首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

2.
Heavy metal content of roots and shoots of vines (Vitis vinifera L.) after fertilization with garbage-sewage-sludge-compost The enrichment of Zn, Cu, Pb, Cd, Co, Ni and Cr from garbage-sewage-sludge-compost in vineyard soils, vines and must was studied in field-and pot-experiments. The following results were obtained: 1. In a field experiment, in which garbage-sewage-sludge-compost was applied, a marked soil enrichment of Zn, Cu, Pb, Cd and Cr was found. It was most evident at the 0–20 cm depth but also obvious at the 40–60 cm depth thus indicating downward migration. The soil was not enriched with Co and Ni. The heavy metal content of leaves, berries and must of riesling vines did not increase on the plots treated with garbage-sewage-sludge-compost. 2. In a pot trial, using an acid and an alkaline soil each mixed with garbage-sewage-sludge-compost, it was observed that only the uptake of Zn and Cu increased into the leaves, tendrils and wood of the riesling cuttings. In relation to the content of the substrate, the heavy metals were detected in the roots percentually in the following order: Cu, Cd > Zn > > Pb, Co, Ni, Cr The root contents were mostly substantially higher than those of the shoot. The migration from root to shoot decreased in the following percentual order: Zn > Cu > Cd, Pb 3. The heavy metal content decreased considerably from the roots to the upper plant organs. This was reflected in low concentrations of heavy metals in the vine must.  相似文献   

3.
Abstract

Wheat grown on cadmium (Cd)‐uncontaminated soils can still potentially translocate unacceptable levels of Cd to grain. The effect of zinc (Zn) and Cd levels on Cd uptake and translocation in “Grandin” hard red spring wheat (HRS‐wheat) (Triticum aestivum L.) was investigated using a double chelator‐buffered nutrient solution [EGTA used to buffer Cd, Zn, copper (Cu), manganese (Mn), and nickel (Ni); and Ferrozine (FZ) used to buffer Fe2+]. In the Zn level series of treatments, Cd2+ activity was held constant at 10?10.7 M, and the Zn2+ activity was varied from 10?7.6 to 10?5.2 M. As Zn2+ activity increased, the translocation of Cd to the shoots decreased. The shoot : root Cd concentration ratio decreased from 0.20 to 0.03 as pZn2+ went from 7.6 to 5.2, indicating that adequate to high levels of Zn are effective in reducing Cd translocation to the shoots of “Grandin” HRS‐wheat. In the Cd series, the Zn activity was at 10?6.6 M, while Cd activity was increased from 10?10.7 to 10?9.2 M. High levels of Cd did not significantly affect the uptake and translocation of Zn in the roots and shoots. While at pCd2+ of 9.2, the root and shoot Cd concentrations significantly increased, there was not a significant increase in the shoot : root Cd ratio. This would indicate that even at high Cd2+ activities, Zn is effective in regulating Cd uptake and translocation in “Grandin” HRS‐wheat.  相似文献   

4.
The main objective of this study was to compare the effectiveness of different methods (heavy metals in pore water (PW), diffusive gradients in thin films (DGT), diethylene triamine pentaacetic acid (DTPA) extraction, and total heavy metals (THM) in soil) for the assessment of heavy metal bioavailability from soils having various properties and heavy metal contents. The effect of soil heavy metal pollution on shoot yield and sulfatase enzyme activity was also studied. Wheat (Triticum aestivum) was grown in different soils from Spain (n?=?10) and New Zealand (n?=?20) in a constant environment room for 25 days. The bioavailabilities of Cd, Cr, Cu, Ni, Pb, and Zn were assessed by comparing the metal contents extracted by the different methods with those found in the roots. The most widely applicable method was DGT, as satisfactory Cu, Ni, Pb, and Zn root concentrations were obtained, and it was able to distinguish between low and high Cr values. The analysis of the metal concentrations in PW was effective for the determination of Cr, Ni, and Zn content in root. Copper and Pb root concentrations were satisfactorily assessed by DTPA extraction, but the method was less successful with determining the Ni and Cr contents and suitable just to distinguish between high and low concentrations of Zn. The THM in soil method satisfactorily predicted Cu and Pb root concentrations but could only be used to distinguish between low and high Cr and Zn values. The Cd root concentration was not successfully predicted for any of the used methods. Neither shoot yield nor sulfatase enzyme activity was affected by the metal concentrations.  相似文献   

5.
A pot experiment was conducted to test the effect of three microbial regimes on the time course of heavy metal uptake in clover and maize from an industrially polluted soil. The three treatments included: (1) an intact flora of bacteria and fungi, including indigenous arbuscular mycorrhizal (AM) fungi together with soil microfauna; (2) the indigenous bacterial/fungal flora except AM fungi, reintroduced into sterilized soil; or (3) the same bacterial/fungal flora plus an AM fungus. For the final harvest, two pot sizes were included to assess the effect of root density. Plant uptake of P and heavy metals varied according to plant species, harvest time and soil treatment. For both plant species, shoot concentration of Zn, Cd and Cu decreased and Ni increased with plant age. Plants growing in sterilized soil with reintroduced AM fungi generally grew better, but contained higher concentrations of heavy metals than those colonized by indigenous AM fungi. Plants with mycorrhiza frequently contained more P, Zn, Cd, Cu and Pb in roots and shoots compared to nonmycorrhizal plants. Elevated root/shoot concentration ratios of P and metals indicate a sequestration of metal phosphates in mycorrhizal roots. Mycorrhizal performance was influenced by root density. At low root densities, metal concentrations in mycorrhizal plants were reduced, whereas it had no effect at high root densities when the entire soil volume was efficiently exploited by roots. We conclude that root density data are essential for interpretations of the influence of AM on metal uptake in plants.  相似文献   

6.
Abstract

A solution culture study was conducted to determine the genotypic difference in the effects of cadmium (Cd) addition on growth and on the uptake and distribution of Cd and other 11 nutrients in wheat plants. Cadmium addition at a rate of 1 mg L?1 significantly reduced root and shoot dry matter production, shoot height, root length, chlorophyll content, and tillers per plant. On the average of 16 wheat genotypes used in study, Cd concentrations of Cd‐treated plants were 48.1 and 459 μg g?1 dry weight (DW) in shoots and roots, respectively, and retained 77.91% of total Cd taken up in the roots. On the whole, Cd addition reduced the concentration of sulfur (S), phosphorus (P), magnesium (Mg), molybdenum (Mo), manganese (Mn), and boron (B), and increased iron (Fe), irrespective of the plant parts. The effect of Cd on the concentration of potassium (K), calcium (Ca), and copper (Cu) differed in shoots and roots. The significant difference existed among 16 wheat genotypes in their response to Cd in terms of growth and nutrient concentrations. Genotype E81513, which showed relatively less inhibition in growth, had the lowest shoot Cd concentration and more Cd accumulation in roots, while Ailuyuang had the highest Cd concentration and accumulation in shoot with lower Cd concentration in root. The significant interaction was found between Cd treatment and genotype for all nutrient concentrations in both shoot and root, except S and Zn in root.  相似文献   

7.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

8.
Emergent wetland plant species may exhibit different capacity for phytoremediation when used in constructed wetlands. To evaluate cadmium (Cd) remediation capacity of four emergent wetland species [Baumea juncea (R.Br.) Palla, Baumea articulata (R.Br.) S.T. Blake, Schoenoplectus validus (M.Vahl) A. & D.Löve, and Juncus subsecundus N.A. Wakef.], a glasshouse experiment was conducted in hydroponics to investigate the effects of Cd (0, 5, 10, and 20 mg L?1) on plant growth and Cd uptake and translocation as well as uptake of other nutrients after 14 days. The relative growth rates of the three species changed little in various Cd treatments, but was severely inhibited for B. juncea at 20 mg Cd per liter treatment. Hence, the Cd tolerance index (root length in Cd treatment vs. control) was significantly lower in B. juncea compared to other species. Among the species, the highest concentration of Cd was in the roots of J. subsecundus, followed by S. validus, B. articulata, and B. juncea, while the lowest concentration of Cd was in the S. validus shoots. Of all the species, J. subsecundus had the highest bioconcentration factor (BCF) in shoots, whereas S. validus and B. juncea had the lowest BCF in rhizomes and roots, respectively. The translocation factor was significantly lower in S. validus compared to the other species. J. subsecundus had a higher Cd accumulation rate than the other species regardless of the Cd supply. The lowest allocation of Cd in shoots was recorded for S. validus and in roots for B. juncea. The concentrations of other elements (P, S, Ca, Fe, Cu, and Zn) in shoots decreased with Cd additions, but the interactions between Cd and other elements in roots varied with the different species. These results indicate that the four wetland species have good tolerance to Cd stress (except B. juncea at high Cd exposure), varying in Cd accumulation and translocation in tissues. These properties need to be taken into account when selecting species for wetlands constructed for phytoremediation.  相似文献   

9.
For better understanding of mechanisms responsible for differences in uptake and distribution of cadmium (Cd) and nickel (Ni) in different plant species, nutrient solution experiments were conducted with four plant species [bean (Phaseolus vulgaris L.), rice (Oryza saliva L.), curly kale (Brassica oleracea L.) and maize (Zea mays L.)]. The plants were grown in a complete nutrient solution with additional 0.125 and 0.50 μM Cd or 0.50 and 1.00 μM Ni. Large differences in Cd and Ni concentrations in shoot dry matter were found between plant species. Maize had the highest Cd concentration in the shoots, and bean the lowest. Contrary to Cd, the Ni concentrations were highest in the shoots of bean and the lowest in maize. A gradient of Cd concentrations occurred in bean and rice plants with the order roots > > stalk base >> shoots (stems/sheaths > leaves). A similar gradient of Ni concentrations was also found in maize and rice plants. In the xylem sap, the Cd and Ni concentrations were positively correlated with Cd and Ni concentrations in the shoot dry matter. In the roots of maize, about 60% of Cd could be extracted with Tris‐HCl buffer (pH 8.0), while in roots of other plant species this proportion was much lower. This higher extractability of Cd in the roots of maize is in accordance with the higher mobility as indicated by the higher translocation of Cd from roots to shoots and also the higher Cd concentrations in the xylem sap in maize than in the other plant species. Similarly, a higher proportion of Ni in the soluble fraction was found in the roots of bean compared with maize which is in agreement with the higher Ni accumulation in the shoots of bean. The results of gel‐filtration of the soluble extracts of the roots indicated that phytochelatins (PCs) were induced in the roots upon Cd but not Ni exposure. The higher Cd concentrations and proportions of Cd bound to PC complexes in the roots of maize compared with the other plant species suggest that PCs may be involved in the Cd trans‐location from roots to shoots.  相似文献   

10.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

11.
We assessed the response of the tomato variety “Tiny Tom” to the application of copper (Cu) and zinc (Zn) fertilizers in three tropical peat soils of Sarawak: mixed swamp forest, Alan forest and Padang Alan forest. Limed soils were used because peat soils in their natural condition are unsuitable to sustain healthy growth of most crops. Yield responses were correlated with added Cu and Zn using Mitscherlich model. Adequate levels of applied Cu and Zn were calculated as those which resulted in 90% of the maximum obtainable shoot dry weight. Application of Cu and Zn significantly (P ≤ 0.05) increased the shoot dry weight and the shoot Cu and Zn concentrations of tomato. Application of the equivalent of 8.3 kg Cu and 5.2 kg Zn per ha was required to achieve 90% of the maximum shoot dry weight. In tomato shoots, the critical concentration for Cu was 18 mg/kg and for Zn, 92 mg/kg. The corresponding concentrations for diethylenetriaminepentaaceticacid (DTPA) extractable Cu and Zn in the soils were 2.3 mg Cu kg ?1 and 3.6 mg Zn kg ?1 . However, the addition of Cu fertilizer also increased Zn uptake by tomato plant, probably by displacing native Zn that was weakly sorbed to the soil solid phase.  相似文献   

12.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

13.
Cadmium (Cd) is a deleterious non-essential metal in plants.To elucidate the mechanisms by which zinc (Zn) application alleviates cadmium (Cd)toxicity in wheat,we characterized plant growth,antioxidant system,leaf cell ultrastructure,and Cd transporter gene expression in winter wheat under Cd exposure (50μmol L-1Cd) with foliar Zn application in a hydroponic experiment.Results showed that Zn addition (Zn+Cd) or pretreatment (pre-Zn+Cd) at 2 g L-1as Zn SO4·7H...  相似文献   

14.
Cu, Zn, and Cd acquisition by two spinach cultivars depending on P nutrition and root exudation Within a spectrum of 11 spinach cultivars (cvs) differences in the Cu, Zn, and Cd contents of shoots had been noticed. The aim of this study was therefore to analyze in more detail the acquisition of Cu, Zn, and Cd by the most differing cultivars (Tabu and Monnopa) in dependence on P nutrition. The plants were grown in a low phosphorus Luvisol (pH 6.3; total contents Cu: 89, Zn: 297, Cd: 2.4 mg kg—1) with two phosphorus levels in pots under natural conditions. For the determination of inflow, root length/shoot weight ratio and of the Cu, Zn, and Cd concentration in the soil solution (rhizosphere) plants were harvested 26 and 40 days after sowing. Root exudation of organic acids of the two cvs was measured 35 days after growing in quartz sand with different P supply. Both cultivars responded to P fertilizer by doubling their shoot weight. With increased P supply (0.68—0.77% P in shoot‐DM) both cultivars showed similar heavy metal contents in the shoot resulting from similar root length/shoot weight ratios (RSR) and net uptake rates of the three elements as well as the same element concentrations in the rhizosphere soil solution. Under P deficiency, however, cv. Tabu (0.52% P in shoot‐DM) showed in comparison with cv. Monnopa (0.48% P) higher Cu, Zn, and Cd contents of shoots although its RSR was smaller than that of cv. Monnopa. However, the inflow for Cu was higher and for Zn and Cd significantly higher compared with cv. Monnopa. This result of cv. Tabu corresponded with higher concentrations of Cu, Zn, and Cd of its rhizosphere soil solution, and its higher exudation rates of oxalate, citrate, and malate (3.9; 1.0; 0.7 nmol cm—1 h—1). The corresponding values for cv. Monnopa were: 1.7; 0.3; 0.4 nmol cm—1 h—1. The mobilization of Cu, Zn, and Cd by the excreted organic acids seems to be responsible for the higher Cu, Zn, and Cd inflow of cv. Tabu.  相似文献   

15.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

16.
The aim of this research is to investigate the effect of zinc (Zn) application on cadmium (Cd) uptake of maize (Zea mays L.) grown in alkaline soil. Four doses of cadmium (Cd; 0, 2.5, 5, and 10 ppm) in the form of cadmium chloride and four doses of Zn (0, 10, 20, and 40 ppm) in the form of zinc sulfate were applied to the soils. Plants were harvested at the 45th day of their developments. The Cd amounts in shoots and roots were analyzed separately. Significant differences between Cd amounts in shoots and roots are obtained with the application of different Zn doses (P < 0.01). In all Cd levels, Zn application increases Cd in both shoots and roots relative to Cd contents of plants grown in the pots that not applied Zn. It is also found that Cd content of the roots is greater than that of shoots.  相似文献   

17.
This paper describes the effect of plant growth-promoting bacteria on sunflower growth and its phytoremediation efficiency under Cd-contaminated soils. Four levels of bacteria inoculation (non-inoculation, inoculation by Bacillus safensis, Kocuria rosea and co-inoculation by Bacillus safensis+Kocuria rosea) and four Cd concentrations (0, 50, 100 and 150 mg Cd per kg soil) were arranged as factorial experiment based on a completely randomized design (CRD). Results showed that Cd significantly decreased growth by decreasing the shoot and root length and biomass (p < 0.01). In addition, Cd dramatically decreases photosynthetic pigments, Fe transport to shoot and Zn uptake (p < 0.01). Bacterial inoculation increased Fe and Zn uptake by plants, Cd concentration in the aboveground part of plants and Cd uptake by the enhancement of Cd concentration in plant tissue and biomass production. Results showed that the highest shoot Cd uptake was ?observed in ?inoculated plants by Bacillus safensis at Cd100 (20.35 mg pot?1). However, in average of Cd treatments, the performance of co-inoculation in Cd uptake (13.04 mg pot?1) was better than singular inoculation (10.68 and 12.58 mg pot?1 for Bacillus safensis and Kocuria rosea, respectively). Results revealed that bacterial inoculation increased the Cd uptake performance in shoot and total biomass by 30% and 25%, respectively.  相似文献   

18.
Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil In pot experiments with a sewage sludge treated soil, the influence of two arbuscular mycorrhizal fungi (AMF) isolates of Glomus sp. (T6 and D13) on plant growth and on the uptake of heavy metals by alfalfa (Medicago sativa L.) and oat (Avena sativa L.) was investigated. Alfalfa showed an increase of biomass with mycorrhizal infection only to a small extent. In oat AMF inoculation increased the growth of both root and shoot by up to 70% and 55% respectively. Mycorrhization raised the P-content and -uptake in alfalfa, but not in oat, in both roots and shoots. Mycorrhizal alfalfa showed lower Zn-, Cd- and Ni-contents and uptake in roots and shoots. The root length was significantly decreased in mycorrhizal alfalfa plants (up to 38%). The translocation of heavy metals into the shoot of mycorrhizal alfalfa was slightly increased. Mycorrhizal infection of oat led to higher concentrations of Zn, Cd and Ni in the root but to less Zn in the shoot. The translocation of heavy metals to the oat shoot was clearely decreased by mycorrhizal colonisation. This may be based on the ability of fungal tissues to complex heavy metals at the cell walls, thus excluding metals from the shoot. This conclusion is supported by the enhanced root length (up to 78%) of mycorrhizal oat plants in this experiment. The mycorrhizal infection seemed to protect plants against heavy metal pollution in soils. It was obvious that different host plants reacted in different ways.  相似文献   

19.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

20.
朝天委陵菜的重金属耐性与吸收性研究   总被引:1,自引:0,他引:1  
利用植物生长室水培试验和温室土培盆栽试验的方法,研究了朝天委陵菜在不同浓度Pb水培条件下和Cu、Zn、Pb、Cd复合污染土壤条件下的重金属耐性和吸收性,结果表明,水培条件下随着处理浓度的增加,朝天委陵菜均生长良好,虽高浓度Pb处理下出现植株矮小、叶渐黄、根系变黑等毒害症状,但植株并未死亡,表明在水培条件下朝天委陵菜对Pb具有极强的耐性;在最高浓度3 600μmol/L Pb处理下地上部和根中Pb浓度达到最大值,分别为947 mg/kg和71 053 mg/kg。在温室土培盆栽条件下,朝天委陵菜在外加Cu、Zn、Pb和Cd分别为200、1 000、1 000和5 mg/kg的土壤上较对照生长受到抑制,地上部Cu、Zn、Pb和Cd浓度分别达到741±164、18 248±2 222、1 543±483和29.4±5.2 mg/kg;外加重金属更高时则导致植株死亡。朝天委陵菜对Pb胁迫和Cu、Zn、Pb、Cd复合污染土壤具有较强的耐受性,可作为重金属尤其是Pb污染土壤的修复植物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号