首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
张继义  王龙 《安徽农业科学》2013,41(8):3622-3623,3681
根据联合国政府间气候变化专门委员会(IPCC)2006年提出的能源碳排放计算方法,计算了甘肃省1995~2009年化石燃料消费的CO2排放量。结果表明,1995年以来,甘肃省化石燃料消费的CO2排放量呈增加趋势,排放强度不断下降,由1995年的11.01 t/万元下降到2009年的3.42 t/万元。甘肃省化石燃料消费增长迅速,但化石燃料消费结构变化不大。未来甘肃省节能减排压力巨大,要提高化石燃料的利用效率,同时加大可再生能源在能源消费结构中的比重,尤其加大对太阳能和风能的利用。  相似文献   

2.
Land clearing and the biofuel carbon debt   总被引:8,自引:0,他引:8  
Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.  相似文献   

3.
A comparison of the contribution of various gases to the greenhouse effect   总被引:8,自引:0,他引:8  
Rodhe H 《Science (New York, N.Y.)》1990,248(4960):1217-1219
The current concern about an anthropogenic impact on global climate has made it of interest to compare the potential effect of various human activities. A case in point is the comparison between the emission of greenhouse gases from the use of natural gas and that from other fossil fuels. This comparison requires an evaluation of the effect of methane emissions relative to that of carbon dioxide emissions. A rough analysis based on the use of currently accepted values shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect as long as its leakage can be limited to 3 to 6 percent.  相似文献   

4.
The major source of energy comes from fossil fuels.The current situation in the fi eld of fuel and energy is becoming more problematic as world population continues to grow because of the limitation of fossil fuels reserve and its pressure on environment.This review aims to fi nd economic,reliable,renewable and non-polluting energy sources to reduce high energy tariffs in Russian Federation.Biofuel is fuel derived directly from plants,or indirectly from agricultural,commercial,domestic,and/or industrial wastes.Other alternative energy sources including solar energy and electric power generation are also discussed.Over 100 Mt of biomass available for energy purposes is produced every year in Russian.One of the downsides of biomass energy is its potential threatens to food security and forage industries.An innovative approach proved that multicomponent fuel(80%diesel oil content for motor and 64%for in stove fuel)can remarkably reduce the costs.This paper proposed that the most promising energy model for future is based on direct solar energy conversion and transcontinental terawatt power transmission with the use of resonant wave-guide technology.  相似文献   

5.
能源及其引致的碳排放等相关问题已经成为影响人类社会发展全局和全球政治经济格局的重大战略问题.中国是世界上最大的发展中国家,面临着更严峻的能源挑战.节约能源、大幅度改善能源效率是我国应对能源和气侯变化挑战的一条极其重要且有效途径.本文综合考量了能源结构、能源强度、能源效率及经济增长等4个因素对碳排放的影响,基于因素分解模型,应用LMDI分解方法对中国一次能源利用的CO2排放及碳排放强度变化进行了研究,研究发现二氧化碳排放增加主要是由于经济增长、人口规模扩大引起的.在此基础上提出了碳减排的政策建议.  相似文献   

6.
Ethanol for a sustainable energy future   总被引:3,自引:0,他引:3  
Renewable energy is one of the most efficient ways to achieve sustainable development. Increasing its share in the world matrix will help prolong the existence of fossil fuel reserves, address the threats posed by climate change, and enable better security of the energy supply on a global scale. Most of the "new renewable energy sources" are still undergoing large-scale commercial development, but some technologies are already well established. These include Brazilian sugarcane ethanol, which, after 30 years of production, is a global energy commodity that is fully competitive with motor gasoline and appropriate for replication in many countries.  相似文献   

7.
A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.  相似文献   

8.
Climate impact of increasing atmospheric carbon dioxide   总被引:2,自引:0,他引:2  
The global temperature rose by 0.2 degrees C between the middle 1960's and 1980, yielding a warming of 0.4 degrees C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage.  相似文献   

9.
Brazil's energy options and current outlook are examined, and a summary of known reserves of fossil and renewable energy resources is given. Brazil has abundant renewable energy resources but very modest reserves of fossil fuels. Consequently, the emphasis in the future will have to be on the utilization of solar energy, hydroelectric power, and biomass in a program designed to preserve local traditions and culture.  相似文献   

10.
In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by electrolysis, from coal, and directly from thermal energy could be found that are less expensive than those now available; inexpensive fuel cells could be developed, and high-temperature turbines could be used for the efficient conversion of hydrogen (and oxygen) to electricity. The use of hydrogen as an automotive fuel would be a key factor in the development of a hydrogen energy economy, and safe storage techniques for carrying sufficient quantities of hydrogen in automotive systems can certainly be developed. The use of hydrogen in automobiles would significantly reduce urban pollution because the dispersed fossil fuel emissions would be replaced by radioactive wastes generated at large central stations. The conversion of internal or external combustion engines for combustion of hydrogen fuel would probably have less economic impact on the automotive industry than the mass introduction of electric automobiles. However, this is a subject that requires more detailed study. All of the safety aspects of hydrogen utilization will have to be examined, especially the problems of safety in the domestic use and the long distance transport of hydrogen in pipelines at high pressures. It is our opinion that the various energy planning agencies should now begin to outline the mode of implementing hydrogen energy delivery systems in the energy economy. The initial transition to hydrogen energy derived from available fossil fuels such as coal should be considered together with the long range view of all the hydrogen being derived eventually from nuclear energy. By the year 1985 when petroleum imports may be in excess of the domestic supply, these plans could set the stage for the transition period from fossil to a predominantly nuclear energy economy able to supply abundant synthetic fuels such as hydrogen. Synthetic fuels will obviously be more expensive than fuels now derived from petroleum; however, there may be no other viable choice. Thus, it is essential that the analysis and technological feasibility of a hydrogen energy system be considered now. It is of vital importance to the nation to develop some general-purpose fuel that can be Produced from a variety of domestic energy sources and reduce our dependence on imported oil.  相似文献   

11.
Carbon dioxide builds up in the eartht's atmosphere principally from increased use of fossil fuels. Estimates of the escalating uses of fossil fuels in the United States, especially for the generation of electric power and in the internal combustion engine, show that by the year 2000 emissions will have increased approximately eighteenfold from 1890. In the period 1965 to 1985 an emission-rate increase of around 4.0 percent per year compounded is expected. The expected intrusion and expansion of nuclear power will tend to lower the rates of increase of emission after 1985. Increases in emission rates in the rest of the world will probably equal or exceed the values projected for the United States.  相似文献   

12.
Purves D  Pacala S 《Science (New York, N.Y.)》2008,320(5882):1452-1453
Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.  相似文献   

13.
The late Mesozoic rock and life records implicate short-term (up to 10(5) to 10(6) years) global warming resulting from carbon dioxide-induced "greenhouse" conditions in the late Maestrichtian extinctions that terminated the Mesozoic Era. Oxygen isotope data from marine microfossils suggest late Mesozoic climatic cooling into middle Maestrichtian, and warming thereafter into the Cenozoic. Animals adapting to climatic cooling could not adapt to sudden warming. Small calcareous marine organisms would have suffered solution effects of carbon dioxide-enriched waters; animals dependent upon them for food would also have been affected. The widespread terrestrial tropical floras would likely not have reflected effects of a slight climatic warming. In late Mesozoic, the deep oceanic waters may have been triggered into releasing vast amounts of carbon dioxide into the atmosphere in a chain reaction of climatic warming and carbon dioxide expulsion. These conditions may be duplicated by human combustion of the fossil fuels and by forest clearing.  相似文献   

14.
Popp M 《Science (New York, N.Y.)》1982,218(4579):1280-1285
After more than 25 years of development of nuclear power and almost 10 years of research and development in numerous areas of nonnuclear energy, there is now a good basis for judging the future prospects of energy technologies in the Federal Republic of Germany. The development of nuclear power has provided an important and economically advantageous new source of energy. Further efforts are needed to establish the nuclear fuel cycle in all stages and to exploit the potential of advanced reactors. In all other areas of energy technology, including energy conservation, new energy sources, and coal, economics has turned out to be the key problem, even at today's energy prices. Opportunities to overcome these economic problems through additional R & D are limited. There is some potential for special applications, and there are many technologies that could contribute to the energy supply of developing countries. In general, however, progress in energy conservation and the use of renewable energy sources will depend on the degree to which energy policy measures can improve their economic basis. For some technologies, such as solar thermal power stations and coal liquefaction, large-scale economic deployment cannot be foreseen today. Instead of establishing costly demonstration projects, emphasis will be put on improving key components of these technologies with the aim of having the most advanced technology available when the economic parameters are more favorable.  相似文献   

15.
Most studies of energy supply and demand ignore either global inter-dependence or the long time spans necessary to adjust to new energy sources. The International Institute for Applied Systems Analysis has therefore studied on a global scale, for seven major world regions, the balance between energy supply and demand for the next 50 years. Reported here are the results for two benchmark scenarios. In the "low" scenario world energy consumption increases from today's 8.2 terawatt-year per year to 22 terawatt-year per year in 2030; in the "high" scenario, consumption increases to 35 terawatt-year per year. The study showed that time will be the limiting constraint in adapting the energy supply infrastructure to changing resource availability; resources will be available until the second half of the next century, but a strong shift will be required to low-grade fossil fuels such as shale oil and tar sands. Each scenario studied indicated increased environmental problems associated with increased use of fossil fuels, and potential geopolitical problems associated with the world distribution of resources.  相似文献   

16.
气候变化对中国冬小麦生产的影响   总被引:12,自引:0,他引:12  
气候变化会对中国冬小麦生产带来深远的影响。CO_2浓度升高和气候变暖有利于冬小麦种植区向春麦区扩展,主要表现在辽宁、河北、陕西、内蒙古等种植边界的显著北移和青海、甘肃种植边界的显著西扩;CO_2浓度升高还会促进小麦根、茎、叶的生长,提高叶片光合速率和氮素的吸收与利用,有利于产量提高。但气候变化在中国还表现为太阳辐射的下降,冬小麦主产区黄淮海麦区和长江中下游麦区下降更为显著,试验研究表明,长期弱光小麦产量降幅可达6.4%~25.8%。温度升高对小麦产量的影响目前尚无明确定论;不同生育期降雨量变化对小麦产量的影响不同,生育前期降水量增加有利于小麦产量的提高,而后期则会导致一定的减产。然而,最值得关注和警惕的是高温与低温以及降水时空分布不均导致的干旱和渍水等极端气象灾害事件,随着全球气候变化发生频率显著增加,严重影响了小麦的生产,尤其是生育中后期的逆境将导致小麦结实粒、千粒重显著下降,造成产量锐减。此外,气候变化导致的病虫草害加剧不仅导致减产,还将显著增加生产成本,不利于小麦生产。  相似文献   

17.
Carbon sequestration from large sources of fossil fuel combustion, particularly coal, is an essential component of any serious plan to avoid catastrophic impacts of human-induced climate change. Scientific and economic challenges still exist, but none are serious enough to suggest that carbon capture and storage will not work at the scale required to offset trillions of tons of carbon dioxide emissions over the next century. The challenge is whether the technology will be ready when society decides that it is time to get going.  相似文献   

18.
The energy required to build and install solar space- and water-heating equipment is compared to the energy it saves under two solar growth paths corresponding to high and low rates of implementation projected by the Domestic Policy Review of Solar Energy. For the rapid growth case, the cumulative energy invested to the year 2000 is calculated to be (1/2) to 1(1/2) times the amount saved. An impact of rapid solar heating implementation is to shift energy demand from premium heating fuels (natural gas and oil) to coal and nuclear power use in the industries that provide materials for solar equipment.  相似文献   

19.
根据西安辐射站太阳总辐射资料和周围23个气象台站日照百分率资料,建立1961-2009年西安市太阳总辐射资料时间序列,运用模糊聚类分析法将全市分为3个区,采取滑动t检验法进行突变检验及阶段分析,研究西安太阳总辐射的时空分布及变化特征.同时引用西安历年城区人口数据,对城区太阳总辐射与城市发展进行了相关性分析.结果表明:西安太阳总辐射具有东部多、西部次之、中部少的分布特征;1961-2009年呈波段减少的变化趋势,线性倾向率为-2.01%/10a,其中1977-1991年为显著减少阶段,以中部减少幅度最大;其间出现两次突变,突变年分别为1977年及1992年;城市发展带来大气污染物的增加,造成西安城区太阳总辐射对城市发展有较大的响应,西安城市发展对太阳总辐射季节影响上表现为冬、夏季远大于春、秋季.  相似文献   

20.
旅游目的地系统碳源、碳汇的计算与分析,不仅是旅游业节能减排政策制定的重要依据,也是旅游与环境相互关系研究的一个新的科学命题。以庐山风景区为例,计算并分析了2010年的碳源及碳汇。结果表明:(1)2010年庐山风景区包括本地居民和旅游者的总碳排放为108 697 t。其中,本地居民占碳排放总量的19.52%,旅游者占碳排放总量的80.48%。在旅游者碳排放中,旅游交通碳排放占50.24%,旅游住宿碳排放占38.04%,旅游食物消费碳排放占10.65%,旅游活动碳排放仅占1.07%;(2)2010年庐山风景区内陆地生态系统碳吸收为9 447 t;(3)从碳源、碳汇均衡角度看,庐山陆地生态系统的固碳量吸收了区内碳排放的23.47%。但由于旅游者的区际流动和旅游业的产业关联性强,陆地生态系统的碳吸收仅占区内和区外碳排放总量的8.69%,旅游业使庐山成为一个显著的碳源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号