects on foliar concentrations of total phenolics, PA and TNC in two different field studies. The first study contained nine different genotypes representing a range of genetic homogeneity, growing in a 2-year-old plantation on the coastal plain of North Carolina (NC), USA. The second study contained eight clones with different growth potentials planted in a 9-year-old clonal trial replicated at two sites (Georgia (GA) and South Carolina (SC), USA). In the first study (NC), we found no genetic effects on total phenolics, PA and TNC, and there was no relationship between genotype size and foliar biochemistry. In the second study, there were no differences in height growth between sites, but the SC site showed greater diameter (diameter at breast height (DBH)) and volume, most likely due to greater tree mortality (lower stocking) which reduced competition for resources and increased growth of remaining trees. We found a significant site?×?clone effect for total phenolics with lower productivity clones showing 27-30% higher total phenolic concentrations at the GA site where DBH and volume were lower. In contrast to the predictions of growth-defense theory, clone volume was positively associated with total phenolic concentrations at the higher volume SC site, and PA concentrations at the lower volume GA site. Overall, we found no evidence of a trade-off between genotype size and defense, and genetic potential for improved growth may include increased allocation to some secondary metabolites. These results imply that deployment of more productive loblolly pine genotypes will not reduce stand resistance to herbivory, but increased production of total phenolics and PA associated with higher genotype growth potential could reduce litter decomposition rates and therefore, nutrient availability.  相似文献   

11.
Equations predicting biomass of components of sawtimber-size trees in a near-maturity loblolly pine (Pinus taeda L.) plantation were compared to similar equations for an uneven-aged natural loblolly pine stand. Combined analysis of the two sites revealed that curves estimating total tree, stem wood, stem bark, branches, and foliage + branches weights were significantly different, while curves predicting biomass for total stem and foliage were similar. Biomass equations differ because of variations in tree component ratios and taper associated with site and stand conditions.  相似文献   

12.
Changes in biomass and soil carbon with nitrogen fertilization were simulated for a 25-year loblolly pine (Pinus taeda) plantation and for three consecutive 7-year short-rotation cottonwood (Populus deltoides) stands. Simulations were conducted for 17 locations in the southeastern United States with mean annual temperatures ranging from 13.1 to 19.4 °C. The LINKAGES stand growth model, modified to include the “RothC” soil C and soil N model, simulated tree growth and soil C status. Nitrogen fertilization significantly increased cumulative cottonwood aboveground biomass in the three rotations from a site average of 106 to 272 Mg/ha in 21 years. The equivalent site averages for loblolly pine showed a significant increase from 176 and 184 Mg/ha in 25 years with fertilization. Location results, compared on the annual sum of daily mean air temperatures above 5.5 °C (growing-degree-days), showed contrasts. Loblolly pine biomass increased whereas cottonwood decreased with increasing growing-degree-days, particularly in cottonwood stands receiving N fertilization. The increment of biomass due to N addition per unit of control biomass (relative response) declined in both plantations with increase in growing-degree-days. Average soil C in loblolly pine stands increased from 24.3 to 40.4 Mg/ha in 25 years and in cottonwood soil C decreased from 14.7 to 13.7 Mg/ha after three 7-year rotations. Soil C did not decrease with increasing growing-degree-days in either plantation type suggesting that global warming may not initially affect soil C. Nitrogen fertilizer increased soil C slightly in cottonwood plantations and had no significant effect on the soil C of loblolly stands.  相似文献   

13.
[目的]研究不同强度采伐下马尾松的生长动态,筛选适宜的采伐强度,为马尾松人工林近自然经营提供技术支撑。[方法]2007年10月在14年生马尾松人工林(保存密度1 100株·hm~(-2))内进行采伐试验,设置4个采伐强度,即保留密度分别为225、300、375、450株·hm~(-2),以不采伐为对照;其后,自2008年开始连续8 a,每2 a测定1次马尾松的胸径、树高、枝下高和冠面积等生长指标,并计算单株材积和林分蓄积量,应用方差分析和Duncan多重比较分析生长指标对不同采伐强度的动态响应。[结果]表明:采伐强度显著影响林分生长,其中,林分平均胸径、单株材积、冠面积的年均增长量随保留密度增大而减小,但均显著高于对照(P0.05)。采伐后第1 3年,马尾松冠面积增长量显著高于采伐后期,胸径则在采伐后第3 5年最高,而不同采伐强度对林分树高生长影响不明显。保留密度显著影响林分枝下高和蓄积量的动态变化,其年均增长量随密度增大而递增。5个处理间林分蓄积年均增长量的差异随林龄的增大而逐渐缩小。[结论]马尾松人工林生长对不同强度采伐的动态响应以树冠最敏感,冠面积首先陡然增大,进而引起胸径的快速生长。树高和枝下高在采伐后年均增量变化相对平稳。4个采伐强度均显著促进单株材积生长,而仅保留密度为225株·hm~(-2)的采伐对林分蓄积增长量影响显著。综合比较林分的单株材积和林分蓄积连年增长量,建议在桂西南15年生马尾松人工林近自然经营中宜选择300株·hm~(-2)的保留密度进行采伐。  相似文献   

14.
Summary The yield level of a stand of a given species expresses quantatively the potentiality of a site to produce wood. The General Yield Level is defined as the relative total production per unit area for a given mean-or top height. The so-called Specific Yield Level specifies the variation in the total volume production of stands of a given age and site quality class. The author’s studies in stands of scots pine reveal that the total volume production in stands of a given height varies as much as 20%. Yield levels above the average are found on dry sites, those below the average on loamy soils with a high soil water level.Assmann’s studies in spruce stands, however, revealed the occurrence of relatively high yield levels on loamy soils with a favourable soil moisture regime. In addition to soil moisture regime, the yield level of a stand is affected by the duration of the growing season and by rooting habits of the species.   相似文献   

15.
A study was initiated in 1994 to evaluate the effects of bedding timing and frequency and pre-plant herbicide application, with and without post-plant herbaceous weed control, on growth of three slash pine (Pinus elliottii Engelm.) plantations and one loblolly pine (Pinus taeda L.) plantation on flatwoods sites. Site preparation treatments included early bedding alone, late bedding alone, double bedding, early bedding plus banded pre-plant herbicide, and early bedding plus broadcast pre-plant herbicide. Each site preparation treatment was tested with and without a first-year post-plant herbicide application for herbaceous weed control (HC). Results ranging from age 5 to 11 are reported, depending on installation. Pine growth following late bedding alone was similar or greater than that with early bedding alone. Double bedding did not consistently increase pine growth as compared with single bedding alone. Early bedding plus either broadcast or banded pre-plant herbicide application generally exhibited greater pine growth than did bedding alone treatments or bedding plus post-plant herbaceous weed control treatments. Broadcast pre-plant herbicide application resulted in similar or greater growth than banded pre-plant herbicide application. Post-plant herbaceous weed control improved loblolly pine growth across all site preparation regimes on the one test location. For slash pine plantations evaluated, post-plant herbaceous weed control resulted in significant growth increases on some but not all sites. The differences in growth response to bedding and pre- and post-plant herbicide applications are discussed in relation to treatment efficacy in controlling woody shrub and herbaceous competing vegetation. Effective bedding and chemical site preparation reduces the need for post-plant herbicide applications for slash pine on certain sites. Good site preparation, including the application of herbicides for competition control, is essential for fast growing slash and loblolly pine plantations in the flatwoods.  相似文献   

16.
Management of subterranean clover (Trifolium subterraneum L.) understory grown with loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) resulted in differences in both clover yield and pine diameter. Loblolly and slash pines were planted into a subterranean clover pasture in 1984. Suppression of warm season herbaceous vegetation by applying herbicides or disking the site in late summer resulted in significantly greater subterranean clover production than on the control site where no additional understory management was applied. Pine species had no effects on clover yield. The N content of the pine foliage on the blocks managed with herbicide application or disking generally was significantly greater than the control from the 5th through 7th growing seasons (1988–1990). The dbh of the pine trees in the disked and herbicide treatments was greater than the control after the 7th growing season (1990).  相似文献   

17.
Tree improvement programs on loblolly pine (Pinus taeda) in the southeastern USA has focused primarily on improving growth, form, and disease tolerance. However, due to the recent reduction of design values for visually graded southern yellow pine lumber (including loblolly pine), attention has been drawn to the material quality of genetically improved loblolly pine. In this study, we used the time-of-flight (TOF) acoustic tool to assess the effect of genetic families on diameter, slenderness, fiber length, microfibril angle (MFA), velocity and dynamic stiffness estimated using green density (DMOEG) and basic density (DMOEB) of 14-year-old loblolly pine stands selected from two sites. All the 184 and 204 trees of the selected eight half-sib genetic families on sites 1 and 2 respectively were tested using TOF acoustic tool, and two 5 mm core samples taken at breast height level (1.3 m) used to for the anatomical and physical properties analysis. The results indicated a significant positive linear relationship between dynamic MOEs (DMOEG and DMOEB) versus tree diameter, slenderness, and fiber length while dynamic MOEs negatively but nonsignificant correlated with MFA. While there was no significant difference in DMOEB between sites; velocity2 for site 1 was significantly higher than site 2 but DMOEG was higher for site 2 than site 1. Again, the mean DMOEG and DMOEB reported in the present study presents a snapshot of the expected static MOE for green and 12% moisture conditions respectively for loblolly pine. Furthermore, there were significant differences between families for most of the traits measured and this suggests that forest managers have the opportunity to select families that exhibit the desired fiber morphology for final product performance. Lastly, since the dynamic MOE based on green density (DMOEG), basic density (DMOEB) and velocity2 present difference conclusions, practitioners of this type of acoustic technique should take care when extrapolating results across the sites.  相似文献   

18.
Intensively managed loblolly pine (Pinus taeda) forests are common in the southeastern United States and offer opportunities for conservation of biologic diversity. Within intensively managed landscapes, stand establishment relies on combinations of mechanical and chemical site preparation and herbaceous weed control (HWC) to manage competing vegetation and increase pine production. However, few long-term studies have described relationships between intensity of stand establishment and effects on plant communities. Therefore, we examined effects of 6 treatments that varied in intensity via combinations of mechanical (wide spacing and strip shear or narrow spacing and roller chop) and chemical (application or no application) site preparation treatments with HWC (broadcast or banded) from 1 to 8 years after site preparation on plant communities in loblolly pine plantations (n = 6) in the Coastal Plain of North Carolina, USA. All treatments resulted in abundant and diverse plant communities. Chemical site preparation had short lived (?4 year) effects on the herbaceous community but long-term effects on woody plants and pine cover. Increasing management intensity by including broadcast HWC or roller chop/narrow spacing did not additively reduce woody vegetation cover or species richness. However, broadcast HWC reduced grass, vine, and forb cover in the first year post-treatment. Average Morista community similarity values ranged from 0.69 to 0.89 among treatments and plots receiving the same chemical site preparation contained the most similar plant communities. Banded HWC can be paired with wide spacing to maximize herbaceous plant growth important for many wildlife species, particularly in the first few years after site preparation. Site preparation techniques should be tailored to local site conditions, plant communities, and management objectives.  相似文献   

19.
Soil inorganic N is one of the most important soil quality indexes, which may be influenced by land-use change. The historical conversion of land-use from native vegetation to agriculture resulted in sharp declines in soil N dynamics. This study was conducted to determine the soil inorganic N concentrations and net N mineralization rate in four common types of land-uses in the mountain forest area in the north of Iran, namely arable land, pine plantation, ash plantation, and beech stand. The soil samples were taken from top mineral soil layer (5cm) in each site randomly (n=6) during August- September 2010. Beech stand and ash plantation showed significantly higher total nitrogen compared with arable land and pine plantation, while extractable NH 4 + -N concentration was significantly greater in Beech stand compare to arable soils (p<0.05). No significantly difference was found in Net N mineralization, net nitrification and net ammonification rates among different land-uses. Results showed that net N mineralization and ammonification were occurred just in the soil of Ash plantation during the incubation time. Our findings suggested that conversion of Hyrcanian forests areas to pine plantation and agricultural land can disrupt soil natural activities and affect extremely soil quality.  相似文献   

20.

? Background

A culture/density study was established in 1995 in the Lower Coastal Plain of the southeastern USA to evaluate the effects of intensive silviculture and current operational practices on the growth and yield of loblolly pine plantations across a wide range of planting densities (741–4,448 trees/ha). The operational regime consisted of bedding and herbicide application in site preparation and fertilizer applications at planting and in the eighth and 12th growing seasons. The intensive management regime had additional complete competition control, tip moths control, and more repeated fertilization treatments.

? Methods

The data from 14 locations from this split-plot experiment design with repeated measurements were analyzed with a mixed-effects model approach in terms of average DBH, average height, average dominant height, survival, stand basal area, and stand volume.

? Results

In the first few years after planting, there were no significant effects of management intensity and planting density. In later years, both management intensity and planting density significantly impacted response variables, and their interaction was only significant for average diameter at breast height (DBH). Responses to intensive management in DBH were greatest at the lowest planting densities. Intensive management resulted in larger average DBH, average height, dominant height, stand basal area, and volume. Intensively managed plots had more mortality at age 12. There were negative average DBH, average height, dominant height, and survival responses but positive stand basal area and volume responses to increasing planting density. However, there were no significant differences for planting densities above 2,224 trees/ha.

? Conclusions

The results demonstrate that both management intensity and planting density significantly affect loblolly pine productivity in the Lower Coastal Plain, and their effects are additive in nature due to the general lack of interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号