首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

2.
Pharmacokinetic properties of enrofloxacin in rabbits.   总被引:4,自引:0,他引:4  
The pharmacokinetic properties of the fluoroquinolone antimicrobial enrofloxacin were studied in New Zealand White rabbits. Four rabbits were each given enrofloxacin as a single 5 mg/kg of body weight dosage by IV, SC, and oral routes over 4 weeks. Serum antimicrobial concentrations were determined for 24 hours after dosing. Compartmental modeling of the IV administration indicated that a 2-compartment open model best described the disposition of enrofloxacin in rabbits. Serum enrofloxacin concentrations after SC and oral dosing were best described by a 1- and 2-compartment model, respectively. Overall elimination half-lives for IV, SC, and oral routes of administration were 2.5, 1.71, and 2.41 hours, respectively. The half-life of absorption for oral dosing was 26 times the half-life of absorption after SC dosing (7.73 hours vs 0.3 hour). The observed time to maximal serum concentration was 0.9 hour after SC dosing and 2.3 hours after oral administration. The observed serum concentrations at these times were 2.07 and 0.452 micrograms/ml, respectively. Mean residence times were 1.55 hours for IV injections, 1.46 hours for SC dosing, and 8.46 hours for oral administration. Enrofloxacin was widely distributed in the rabbit as suggested by the volume of distribution value of 2.12 L/kg calculated from the IV study. The volume of distribution at steady-state was estimated at 0.93 L/kg. Compared with IV administration, bioavailability was 77% after SC dosing and 61% for gastrointestinal absorption. Estimates of predicted average steady-state serum concentrations were 0.359, 0.254, and 0.226 micrograms/ml for IV, SC, and oral administration, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
OBJECTIVE: To study the pharmacokinetics of difloxacin (5 mg/kg) following IV, IM, and intragastric (IG) administration to healthy horses. ANIMALS: 6 healthy mature horses. PROCEDURES: A crossover study design with 3 phases was used (15-day washout periods between treatments). An injectable formulation of difloxacin (5%) was administered IV and IM in single doses (5 mg/kg); for IG administration, an oral solution was prepared and administered via nasogastric tube. Blood samples were collected before and at intervals after each administration. A high-performance liquid chromatography assay with fluorescence detection was used to determine plasma difloxacin concentrations. Pharmacokinetic parameters of difloxacin were analyzed. Plasma creatine kinase activity was monitored to assess tissue damage. RESULTS: Difloxacin plasma concentration versus time data after IV administration were best described by a 2-compartment open model. The disposition of difloxacin following IM or IG administration was best described by a 1-compartment model. Mean half-life for difloxacin administered IV, IM, and IG was 2.66, 5.72, and 10.75 hours, respectively. Clearance after IV administration was 0.28 L/kg.h. After IM administration, the absolute mean +/- SD bioavailability was 95.81 +/- 3.11% and maximum plasma concentration (Cmax) was 1.48 +/- 0.12 mg/L. After IG administration, the absolute bioavailability was 68.62 +/- 10.60% and Cmax was 0.732 +/- 0.05 mg/L. At 12 hours after IM administration, plasma creatine kinase activity had increased 7-fold, compared with the preinjection value. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that difloxacin is likely to be effective for treating susceptible bacterial infections in horses.  相似文献   

4.
The pharmacokinetics of pipemidic acid after 2 single doses were studied in broiler chickens. Chickens were given single IV and oral doses of 10 and 30 mg of pipemidic acid/kg of body weight. Blood samples were collected over 8 hours after each dose administration. High-pressure liquid chromatography with UV detection was used to determine concentrations in plasma of pipemidic acid. The plasma concentration-time curves after IV administration followed 2-compartment characteristics, rapid initial distribution phase, and a terminal elimination phase. The pharmacokinetic variables differed significantly between single doses of 10 and 30 mg of pipemidic acid/kg. Mean disposition variables were a half-life at alpha phase of 0.06 hours or 0.33 hours, a half-life at beta phase of 1.18 hours or 1.72 hours, a volume of distribution in the central compartment of 0.12 L/kg or 0.31 L/kg, a volume of distribution during the elimination beta phase of 1.64 L/kg or 1.05 L/kg, and a total plasma clearance of 0.97 L/h.kg or 0.41 L/h.kg, for the 10 or 30 mg/kg dose, respectively. After oral administration, the pipemidic acid plasma profile could be adequately described by a 1-compartment model. After the single oral doses of 10 and 30 mg of pipemidic acid/kg, pipemidic acid was absorbed rapidly (time to maximal concentration of 0.31 hours or 0.71 hours) and eliminated with a mean half-life of 0.86 hours or 0.61 hours, respectively. The bioavailability was 39% at 10 mg of pipemidic acid/kg and 61% at 30 mg of pipemidic acid/kg.  相似文献   

5.
Pharmacokinetics, CSF penetration, and hematologic effects of oral administration of pyrimethamine were studied after multiple dosing. Pyrimethamine (1 mg/kg of body weight) was administered orally once a day for 10 days to 5 adult horses, and blood samples were collected frequently after the first, fifth, and tenth doses. The CSF samples were obtained by cisternal puncture 4 to 6 hours after administration of the first, third, seventh, and tenth doses. Pyrimethamine concentration in plasma and CSF was quantified by gas chromatography, and plasma concentration-time data were analyzed, using a pharmacokinetic computer program. Repeated daily dosing resulted in accumulation of pyrimethamine in plasma, with steady state being achieved within 5 days, when the mean peak plasma concentration was more than twice that measured after the first dose. Pyrimethamine concentration in CSF was 25 to 50% of corresponding plasma concentration and did not appear to accumulate with successive administration of doses. Blood samples collected during and after the dosing regimen were submitted for hematologic analysis; neutrophil numbers decreased slightly, but remained within normal range for adult horses.  相似文献   

6.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Norfloxacin was given to 2 groups of chickens (8 chickens/group) at a dosage of 8 mg/kg of body weight, IV and orally. For 24 hours, plasma concentration was monitored serially after each administration. Another group of chickens (n = 30) was given 8 mg of norfloxacin/kg orally every 24 hours for 4 days, and plasma and tissue concentrations of norfloxacin and its major metabolites desethylenenorfloxacin and oxonorfloxacin were determined serially after the last administration of the drug. Plasma and tissue concentrations of norfloxacin, desethylenenorfloxacin, and oxonorfloxacin were measured by use of high-performance liquid chromatography. Pharmacokinetic variables were calculated, using a 2-compartment open model. For norfloxacin, the elimination half-life (t1/2 beta) and the mean +/- SEM residence time for plasma were 12.8 +/- 0.59 and 15.05 +/- 0.81 hours, respectively, after oral administration and 8.0 +/- 0.3 and 8.71 +/- 0.23 hours, respectively, after IV administration. After single oral administration, norfloxacin was absorbed rapidly, with Tmax of 0.22 +/- 0.02 hour. Maximal plasma concentration was 2.89 +/- 0.20 microgram/ml. Oral bioavailability of norfloxacin was found to be 57.0 +/- 2.4%. In chickens, norfloxacin was mainly converted to desethylenenorfloxacin and oxonorfloxacin. Norfloxacin parent drug and its 2 major metabolites were widely distributed in tissues. Considerable tissue concentrations of norfloxacin, desethylenenorfloxacin, and oxonorfloxacin were found when norfloxacin was administered orally (8 mg/kg on 4 successive days). The concentration of the parent fluoroquinolone in fat, kidneys, and liver was 0.05 micrograms/g on day 12 after the end of dosing.  相似文献   

8.
The pharmacokinetics of theophylline and dyphylline were determined after IV administration in horses. In a preliminary experiment, the usual human dosage (milligram per kilogram) of each drug was given to 1 horse. Results were used to calculate dosages for a cross-over study, using 6 horses for each drug. Theophylline plasma concentrations decreased triexponentially in 5 of 6 healthy horses after IV infusion of 10 mg of aminophylline/kg of body weight for 16 to 32 minutes. In the 6 horses, total body elimination rate constants were variable, and the half-life of theophylline was 9.7 to 19.3 hours. Clearance was 42.3 to 69.2 ml/hr/kg. The initial distribution phase was rapid (t1/2 approx 3.5 to 4 minutes); a 2nd distribution phase was slower (t1/2 approx 1.5 to 2 hours). Plasma concentrations of theophylline were in the assumed effective range (10 to 20 micrograms/ml) from 15 minutes until 40 minutes after time zero. The mean apparent volume of distribution was 1.02 L/kg. After bolus IV injection of dyphylline (20 mg/kg), pharmacokinetics were best described by a 2-compartment open model in 2 horses and by a 3-compartment open model in 4 horses. In the 6 horses, elimination half-life of dyphylline was 1.9 to 2.9 hours, and clearance was 200 to 320 ml/hr/kg. Plasma concentrations (approx 50 micrograms/ml) were observed at 10 minutes after injection without adverse effects. Concentrations greater than 10 micrograms/ml were observed from time zero to about 1.5 hours after injection. Theophylline induced significant increases in heart rate, but dyphylline did not affect heart rate significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The pharmacokinetics of theophylline were determined in 6 healthy horses after a single IV administration of 12 mg of aminophylline/kg of body weight (equivalent to 9.44 mg of theophylline/kg). Serum theophylline was measured after the IV dose at 0.25, 0.5, 1, 2, 4, 6, 8, 12, and 15 hours. Serum concentration plotted against time on semilogarithmic coordinates, indicated that theophylline in 5 horses was best described by a 2-compartment open model and in 1 horse by a 1-compartment open model. The following mean pharmacokinetic values were determined; elimination half-life = 11.9 hours, distribution half-life = 0.495 hours, apparent specific volume of distribution = 0.885 +/- 0.075 L/kg, apparent specific volume of central compartment = 0.080 L/kg, and clearance = 51.7 +/- 11.2 ml/kg/hr. Three horses with reversible chronic obstructive pulmonary disease were serially given 1, 3, 6, 9, 12, and 15 mg of aminophylline/kg in single IV doses (equivalent to 0.8, 2.4, 4.7, 7.1, 9.44, and 11.8 mg of theophylline/kg, respectively). The horses were exposed to a dusty barn until they developed clinical signs of respiratory distress and were then given the aminophylline. Effects of increasing doses on different days were correlated with clinical signs, blood pH, and blood gases. The 3 horses had a decrease in the severity of clinical signs after the 9, 12, or 15 mg doses of aminophylline/kg. The horses at 0.5 hour after dosing had a significant decrease in PaCO2 (43.6 +/- 5.5 to 39.4 +/- 6.7 mm of Hg, P less than 0.001) and a significant increase in blood pH (7.38 +/- 0.017 to 7.41 +/- 0.023, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The concentration of gentamicin in plasma and synovial fluid of normal adult horses was measured periodically for 24 hours after IV (2.2 mg/kg of body weight), intra-articular (IA; 150 mg), and simultaneous IV and IA administrations. Gentamicin also was buffered with sodium bicarbonate (3 mEq) and then was administered IA and simultaneously IV and IA. Synovial fluid specimens were obtained via an indwelling catheter placed into the antebrachiocarpal joint. The peak mean plasma gentamicin concentration (8.30 micrograms/ml) after IV administration was significantly (P less than 0.05) greater than that (0.69 microgram/ml) after IA administration of gentamicin and that (0.55 microgram/ml) after administration of gentamicin buffered with sodium bicarbonate. Gentamicin concentration greater than a therapeutic concentration was not attained in the plasma after IA administration of buffered or unbuffered gentamicin. The peak mean synovial fluid concentration (1,828 micrograms/ml) after IA administration of unbuffered gentamicin was significantly (P less than 0.05) greater than that (2.53 micrograms/ml) after IV administration and significantly (P less than 0.05) less than that (5,720 micrograms/ml) after simultaneous IV and IA administration. The peak mean synovial fluid concentration after IA administration of buffered gentamicin, with and without simultaneous IV administration (2,128 and 2,680 micrograms/ml, respectively), was not significantly different than that after IA treatment with unbuffered gentamicin. Mean synovial fluid concentration did not differ significantly between groups after IA administration of gentamicin in any combination at postinjection hours 8, 12, and 24, but remained significantly (P less than 0.05) greater than that at the same times after IV administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Disposition and excretion of flunixin meglumine in horses   总被引:3,自引:0,他引:3  
The disposition of flunixin meglumine administered IV at a dosage of 1.1 mg/kg was described by a 2-compartment model; the alpha and beta half-lives (t1/2) were 0.61 and 1.5 hours, respectively. When administered IV at a rate of 2.2 mg/kg, the disposition was best described by a 3-compartment model, and the alpha, beta, and lambda t1/2 were 0.16, 1.52, and 6.00 hours, respectively. The zero-time plasma concentrations after flunixin meglumine was administered at 1.1 and 2.2 mg/kg were 9.3 +/- 0.76 and 21.5 +/- 7.4 mg/L, respectively. The bioavailability after oral administration of 1.1 mg/kg was 85.8%. The absorption t1/2 was 0.57 hours, with a peak concentration of 2.50 +/- 1.25 mg/L. The cumulative urinary recoveries for IV and oral administrations were 61.0% and 63.3%, respectively, of the dose for the 12-hour collection period. The final asymptotic points of urine excretion after IV and oral administrations were 406.4 +/- 65.5 and 357.7 +/- 53.5 mg, respectively, which represented 75.5 and 77.5% of the drug accounted for between 30 and 35 hours after administration. Flunixin meglumine was rapidly excreted in urine over a 2- to 4-hour period after drug administration and was highly bound to protein in plasma.  相似文献   

12.
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses.  相似文献   

13.
The pharmacokinetic aspects of sulphadimidine were studied in clinically healthy (control) and Flunixin-medicated horses after a single intravenous and oral administration of 100 mg/kg body weight. Plasma sulphadimidine concentration were determined by high-performance liquid chromatography (HPLC). Following the intravenous injection, all plasma sulphadimidine data were best approximated by a two-compartment open model using sequential, weight non-linear regression. Flunixin induced a 67% increase in the rate of sulphadimidine return to the central compartment from peripheral tissues (K21) and there were a trend to a 30% increase in K12. The sulphadimidine elimination half-life was decreased 21%, the Vdss was reduced by 18% and MRT was decreased by 20%. Following the oral administration, sulphadimidine was rapidly absorbed in control and Flunixin-medicated horses with absorption half-lives (t1/2 ab) of 0.5 and 0.43 hours respectively. The peak plasma concentration (Cmax) were 93.7 and 109 micrograms/ml attained at (tmax) 2.36 and 1.9 hours respectively. The elimination half-life after oral administration (t1/2 ab) was shorter in flunixin pre-medicated horses than in control ones. The systemic bioavalability percentages (F%) of sulphadimidine after oral administration of 100 mg/kg body weight was 79.3 and 71.2% in control and flunixin medicated horses, respectively. Therefore care should be exercised in the use of sulphadimidine in equine patients concurrently treated with flunixin.  相似文献   

14.
OBJECTIVE: To determine the clinical effects and pharmacokinetics of amiodarone after single doses of 5 mg/kg administered orally or intravenously. ANIMALS: 6 healthy adult horses. PROCEDURE: In a cross over study, clinical signs and electrocardiographic variables were monitored and plasma and urine samples were collected. A liquid chromatography-mass spectrometry method was used to determine the percentage of protein binding and to measure plasma and urine concentrations of amiodarone and the active metabolite desethylamiodarone. RESULTS: No adverse clinical signs were observed. After IV administration, median terminal elimination half-lives of amiodarone and desethylamiodarone were 51.1 and 75.3 hours, respectively. Clearance was 0.35 L/kg x h, and the apparent volume of distribution for amiodarone was 31.1 L/kg. The peak plasma desethylamiodarone concentration of 0.08 microg/mL was attained 2.7 hours after IV administration. Neither parent drug nor metabolite was detected in urine, and protein binding of amiodarone was 96%. After oral administration of amiodarone, absorption of amiodarone was slow and variable; bioavailability ranged from 6.0% to 33.7%. The peak plasma amiodarone concentration of 0.14 microg/mL was attained 7.0 hours after oral administration and the peak plasma desethylamiodarone concentration of 0.03 microg/mL was attained 8.0 hours after administration. Median elimination half-lives of amiodarone and desethylamiodarone were 24.1 and 58.6 hours, respectively. CONCLUSION AND CLINICAL RELEVANCE: Results indicate that the pharmacokinetic distribution of amiodarone is multicompartmental. This information is useful for determining treatment regimens for horses with arrythmias. Amiodarone has low bioavailability after oral administration, does not undergo renal excretion, and is highly protein-bound in horses.  相似文献   

15.
The pharmacokinetics of flunixin were studied in 6 adult lactating cattle after administration of single IV and IM doses at 1.1 mg/kg of body weight. A crossover design was used, with route of first administration in each cow determined randomly. Plasma and milk concentrations of total flunixin were determined by use of high-pressure liquid chromatography, using an assay with a lower limit of detection of 50 ng of flunixin/ml. The pharmacokinetics of flunixin were best described by a 2-compartment, open model. After IV administration, mean plasma flunixin concentrations rapidly decreased from initial concentrations of greater than 10 micrograms/ml to nondetectable concentrations at 12 hours after administration. The distribution phase was short (t1/2 alpha, harmonic mean = 0.16 hours) and the elimination phase was more prolonged (t1/2 beta, harmonic mean = 3.14 hours). Mean +/- SD clearance after IV administration was 2.51 +/- 0.96 ml/kg/min. After IM administration, the harmonic mean for the elimination phase (t1/2 beta) was prolonged at 5.20 hours. Bioavailability after IM dosing gave a mean +/- SD (n = 5) of 76.0 +/- 28.0%. Adult, lactating cows (n = 6) were challenge inoculated with endotoxin as a model of acute coliform mastitis. After multiple administration (total of 7 doses; first IV, remainder IM) of 1.1 mg/kg doses of flunixin at 8-hour intervals, plasma flunixin concentrations were approximately 1 microgram/ml at 2 hours after each dosing and 0.5 micrograms/ml just prior to each dosing. Flunixin was not detected in milk at any sampling during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
OBJECTIVES: To determine pharmacokinetic characteristics of marbofloxacin after a single IV and oral administration and tissue residues after serial daily oral administration in chickens. ANIMALS: 40 healthy broiler chickens. PROCEDURE: Two groups of chickens (groups A and B; 8 chickens/group) were administered a single IV and oral administration of marbofloxacin (2 mg/kg). Chickens of group C (n = 24) were given serial daily doses of marbofloxacin (2 mg/kg, PO, q 24 h for 3 days). Plasma (groups A and B) and tissue concentrations (group C) of marbofloxacin and its major metabolite N-desmethyl-marbofloxacin were determined by use of high-performance liquid chromatography. Residues of marbofloxacin and N-desmethylmarbofloxacin were measured in target tissues. RESULTS: Elimination half-life and mean residence time of marbofloxacin in plasma were 5.26 and 4.36 hours after IV administration and 8.69 and 8.55 hours after oral administration, respectively. Maximal plasma concentration was 1.05 microg/ml, and interval from oral administration until maximum concentration was 1.48 hours. Oral bioavailability of marbofloxacin was 56.82%. High concentrations of marbofloxacin and N-desmethyl-marbofloxacin were found in the kidneys, liver, muscles, and skin plus fat 24 hours after the final dose of marbofloxacin; however, marbofloxacin and N-desmethyl-marbofloxacin were detected in only hepatic (27.6 and 98.7 microg/kg, respectively) and renal (39.7 and 69.1 microg/kg, respectively) tissues 72 hours after termination of marbofloxacin treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Analysis of pharmacokinetic data obtained in this study reveals that a minimal therapeutic dose of 2 mg/kg, PO, every 24 hours should be appropriate for control of most infections in chickens.  相似文献   

18.
A single-dose pharmacokinetic study of chloramphenicol in propylene glycol was done in 6 horses after 22 mg/kg was administered IV. Serum drug concentrations obtained at various predetermined intervals were determined by an electroncapture gas-chromatographic technique. The time-concentration data were described by a 2-compartment open model, and various pharmacokinetic variables were estimated. The median elimination rate constant was estimated to be -0.0185 minute-1 (-0.0225 to -0.0148 minute-1), and the median half-life was 37.36 minutes (30.74 to 46.90 minutes). The median apparent volume of distribution and total body clearance were 1.46 L/kg (1.13 to 1.60 L/kg) and 25.56 ml/kg/min (23.66 to 32.21 ml/kg/min), respectively. On the basis of these data, single- and repeat-dose kinetic studies were done in another group of 6 animals. The drug was administered at a dosage of 22 mg/kg every 4 hours for 3 days. Blood samples were obtained for pharmacokinetic studies after the first and the last doses were given. The half-life, volume of distribution, and total body clearance did not change significantly (Wilcoxon signed rank test) after 3 days of therapy with chloramphenicol. The IV dose schedule for treating bacterial infections with organisms of different sensitivities has been determined from the estimates of the pharmacokinetic variables. The limitations of calculating the dose schedules for chloramphenicol on the basis of pharmacokinetic variables in horses are discussed.  相似文献   

19.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

20.
OBJECTIVE: To determine pharmacokinetics and metabolic patterns of fenbendazole after IV and oral administration to pigs. ANIMALS: 4 mixed-breed female pigs weighing 32 to 45 kg. PROCEDURE: Fenbendazole was administered IV at a dose of 1 mg/kg. One week later, it was administered orally at a dose of 5 mg/kg. Blood samples were collected for up to 72 hours after administration, and plasma concentrations of fenbendazole, oxfendazole, and fenbendazole sulfone were determined by use of high-pressure liquid chromatography. Plasma pharmacokinetics were determined by use of noncompartmental methods. RESULTS: Body clearance of fenbendazole after IV administration was 1.36 L/h/kg, volume of distribution at steady state was 3.35 L/kg, and mean residence time was 2.63 hours. After oral administration, peak plasma concentration of fenbendazole was 0.07 microg/ml, time to peak plasma concentration was 3.75 hours, and mean residence time was 15.15 hours. Bioavailability of fenbendazole was 27.1%. Oxfendazole was the major plasma metabolite, accounting for two-thirds of the total area under the plasma concentration versus time curve after IV and oral administration. Fenbendazole accounted for 8.4% of the total AUC after IV administration and 4.5% after oral administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that fenbendazole was rapidly eliminated from plasma of pigs. The drug was rapidly absorbed after oral administration, but systemic bioavailability was low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号