首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
The dioxygen consumption by kraft lignin and several lignin model compounds during oxygen-alkali treatments were directly analyzed using a dioxygen fl owmeter. The average dioxygen consumption by 200 g of kraft lignin was about 3 moles. Because this value was as much as those obtained for monomeric phenolic lignin model compounds, guaiacol and vanillyl alcohol, it was postulated that not only phenolic but also nonphenolic moieties in kraft lignin are extensively oxidized. The dioxygen consumption by 0.5 moles (one equivalent of aromatic units) of a dimeric lignin model compound, guaiacylglycerol-β-guaiacyl ether (GG), was also similar to that for 1 mole of guaiacol and vanillyl alcohol, regardless of the type of the aromatic moiety, which supports the above postulation. The most plausible mechanism for the oxidation of nonphenolic moieties is the oxidation of side chains of residual β-O-4 substructures by active oxygen species. By this mechanism, nonphenolic moieties in kraft lignin and GG are converted into corresponding phenolic moieties, and the oxidation by dioxygen progresses. Part of this article was presented at the 13th International Symposium on Wood, Fiber, and Pulping Chemistry (13th ISWFPC), Auckland, New Zealand, May 2005  相似文献   

2.
The purpose of this study was to investigate the behavior of lignin and carbohydrates in kraft pulps during sulfuric acid bleaching. Beech kraft pulp and red pine kraft pulp were bleached with dilute sulfuric acid at pH 1.3 with addition of sodium nitrate and sodium nitrite at 100°C for 1 h. The pulps were then extracted with aqueous sodium hydroxide solution at 70°C for 1 h. Lignin and carbohydrates in the acid effluents and the alkali effluents were analyzed. The carbohydrate compositions of unbleached and bleached kraft pulps were also determined. The residual lignin in kraft pulp was degraded to a molecular size similar to that of milled wood lignin during sulfuric acid bleaching without additives, and it was further degraded to a much smaller molecular size during sulfuric acid bleaching with additives. It was found that the amount of carbohydrate dissolved in the bleach effluents were only about 1 of the dry weight of the kraft pulp under these bleaching conditions. The carbohydrates dissolved during bleaching were mostly of hemicellulose origin.Part of this report was presented at the 8th International Symposium on Wood and Pulping Chemistry, Helsinki, July 1995  相似文献   

3.
To investigate the bleaching mechanism, a lignincarbohydrate complex (LCC) model compound, a vinyl ether-type lignin model dimer, and a hexeneuronic acid model compound were treated with dilute sulfuric acid of different pHs. Beech kraft pulp and red pine kraft pulp were also treated with dilute sulfuric acid and then extracted with aqueous alkali. The amount of hexeneuronic acid degradation products in acid effluents and lignin dissolved in alkali effluents were determined. It was found that the benzyl ether-type LCC bond and the vinyl ether bond in lignin were effectively cleaved under the pH where sulfuric acid bleaching of kraft pulp was effective. Hexeneuronic acid group was also effectively degraded during sulfuric acid bleaching. In beech kraft pulp bleaching, both lignin removal and hexeneuronic acid removal contributed to the kappa number reduction. In red pine bleaching, the contribution of hexeneuronic acid removal was negligible, and most of the kappa number reduction was achieved by the lignin removal.Part of this report was presented at the 9th International Symposium on Wood and Pulping Chemistry, Montreal, July 1997  相似文献   

4.
A new method is applied to evaluate the progress of the oxidation reaction of lignin during oxygen-alkali treatment. This method employs the difference in permanganate consumption of the sample before and after the oxygen-alkali treatment as an indication for the lignin oxidation. When kraft lignin and residual lignin isolated from unbleached softwood kraft pulp were subjected to oxygen-alkali treatment up to 6000min, the progress of the oxidation expressed by this method was separated into clearly distinguished three phases. During the first and second phases, the progress of oxidation was well correlated to the loss of methoxyl group and to the decrease in the yield of nitrobenzene oxidation products. The addition of Mn+ to the oxygen-alkali treatment depressed oxidation during the second phase partly and that during the third phase almost completely. Calculations based on the change in the permanganate consumption revealed that the oxidation during the first phase corresponded to 4.2 electrons abstracted from one lignin structural unit on average. The oxidation process by oxygen-alkali treatment was hypothetically attributed to the direct reaction between molecular oxygen and the phenolic unit of lignin, which mainly took place during the first phase, and to the autooxidation-type oxidation during the second and third phases.Part of this paper was presented at the 9th ISWPC, Montreal, June 1997; and at the 42nd Lignin Symposium, Sapporo, October 1997  相似文献   

5.
To investigate the linkage types between carbohydrates and lignin, residual lignins were isolated from three different unbleached pulps [kraft, alkaline sulfite anthraquinone methanol (ASAM), and soda with anthraquinone (AQ) and methanol] of spruce and beech wood and then characterized by oxidation with 2,3-Dichloro-5,6-dicyanobenzoquinone and followed by Prehm’s methylation. In residual lignins, sugar moieties were bound to lignins via benzyl ether bonds. In particular, galactose and mannose are predominantly linked to lignin fragments in residual lignins of spruce wood, while xylose and galactose are favored in the formation of LC bonds in the residual lignins of beech wood. In the case of hexoses, primary hydroxyl groups (C6 position) preferentially take part in benzyl ether linkages. Hydroxyl groups in the C2 and C3 positions of xylose participate in LC bonds and a small portion of arabinose was notably connected to lignin via the C5 position. Approximately seven or eight sugars were connected in soda/AQ/methanol residual lignin per 100 C9 lignin units, while the frequencies of LC bonds in kraft and ASAM residual lignins were distinctively less at one to three sugars per 100 C9 lignin units. The publication of this article was made possible by an Emachu Research Fund. The authors are grateful for the fund.  相似文献   

6.
Softwood kraft lignin was subjected to alkaline oxygen treatment in a fundamental study of lignin degradation. Two different spectral changes were observed in the time course of ultraviolet-visible spectra along with the progress of the treatment. These spectral changes could be recognized as proceeding along certain temporal functions that were based on second-order decays with different halflives. The spectral changes were defined as “fast change” and “slow change.” The fitting studies on the amount of total protons on the unsaturated and aromatic systems, the amount of unconjugated phenolic substructure determined by differential ionization spectra, and the amount of methoxyl group with temporal functions showed that two reaction types (formation of muconate derivatives and ortho-quinone derivatives) can be expected as the major modification types occurring during fast change. The fitting study of the time course of infrared attenuated total reflectance (ATR) spectra gave corresponding infrared ATR spectral features of fast and slow changes. The occurrence of the formation of muconate derivatives by fast change was strongly supported by the spectral feature of fast change. On the other hand, it is suggested that the aromatic structure of lignin was further degraded during slow change. In addition, formation of resistant phenolic substructures is suggested as another possible modification type occurring by fast change. Parts of this article were presented at the 13th International Symposium on Wood, Fiber, and Pulping Chemistry, Auckland, New Zealand, May 2005  相似文献   

7.
For the fundamental study of oxygen delignification of kraft pulp, structural changes of kraft lignin during alkaline oxygen treatment were investigated with the use of infrared measurement with attenuated total reflectance (ATR) technique. In the neutralized reaction mixture of alkaline oxygen-treated kraft lignin, there is a significant amount of NaCl, so that the spectral changes of water due to the coexistence of NaCl was investigated, and how to remove the huge absorption of NaCl solution is discussed. Sodium vanillate–NaCl solutions were employed as model solutions for the reaction mixture. Partial least square (PLS) regression was applied for the prediction of NaCl concentration, and the spectrum of NaCl solution was subtracted from the spectrum of sodium vanillate–NaCl solution as background measurement. This allowed us to obtain the vanillate spectra free from the absorption of NaCl solution. In addition, the mathematical method for reconstructing the spectrum of NaCl solution is discussed. The spectrum of NaCl solution is reconstructed as the linear combination of basic spectra calculated by singular value decomposition (SVD), and it was subtracted from that of the sodium vanillate–NaCl solution. By this procedure, the vanillate spectra were also obtained quantitatively, as has been demonstrated in PLS regression study. It was also confirmed that the quantitative spectra of high molecular weight fraction of alkaline oxygen-treated kraft lignin were obtained by the use of this reconstruction technique.Parts of this report were presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, Japan, April 2002 and the 12th International Symposium on Wood and Pulping Chemistry, Madison, USA, June 2003  相似文献   

8.
A modified method was developed to evaluate how much chlorine is consumed by the oxidation reaction during the chlorine bleaching process. This evaluation is, in principle, based on the sum of chloride produced during the chlorination stage (C-stage) and produced during alkali treatment of both the C-stage effluent and the chlorinated pulp. Results obtained by this method proved that about 50%–75% of chlorine was consumed by the oxidation reaction during chlorine bleaching, depending on the reaction condition of chlorination. Even under a reaction condition that is not favorable to an oxidation reaction (low pH), approximately three electrons were abstracted from one lignin structural unit by chlorine bleaching. This result provides additional evidence for our recent observation that lignin is extensively oxidized during chlorine bleaching even when pure chlorine without any chlorine dioxide substitution was used.Part of this paper was presented at the 40th Lignin Symposium. Tsukuba, Japan, October 12, 1995  相似文献   

9.
To develop a new nonchlorine bleaching technology, hardwood and softwood kraft pulps, before and after oxygen-alkali predelignification, were treated with dilute sulfuric acid solutions (pH 1.0-1.8) at 100°C for 1 h and then extracted with aqueous sodium hydroxide at 70°C for l h. Hardwood kraft pulp was successfully bleached. The delignification selectivity was similar to that seen with oxygen-alkali bleaching; and it was greatly enhanced by the addition of sodium nitrate and sodium nitrite. The sulfuric acid bleaching can replace the presently adopted oxygen and chlorine stages if the additives are allowed. This bleaching process was also effective for oxygen-bleached hardwood kraft pulp, but it was less effective for softwood kraft pulp and oxygen-bleached softwood kraft pulp. The effectiveness of the addition of sodium nitrate and sodium nitrite was more apparent for softwood kraft pulp than for hardwood kraft pulp.Part of this report was presented at the 7th International Symposium on Wood and Pulping Chemistry, Beijing, July 1993  相似文献   

10.
The progress of lignin oxidation during oxygenalkali bleaching of pulp was evaluated by the method based on the difference between permanganate consumption of original pulp and that of the mixture of pulp and effluent after oxygen-alkali bleaching. By low-consistency oxygen bleaching of softwood kraft pulp, the permanganate consumption decreased very little. When the kappa number of the pulp was halved (from 25.4 to 13.4), the decrease in permanganate consumption of 1 g pulp was only 1.22ml of 0.02mol/l potassium permanganate. This value was smaller than that obtained for the oxygen-alkali treatment of a corresponding amount of isolated residual lignin, 6.40ml. This was not due to the slow oxidation of lignin in pulp but to the formation of permanganate-consuming substances from carbohydrates. Those newly formed substances cannot be oxidized by oxygen-alkali treatment. Taking these facts into account, lignin originally present in pulp was found to be oxidized well. Reduction of carbonyl groups in carbohydrates prevented the formation of such substances.Part of this paper was presented at the 10th ISWPC, Yokohama, June 1999; and at the 43rd Lignin Symposium, Fuchu, October 1998  相似文献   

11.
We investigated the impact of residual extractives on lignin determination by lignin content difference between unextracted and extracted pulps, residual extractives analysis, and lignin content contribution from model extractive compounds. There were two different kinds of extractives in aspen kraft pulp. The extractives impacting on kappa number determination were well removed in oxygen delignification; these were mainly unsaturated fatty acids. However, the extractives impacting on Klason lignin determination were largely resistant to oxygen delignification; these were mainly saturated fatty acids, sterols, and hydrocarbons. Oxidation of unsaturated fatty acids was the main reaction in oxygen delignification. These trends were confirmed by simulation of lignin content determination with three model extractive compounds (β-sitosterol, linoleic acid, and palmitic acid). The publication of this article was made possible by an Emachu Research Fund. The authors are grateful for the fund.  相似文献   

12.
Sugi (Cryptomeria japonica D. Don) and buna (Fugus crenata Blume) woods were treated with supercritical water (>374°C, >22.1 MPa) and fractionated into a water-soluble portion and a water-insoluble residue. The latter was washed with methanol to be fractionated further into a methanol-soluble portion and a methanol-insoluble residue. Whereas the carbohydrate-derived products were in the water-soluble portion, most of the lignin-derived products were found in the methanol-soluble portion and methanol-insoluble residue. The lignin-derived products in the methanol-soluble portion were shown to have more phenolic hydroxyl groups than lignin in original wood. The alkaline nitrobenzene oxidation analyses, however, exhibited much less oxidation product in the methanol-soluble portion and methanol-insoluble residue. These lines of evidence suggest that the ether linkages of lignin are preferentially cleaved during supercritical water treatment. To simulate the reaction of lignin, a study with lignin model compounds was performed;-O-4-type lignin model compounds were found to be cleaved, whereas biphenyl-type compounds were highly stable during supercritical water treatment. These results clearly indicated that the lignin-derived products, mainly consisting of condensed-type linkages of lignin due to the preferential degradation of the ether linkages of lignin, occurred during supercritical water treatment.This study was presented in part at the 45th lignin symposium, Ehime, Japan, October, 2000; and the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1988  相似文献   

13.
The bast and core of kenaf,Hibiscus cannabinus L., have markedly different chemical components and alkaline cooking responses. The bast had about double the hot-water extractives content and only about half the lignin content of the core. The core contained a large amount of hemicellulose, mostly composed of xylan. The lignin structures of bast and core were also quite different: The former had a significant abundance of syringyl structures. Evidence showed that the bast was much more easily delignified than the core. When the bast and core were cooked together in alkaline condition, the pulp yields at the same kappa number were higher than those of the individual pulpings of bast and core. The bast-core pulping gave a positive effect on the yield of bast pulp in the sodaanthraquinone and kraft pulpings. On the other hand, kenaf was abundant in the hot water extractives. These extractives consumed alkali during cooking to a relatively large extent but acted as a protector of hemicellulose and slightly increased the pulp yields.Part of this paper was presented at the 48th and 49th Annual Meetings of the Japan Wood Research Society, Shizuoka, April 3–5, 1998 and Tokyo, April 3–5, 1999  相似文献   

14.
对氧碱漂白过程中木质素氧化进行定量分析,分析方法是基于氧化前后高锰酸钾消耗量的变化。该方法对溶出残余木质素的氧化结果分析发现其呈明显3个阶段:第一段木质素氧化的当量电荷数约4~5/木质素单元;木质素总氧化电荷数大约为9/木质素单元。这些数据以及甲氧基的脱除(75%)均表明:木质素的氧化不仅发生在酚型木质素单元,同时也发生在非酚型结构单元上。只有第一阶段氧化反应是木质素与氧气直接反应,而在第二、三阶段主要是协同氧化作用,氧化反应过程中产生的活性氧基团扮演了一定角色。通过对低浓度针叶材硫酸盐浆的氧漂研究发现:当卡伯值下降一半(25.4至13.4)时平均每个木质素单元氧化3当量电子,氧漂后的纸浆中仍然有大量未被氧化的残余木质素。定量地证明了在氧漂过程中木质素氧化是脱木质素反应的实质。  相似文献   

15.
A purified softwood kraft lignin was modified by ozone treatment and its activity as an acid soil conditioning agent, mainly focusing on elimination of aluminum toxicity, was assayed by planting experiments. The growth of radish root was examined in nutrient solution containing CaCl2 and AlCl3 at pH 4.8 with and without modified kraft lignins. The modified kraft lignins that absorbed 1.8 and 3.9 moles of ozone per C6-C3 unit (M w 180) showed two effects: the elimination of aluminum toxicity and the acceleration of root growth. The effect on the elimination of aluminum toxicity was observed even with modified kraft lignin that absorbed 1.0 mole of ozone per C6-C3 unit. The high molecular weight part of the modified kraft lignin that absorbed 3.9 moles of ozone per C6-C3 unit also proved to be effective not only in elimination of aluminum toxicity but also in acceleration of root growth. The acceleration effect of ozone-treated lignins on root growth was also observed under the absence of aluminum in planting experiments. This report was presented in part at the 56th Annual Meeting of the Japan Wood Research Society, Akita, Japan, August 2006  相似文献   

16.
Summary The methoxyl loss from softwood kraft pulp during chlorine dioxide treatment can be accounted for by methanol and the methoxyl content of dissolved organic material in the bleach filtrate. This was established by a methoxyl group mass balance made at different bleaching times. It was found that ClO2 rather than the in-situ generated hypochlorous acid is mainly responsible for the methanol formation. It was shown that fully methylated pulp is hardly demethylated by ClO2 under industrial ClO2 bleaching conditions when hypochlorous acid is effectively captured. Furthermore, the rates of formation of methanol and methoxyl group containing dissolved organic material are proportional to each other. The experimental evidence suggest that demethylation and delignification are closely related during ClO2 treatment of softwood kraft pulp.  相似文献   

17.
Attempts were made to obtain high-resolution images of an unbeaten bleached softwood kraft pulp fiber surface in water by applying contact mode atomic force microscopy. However, clear topographic images could not be obtained. In order to investigate the possibility of deformation of a pulp fiber surface during scanning, force curve measurements were applied to pulp fiber surfaces. It was found that a pulp fiber in water had a more deformable surface than an air-dried pulp fiber in air. Moreover, the spring constant of it was estimated to be close to that of a cantilever applied for imaging. Therefore, the images of a pulp fiber surface in water were thought to be significantly affected by deformation, which was considered to be an important cause of the unclear images. Parts of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, Japan, March 2003, the 54th Annual Meeting of the Japan Wood Research Society, Hokkaido, Japan, August 2004, the 12th International Symposium on Wood and Pulping Chemistry, Madison, USA, June 2003, and the 13th International Symposium on Wood, Fiber and Pulping Chemistry, Oakland, New Zealand, May 2005  相似文献   

18.
Plant growth tests were performed with radish (Raphanus sativa var. radicula Pers.) in culture solutions containing low molecular weight compounds in the presence of aluminum to determine the types of functional groups in kraft lignin (KL) modified with ozone and alkali that contributed to reducing aluminum toxicity. The low molecular weight compounds used in this study contained carboxyl, formyl, methoxyl, alcohol hydroxyl, and phenolic hydroxyl groups. The compounds that had adjacent two carboxyl groups (oxalic acid), carboxyl/alcohol hydroxyl groups (glycolic acid), or carboxyl/formyl groups (glyoxylic acid) were effective in reducing aluminum toxicity. Malonic acid, having two carboxyl groups, also reduced aluminum toxicity. The ability of ozone-treated KLs to reduce aluminum toxicity was considered to be partly due to these chemical structures. Protocatechuic acid, having two adjacent phenolic hydroxyl groups, was also effective in reducing aluminum toxicity. This indicated that the effectiveness of the alkaline-treated KL was partly due to its catechol structure. This report was presented in part at the 58th Annual Meeting of the Japan Wood Research Society, Tsukuba, Japan, March 2008  相似文献   

19.
Wood charcoal carbonized at various temperatures was analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffractometry to investigate the changes of chemical structures during the carbonization process. From the infrared spectra, the carbon double bonds and aromatic rings were seen to form at a carbonization temperature of about 600°C. From the XPS spectra, the ratio of aromatic carbons increased in the temperature range 800–1000°C and over 1800°C. The condensation of aromatic rings proceeded as carbonization progressed. The drastic reduction of electrical resistivity of charcoals was observed in almost the same temperature range. It was found that the condensation of aromatic rings had some relation to the decline in electrical resistivity. Wood charcoal carbonized at 1800°C was partly graphitized, a finding supported by the results of X-ray diffraction and XPS. The functional groups containing oxygen diminished with the increase in carbonization temperature.This paper was presented at the 45th Annual Meeting of the Japan Wood Research Society in Tokyo, April 1995 and at the 47th Annual Meeting of the Japan Wood Research Society in Kochi, April 1997  相似文献   

20.
Summary The thermal stability of papermaking pulps under conditions of accelerated aging and at pyrolytic temperatures was examined. Degradation was found to be extremely complex and influenced by both the technical processes of papermaking and by the experimental methods used. At moderate temperatures, as used for accelerated aging, the folding endurance test was found to be a sensitive measure of degradation. Methods of reducing the variability of the test were considered, and a new technique capable of handling widely different results was developed and evaluated.Several papermaking pulps were artificially aged and the resultant loss of strength attributed to the interaction between a gradual fiber strength reduction and a rapid increase in interfiber bonding. Excessive initial inter-fiber bonding decreased handsheet stability. Softwood sulfite and kraft pulps were more stable than a birch kraft pulp, but the behavior of sulfite pulps varied greatly. The presence of lignin or a high hemicellulose content was not of itself sufficient to cause rapid aging.The pyrolytic behavior of pulps was investigated using thermogravimetric analysis. Papermaking pulps had mean pyrolytic activation energies between 30–45 kcal/mole. The activation energy decreased as the reaction proceeded. Correlation of these activation energies with the rate of loss of physical properties during accelerated aging was not good. The results indicated that the rate determining reactions for pyrolysis and for low temperature degradation are different but that the pyrolytic behavior is partially determined by the supramolecular structure. Empirical stability indices, based on both the integral and differential thermograms, were calculated, and these correlated well with the relative rates of loss of physical properties.A large part of this paper is based on the thesis of R. D. Carwell. Contributions were also made by L. Lyon and M. C. Varshney. This work was partially funded by the National Bureau of Standards  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号