首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ingrid Kgel-Knabner 《Geoderma》1997,80(3-4):243-270
Nuclear magnetic resonance (NMR) is a valuable tool for the characterization of soil organic matter and humification processes in soils. This review highlights soil organic matter studies based mainly on solid-state 13C and 15N NMR spectroscopy and some emerging applications, that may provide significant progress in our knowledge on soil organic matter. A major advantage of Nmr spectroscopy is that it can be used as a non-invasive method for solid soil samples or soil fractions. Although resolution is limited, one can obtain an overview on the organic matter structures present in the soil sample. Application of 13C and 15N NMR to soils has, for a long time, been confined to the study of bulk soils or humic extracts for structural characterization. The transformations of soil organic C and N are now being investigated after addition of 13C- and 15N-labelled parent materials to the soil and following their evolution in different C and N pools. With labelling techniques it is also possible to study the interaction of organic pollutants with soil organic matter. Contamination of a soil with man-made additives, such as soot or brown coal dust, can also be detected in soils or individual soil fractions.  相似文献   

2.
Four samples of soil organic matter and their humic acids, fulvic acids and humin were studied with solid-state 13CP MAS NMR. The whole soil samples were fractionated using NaOH and HCl in order to extract humic acids, fulvic acids and humin. This investigation indicates that conventional humus fractionation does not significantly change the content of different functional groups in soil.  相似文献   

3.
红壤稻田土壤理化及生物学性状的动态变化特征   总被引:7,自引:0,他引:7  
Rice production plays a crucial role in the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity. In this study, field sampling in a typical red soil region of subtropical China, Jiangxi Province, was used to observe changes in the soil physical, chemical, and biological properties in a cultivation chronosequence of paddy fields. After cultivation, clay (< 0.002 mm) content in the soil, which was 39% in the original uncultivated wasteland, decreased, to 17% in the 80-year paddy field, while silt (0.02--0.002 mm) content increased. Additionally, macroporosity increased and pore shapes became more homogeneous. Soil Ph generally increased. Soil organic C and total N content of the 0-10 cm layer increased from 4.58 and 0.39 g kg-1 to 19.6 and 1.62 g kg-1, respectively in the paddy fields after 30-year cultivation and then remained stable. Soil total P content increased from 0.5 to 1.3 g kg-1 after 3 years of rice cultivation, indicating that application of phosphate fertilizer could accelerate phosphorous accumulation in the soil. Total K content in the 0--10 cm soil layer for the 80-year paddy fields decreased by 28% compared to that of the uncultivated wasteland land. Total Fe and free Fe contents declined with years of cultivation. The bacterial population increased and urease activity noticeably intensified after years of cultivation. In this chronosequence it appeared that it took 30 years to increase soil fertility to a relatively constant value that was seen after 80 years of cultivation.  相似文献   

4.
Fresh organic carbon becomes more accessible to deep soil following losses of surface soil and deep intentional incorporation of crop residues, which can cause the priming effect and influence the quality and quantity of SOC in deep soil. This study determined the priming effect due to addition of water-dissolved 13C-labeled glucose (0.4 g C kg−1 soil) to a soil taken from 1.00 to 1.20 m depth. The changes in chemical compositions of SOC in soils without (G0) and with (G0.4) glucose addition during a 31-d incubation were investigated with solid-state 13C cross polarization/total sideband suppression (13C-CP/TOSS) and CP/TOSS with dipolar dephasing nuclear magnetic resonance (NMR) techniques. No glucose remained in the soil after 21 days of incubation, with 48% being completely mineralized into CO2 emission and 52% being incorporated into SOC. The native SOC was decomposed by 0.23% more in G0.4 than in G0. The NMR spectra demonstrated that both labile and recalcitrant organic compounds in SOC changed during the incubation, but in different manners in G0 and G0.4. During the incubation, the -(CH2)n-abundance in G0 did not change over time, but in G0.4 it decreased from Day 0 to Day 21 and then increased from Day 21 to Day 31, suggesting shifts of soil microbial communities only in G0.4. After the incubation, in G0 the abundances of ketones/aldehydes and nonpolar alkyl C increased, but those of aromatic C–C and protonated O-alkyl C (OCH) decreased; In G0.4, the abundances of NCH and protonated O-alkyl C (OCH) increased, but those of nonpolar alkyl C and nonprotonated aromatic C–O and ketones/aldehydes decreased. Such inconsistent changes in recalcitrant compounds between G0 and G0.4 indicated that glucose addition likely primed the decomposition of aromatic C–O and suppressed the formation of ketones/aldehydes. We have demonstrated for the first time that the priming effect of SOC decomposition in the deep soil was involved with larger notable changes in both labile and recalcitrant structures of native SOC due to glucose addition compared with that without glucose addition.  相似文献   

5.
The composition of functional light soil organic matter pools of arable Cambisols with a gradient in clay content was investigated. Soil texture differences originate from increasing loess admixture to the parent material (coarse‐grained tertiary sediments). Using density fractionation in combination with ultrasonic dispersion, two types of particulate organic matter (POM) were obtained: (1) free POM and (2) POM occluded in soil aggregates. Both POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C NMR spectroscopy. With increasing clay content the amount of organic carbon stored in the occluded POM fraction increased considerably, whereas the amounts of free POM were not related to the soil clay content. With increasing soil clay contents increasing proportions of O‐alkyl C and decreasing proportions of aryl C were found for both POM fractions. The occluded POM fraction showed a higher degree of degradation as indicated by lower amounts in O‐alkyl carbon. A lower degree of POM degradation was associated with higher clay contents. Higher soil clay contents promoted the conservation of POM with a low degree of alteration. This effect of soil texture was found to be highly significant when the aryl C : O‐alkyl C ratio was used as indicator for POM decomposition rather than the alkyl C : O‐alkyl C ratio.  相似文献   

6.
Successful soil organic matter (SOM) quality assessment is needed to improve our ability to manage forest soils sustainably. Our objective was to use a multivariate data set to determine whether the land use conversion from native forest (NF) to hoop pine plantation and the following rotation and site preparation practices had altered SOM quality at three adjacent sites of NF, first (1R) and second rotation (2R, including tree planting row (2R-T) and windrow of harvest residues (2R-W)) of hoop pine plantations in southeast Queensland, Australia. Cross-polarization magic angle spinning 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy and sequential hot water and acid hydrolysis were conducted on SOM fractions separated by wet-sieving and density fractionation procedures to characterize SOM quantitative and qualitative relevant parameters, including carbon (C) functional groups, C and nitrogen (N) contents, C/N ratios, and C and N recalcitrant indices. Analysis of variance (ANOVA) and principal component analysis (PCA) of these multivariate parameters together indicated a complicated interaction between physical protection and biochemical recalcitrance, making the land use and management induced changes of SOM quality more complex. Knowledge of PCA based on the refined set of 41 SOM quantitative and qualitative parameters identified that principal component 1 (PC1), which explained 55.7% of the total variance, was most responsible for the management induced changes in soil processes. This was reflected by the dynamics of SOM regarding the aspects of total stock, soil basal and substrate induced respirations, gross and net N mineralization and nitrification, and microbial biomass, microbial diversity of C utilization patterns. Further, the macroaggregates (F250-2000 μm) and the C/N ratio of acid extracts of SOM physical fractions, which represented the most informative and unique variables loading on PC1, might be the most promising physical and chemical measures for SOM quality assessment of land use and management impacts in subtropical Australian forests.  相似文献   

7.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

8.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   

9.
A short general review of all aspects of the NMR technique, in both the spectroscopic and imaging modes, as applied to the study of soil, is presented from a mainly technical point of view. Illustrations, in the form of spectra and images, are reproduced for whole soils, solids, solid fractions, and liquid extracts from material in the authors' group. Nuclides covered are 1H, 13C, 15N, 27Al and 31P. For solid samples the techniques employed include CP/MAS with and without TOSS, and for liquid-state studies the first high field (14.1 T) examples for soils in both one and two frequency dimensions are presented. For imaging further results from the first application of the stray field (STRAFI) technique applied to water in soil are given showing distortion-free images of both bound and free water. Finally, the first electron nuclear double resonance (ENDOR) and pulsed EPR results on soils will be illustrated. This paper is a slightly expanded version of an introductory talk of 35 minutes and so is not discursive. In particular the benefits of the techniques presented to soil science are only touched on. Other speakers present papers elsewhere in this issue which expand on particular aspects of the utility of NMR studies of soils.  相似文献   

10.
Paddy soils are subjected to periodically changing redox conditions. In order to understand better the redox control on long‐term carbon turnover, we assessed carbon mineralization and dissolved organic carbon (DOC) of paddy topsoils sampled along a chronosequence spanning 2000 years of rice cultivation. Non‐paddy soils were used as references. We exposed soils to alternating redox conditions for 12 weeks in incubation experiments. Carbon mineralization of paddy soils was independent of redox conditions. Anoxic conditions caused increasing DOC concentrations for paddy soils, probably because of desorption induced by increasing pH. We assume desorption released older, previously stabilized carbon, which then was respired by a microbial community well adapted to anoxic conditions. This assumption is supported by the 14C signatures of respired CO2, indicating larger mineralization of older carbon under anoxic than under oxic conditions. The increasing DOC concentrations under anoxic conditions did not result in an equivalent increase in carbon mineralization, possibly because of little reducible iron oxide. Therefore, net DOC and CO2 production were not positively related under anoxic conditions. The overall 20–75% smaller carbon mineralization of paddy soils than of non‐paddy soils resulted from less respiration under oxic conditions. We conclude that carbon accumulation in paddy as well as in other wetland soils results from a microbial community well adapted to anoxic conditions, but less efficient in mineralizing carbon during transient oxic periods. Carbon accumulation might be even larger when mineralization under anoxic conditions is restricted by a lack of alternative electron acceptors.  相似文献   

11.
Is the composition of soil organic matter changed by adding compost? To find out we incubated biowaste composts with agricultural soils and a humus‐free mineral substrate at 5°C and 14°C for 18 months and examined the products. Organic matter composition was characterized by CuO oxidation of lignin, hydrolysis of cellulosic and non‐cellulosic polysaccharides (CPS and NCPS) and 13C cross‐polarization magic angle spinning nuclear magnetic resonance (CPMAS 13C‐NMR) spectroscopy. The lignin contents in the compost‐amended soils increased because the composts contained more lignin, which altered little even after prolonged decomposition of the composts in soil. A pronounced decrease in lignin occurred in the soils amended with mature compost only. Polysaccharide C accounted for 14–20% of the organic carbon at the beginning of the experiment for both the compost‐amended soils and the controls. During the incubation, the relative contents of total polysaccharides decreased for 9–20% (controls) and for 20–49% (compost‐amended soils). They contributed preferentially to the decomposition as compared with the bulk soil organic matter, that decreased between < 2% and 20%. In the compost‐amended agricultural soils, cellulosic polysaccharides were decomposed in preference to non‐cellulosic ones. The NMR spectra of the compost‐amended soils had more intense signals of O–alkyl and aromatic C than did those of the controls. Incubation for 18 months resulted mainly in a decline of O–alkyl C for all soils. The composition of the soil organic matter after compost amendment changed mainly by increases in the lignin and aromatic C of the composts, and compost‐derived polysaccharides were mineralized preferentially. The results suggest that decomposition of the added composts in soil is as an ongoing humification process of the composts themselves. The different soil materials affected the changes in soil organic matter composition to only a minor degree.  相似文献   

12.
In this study three soil profiles located in the Western Taurus (Turkey) at different altitudes (10, 1900, and 3080 m a.s.l.) were compared with respect to their soil organic matter characteristics. The soil samples were fractionated by density to plant residues, slightly altered plant material, organo-mineral complexes, and organic-free minerals. Bulk samples and fractions were analyzed for C and N, the bulk samples additionally for total sugars, lignin signature, and bulk soil organic matter composition by CP/MAS 13C NMR spectroscopy. The first step of litter decomposition and humification is a very strong degradation of polysaccharides without the loss of O-alkyl structures. This process is slowing down very fast and the polysaccharides are stabilized. Lignin is decomposed as fast or even faster than polysaccharides. The data obtained by wet-chemical analysis and by NMR spectroscopy are not or only weakly correlated to each other. This leads to the conclusion that the two types of methods give complementary rather than equivalent information. For the study of soil organic matter it is important to combine different methods and to draw the advantages of either type.  相似文献   

13.
To understand how soil color is influenced by soil components at the farm scale, we evaluated spatial variation in soil color and related soil properties in Japanese paddy fields. After harvest of rice, 246 surface soil samples were collected in 10-m grids from five contiguous irrigated paddy fields, each with an area of about 0.5 ha. The samples were analyzed to determine color parameters (L*, a*, and b*), and contents of total C, total N, Fe oxides, sand, and loss-on-ignition. The results obtained were modeled and mapped geostatistically. All color parameters indicated strong spatial dependence with long ranges (>85 m). In contrast, total C and N showed short ranges (about 40 m). The contents of Fe oxides, sand, and loss-on-ignition showed intermediate ranges (50–85 m). The ranges of these properties and their distribution patterns suggested that the contents of total C and N were influenced by long-term application of manure and that sand content was influenced by topography and past land consolidation. Further soil color analysis after removal of organic matter or silt plus clay particles revealed that soil organic matter, texture, and Fe oxides affected soil color parameters in a complex manner. Prediction of total C from soil darkness was hindered by the presence of silt plus clay particles containing Fe oxides. On the other hand, citrate-dithionite extractable Fe was estimated accurately from the b* value (yellowness), which can be useful for predicting the occurrence of akiochi (autumn decline) disease of rice at the farm scale.  相似文献   

14.
K. Lorenz  C.M. Preston  E. Kandeler 《Geoderma》2006,130(3-4):312-323
To reduce soil destruction by urban sprawl, land use planning has to promote the use of soils within cities. As soil functions are now protected by law in Germany, urban soil quality has to be evaluated before soil management. We studied contributions from elemental carbon (EC) and soil organic matter (SOM) quality in topsoil horizons at seven sites in Stuttgart, Germany, differing in impurities by technogenic substrates. The most disturbed site was found at a disused railway area while high-density areas, public parks and garden areas showed varying degrees of disturbance by anthropogenic activities. For most soils, compounds derived from plant litter dominated organic matter (OM) quality characterized by nuclear magnetic resonance (NMR) spectroscopy. Although high contents of EC (up to 70% of soil organic carbon) were indicated by thermal oxidation, this was not confirmed by aromatic C intensities in NMR spectra. Only for the highly aromatic railway soil were results for elemental carbon by thermal oxidation and NMR similar. As other technogenic substrates beside EC like plastics may also contribute in the long-term to OM in urban soils, new analytical techniques are therefore required. This knowledge will promote the evaluation of urban soil properties and their sustainable use.  相似文献   

15.
Amino acid composition of soil organic matter   总被引:5,自引:0,他引:5  
This study investigated the amino acid composition of soil organic matter extracted from ten surface soils in addition to surface soils from two long-term cropping systems [continuous corn (CCCC), corn-soybean-corn-soybean (CSCS), and corn-oats-meadow-meadow (COMM)] at two sites in Iowa: the Clarion-Webster Research Center (CWRC) and the Galva-Primghar Research Center (GPRC). Results showed that, with the exception of asparagine pluse aspartic acid and glutamine plus glutamic acid, the other 13 amino acids studied, expressed as perecentages of total amino acids extracted, were generally very uniform among the soils. The total amino acids extracted from the ten soils were significantly correlated with organic carbon (C) ( and clay content (, but not with total nitrogen (N), pH, or sand content. Expressed as percentages or organic C and N in soils, the amounts extracted ranged from 10.9% to 32.4% and from 12.0% to 27.4%, respectively. The amino acid N identified, expressed as percentages of organic N extracted, ranged from 32% to 50% and the C/N ratios of the extracted organic matter ranged from 10.1 to 14.9. The type of rotation did not significantly affect the total amino acid content of the soils from the same N treatment, but it did affect the total amino acid content of soils from the control plots. The total amino acids measured under the different crop rotations at the CWRC site were in the order: COMM>CCCC>CSCS. The order for the GPRC site was: CSCS>COMM>CCCC. The amino acid N identified, expressed as percentages of organic N extracted from soils at the CWRC site, ranged from 33.1% to 50% and for the GPRC site ranged from 26.5% to 51.4%. The C/N ratios of the organic matter extracted ranged from 10.4 to 14.1 and from 6.5 to 14.3 for the soils from CWRC and GPRC sites, respectively. Received: 26 May 1997  相似文献   

16.
17.
Sterilized soil is often used, for example in degradation studies, sorption experiments, microbiological tests and plant test systems, to distinguish between microbial processes and abiotic reactions. The most commonly used technique for sterilization is autoclaving of the soil. Another technique is irradiation with high‐level gamma radiation (γ‐radiation). One major drawback of sterilization procedures is the possible alteration of the structure of soil components, for example the organic matter. A change in the chemical structure of the soil organic matter can cause different reactions in the above‐mentioned experiments and hence interfere with the aim of clearly distinguishing between biotic and abiotic processes. Two soils (Gleyic Cambisol and Orthic Luvisol) were sterilized by two γ‐irradiation procedures (4 kGy hour?1 for 9 hours and 1.3 kGy hour?1 for 27 hours) and repeated autoclaving at 121°C. Gentle physical aggregate fractionation of the sterilized soils revealed a decrease in the aggregation of the soil, which was reflected in an increase of the clay fraction. Subsequent analysis of the aqueous phase revealed much more dissolved organic matter (DOM) in the γ‐sterilized and autoclaved soils than in the untreated soils. Ultraviolet (UV) and fluorescence spectra of the DOM showed a decrease in the aromaticity and polycondensation of the dissolved organic carbon (DOC). 13C cross‐polarization/magic‐angle spinning nuclear magnetic resonance (13C‐CP/MAS NMR) spectra of the unfractionated soils and their respective soil fractions before and after sterilization showed that the most important change occurred in the carbohydrate and N‐alkyl region, the main components of microorganisms. In general, the impact of the sterilization method was stronger for autoclaving. The γ‐sterilized soils and fractions displayed both fewer and smaller changes in the soil organic matter.  相似文献   

18.
依托湖北武汉、重庆北碚、湖南望城、湖南祁阳、江西南昌、浙江杭州6个水稻土壤肥力长期定位试验历史样品及数据,分析和讨论了土壤有机质含量变化趋势及对施化肥和有机肥的响应差异。施有机肥提升土壤有机质含量显著高于施化肥的效果。施化肥NPK处理,6个试验点土壤有机质含量都呈现提升趋势;但是,有机质平均年增量、有机质累计增量与累计有机肥施用量的比值都是逐年下降的,固定施肥方法提高土壤有机质含量是有限的,最高达到平衡点,施化肥的有机质含量的平衡点低于施有机肥的,土壤有机质含量提升不仅对施有机肥有响应,而且与累积产量也有一定的相关关系。  相似文献   

19.
To assess the effect of long-term fertilization on labile organic matter fractions, we analyzed the C and N mineralization and C and N content in soil, particulate organic matter (POM), light fraction organic matter (LFOM), and microbial biomass. Results showed that fertilizer N decreased or did not affect the C and N amounts in soil fractions, except N mineralization and soil total N. The C and N amounts in soil and its fractions increased with the application of fertilizer PK and rice straw. Generally, there was no significant difference between fertilizer PK and rice straw. Furthermore, application of manure was most effective in maintaining soil organic matter and labile organic matter fractions. Soils treated with manure alone had the highest microbial biomass C and C and N mineralization. A significant correlation was observed between the C content and N content in soil, POM, LFOM, microbial biomass, or the readily mineralized organic matter. The amounts of POM–N, LFOM–N, POM–C, and LFOM–C closely correlated with soil organic C or total N content. Microbial biomass N was closely related to the amounts of POM–N, LFOM–N, POM–C, and LFOM–C, while microbial biomass C was closely related to the amounts of POM–N, POM–C, and soil total N. These results suggested that microbial biomass C and N closely correlated with POM rather than SOM. Carbon mineralization was closely related to the amounts of POM–N, POM–C, microbial biomass C, and soil organic C, but no significant correlation was detected between N mineralization with C or N amounts in soil and its fractions.  相似文献   

20.
Although the chemical composition of soil organic matter (SOM) is known to significantly influence sorption of pesticides and other pollutants, it has been difficult to determine the molecular nature of SOM in situ. Here, using 13C nuclear magnetic resonance (NMR) data and elemental composition in a molecular mixing model, we estimated the molecular components of SOM in 24 soils from various agro‐ecological regions. Substantial variations were revealed in the molecular nature of SOM. As a proportion of soil carbon the proportion of the carbonyl component ranged from 0.006 to 0.05, charcoal from 0 to 0.15, protein from 0.09 to 0.29, aliphatic from 0.14 to 0.30, carbohydrate from 0.21 to 0.31, and lignin from 0.05 to 0.42. The relationships between Koc (sorption per unit mass of organic carbon) of carbaryl (1‐naphthyl methylcarbamate) and phosalone (S‐6‐chloro‐2,3‐dihydro‐2‐oxobenzoxazol‐3‐ylmethyl O,O‐diethyl phosphorodithioate) and the molecular nature of organic matter in the soils were significant. Of the molecular components estimated, lignin and charcoal contents correlated best with sorption of carbaryl and phosalone. Aliphatic, carbohydrate and protein contents were found to be negatively correlated with the Koc of both pesticides. The study highlights the importance of the molecular nature of SOM in determining sorption affinities of non‐ionic pesticides and presents an indirect method for sorption estimation of pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号