首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物抗旱分子机理   总被引:16,自引:0,他引:16  
植物能够通过渗透调节、脱水保护、代谢调整等多种途径适应干旱胁迫。在受到轻度干旱胁迫时,渗透调节是主要途径。当干旱胁迫的强度超出渗透调节的范围时,失水成为必然,Lea蛋白及糖类等脱水保护物质在植物中的积累有利于保护生物大分子,尤其是膜系统免受破坏。长期轻度干旱能改变某些植物的代谢途径,有利于植物适应干旱环境。主要阐述了与渗透调节、脱水保护、代谢调整相关的基因表达调控及抗旱基因工程的研究进展。  相似文献   

2.
植物干旱胁迫响应机制研究进展   总被引:3,自引:2,他引:1  
干旱是限制植物生长的重要因素,会诱导植物产生渗透失衡、膜系统损伤、呼吸与光合速率降低等不良反应,不仅妨碍植物各阶段的生长代谢,还影响农作物的高质高产。在与外部环境的互作过程中,植物会产生干旱响应,如通过根系和叶片结构、代谢物质成分的改变以及抗旱基因的表达来抵御干旱胁迫。从表型水平、生理水平和分子水平阐述了植物干旱胁迫响应的研究进展。其中,植物表型水平的干旱胁迫响应主要体现在根系和叶片的结构改变,而植物生理水平的干旱胁迫响应主要体现在光合作用、渗透调节代谢、抗氧化代谢和激素物质等方面,详细阐述了植物干旱胁迫响应的分子机制及参与其中的调节基因和功能基因,对研究中存在的问题进行了讨论,展望了植物干旱胁迫响应的研究前景。  相似文献   

3.
干旱是植物面临最主要的环境胁迫,植物长期在干旱环境下生存,形成了一系列抵御干旱逆境的生理机制。研究植物响应干旱的生理机制是当前抗旱研究中的热点。文章综述了植物适应干旱的类型,气孔调节、代谢调节、渗透调节、干旱信号传递等适应干旱的生理机制,并分析了其发展趋势。  相似文献   

4.
植物干旱适应的研究进展   总被引:2,自引:0,他引:2  
植物在生长季节经常受到各种环境的胁迫,其中干旱是其中的一个主要因素。干旱诱发植物产生各种生理生化反应从而改变作物的产量。笔者从植物在干旱条件下的光合能力、渗透调节、信号传导和活性氧代谢等方面论述了植物对干旱适应的策略和反应。  相似文献   

5.
干旱、盐渍和低温等渗透胁迫因素是导致植物生长缓慢、农作物减产的主要非生物胁迫因素。在轻度渗透胁迫环境下,农作物主要通过合成渗透调节物质来抵御干旱、盐渍等。脯氨酸是农作物体内分布最广的渗透调节物质之一,二氢吡咯-5-羧酸合成酶(Δ1-pyrroline-5-carboxyl-atesynthetase,P5CS)是植物体内合成脯氨酸的关键酶。为此,综述了渗透调节在农作物抗渗透胁迫中的作用,脯氨酸的生物合成,P5CS在植物脯氨酸合成中的作用及其转基因工程的研究进展。  相似文献   

6.
干旱胁迫对苹果树苗活性氧代谢及渗透调节的影响   总被引:3,自引:0,他引:3  
以1年生“红富士”苹果苗为试验材料,采用盆栽控水的方法,研究了土壤干旱和复水过程中苹果树苗叶片活性氧代谢及渗透调节物质含量的变化,探讨苹果树苗适应逆境干旱的可能生理机制.结果表明:干旱胁迫条件,果叶片O(-)2产生速率、H2O2和MDA含量随胁迫时间和程度而逐步增加,证明干旱胁迫导致活性氧积累,引膜脂过氧化作用;产生速率与MDA含量呈显著相关,H2O2含量与MDA含量呈极显著相关.在干旱处理过程中,SOD、POD和APX 3种保护酶活性呈现一定规律的变化.在干旱的初期(轻度干旱)其活性呈轻微升高或降低趋势,经短暂的适应后,其活性明显上升,通常在接近严重干旱时活性随之降低.这表明适度干旱条件下保护酶活性的提高能有效清除植株体内过多的活性氧,提高了苗木适应干旱胁迫的能力.干旱条件下脯氨酸、可溶性糖含量显著升高,是主要渗透调节物质.经过一定时期的干旱处理后恢复水分供应(复水处理),几种保护酶活性和渗透调节物质的含量均降低,但总体仍然明显高于对照,这说明经适度的干旱胁迫能提高或增强相关抗逆生理基础,对树苗以后的生长和适应逆境是有利的.  相似文献   

7.
园林地被植物抗旱机制研究进展   总被引:2,自引:2,他引:2  
干旱是环境胁迫主要因子之一,严重影响植物的分布与生长发育。本文综述了园林地被植物的根、叶等形态结构特征与抗旱性的关系,总结了干旱胁迫下植物自身的渗透调节、光合生理、膜透性、活性氧代谢对干旱胁迫的响应机理及抗旱分子生物学研究进展。  相似文献   

8.
植物抗旱机理研究进展   总被引:24,自引:1,他引:24  
干旱严重影响了植物的生长发育,从植物形态结构、渗透调节性物质、脱水保护、代谢调整及抗旱基因的克隆等几个方面,较为全面地探讨了植物抗旱、耐旱的机制及研究进展。  相似文献   

9.
干旱严重影响植物生长发育甚至降低作物产量、品质。为了应对干旱胁迫,植物体内会有大量基因被诱导表达,以便适应或抵御干旱胁迫,其中功能基因是干旱胁迫调控通路的终端,直接起保护作用。功能基因主要包括渗透调节物质合成相关基因、活性氧清除相关基因、直接保护细胞免受水分胁迫伤害的蛋白基因等。本文从上述三方面综述了植物抗旱功能基因的研究进展,为通过基因工程技术改良植物抗旱性、培育抗旱品种奠定基础。  相似文献   

10.
植物干旱胁迫适应机制研究进展   总被引:3,自引:0,他引:3  
李洁 《广东农业科学》2014,41(19):154-159
干旱是影响植物正常生长发育的一个最重要的逆境因子,水资源日益短缺成为制约农业发展的严重问题.植物对干旱胁迫的响应和适应机制一直是学术研究的热点领域.从植物对干旱胁迫所作出的形态生理反应(植物的根系、叶片的变化、对光和作用的影响)及内部分子适应机制(渗透调节基因、保护酶体系、转录因子等)两方面综述了干旱胁迫下植物的抗旱机理,为我国节水抗旱农业的研究提供一些新的思路和手段.  相似文献   

11.
硅提高植物耐旱性研究进展   总被引:1,自引:0,他引:1  
硅对植物的生长发育及耐旱性有着重要作用,干旱胁迫会引起植物失水,抑制植物光合作用和正 常生长发育、进而降低作物产量,严重威胁粮食安全。虽然硅一直不被认为是植物必需元素,但有许多研究证明, 植物吸收硅后能够缓解各种逆境胁迫。系统总结了硅对干旱胁迫下植物生长发育、光合作用、渗透调节、抗氧 化调节等方面的国内外研究现状。研究表明,外源硅能够促进相关渗透调节物质的合成,缓解干旱引起的渗透 胁迫,还能提高相关抗氧化酶活性和抗氧化物质含量抵御氧化胁迫,从而提高植物耐旱性。但有关硅调控植物 耐旱性,目前在生理层面研究较多,有关硅是通过何种途径调控干旱胁迫下植物渗透物质合成以及各种抗氧化 酶活性的分子机理还不清楚,这方面可作为重点进一步研究。  相似文献   

12.
张会 《安徽农业科学》2013,41(3):945-946
干旱对植物的生长有着严重的影响,也是限制农业生产的重要因素之一。干旱逆境胁迫可导致各种代谢无序进行。该研究论述了干旱对植物生物膜系统、光合作用和渗透调节的影响,并阐明了干旱主要信号转导的研究进展。  相似文献   

13.
干旱是影响植物生长和发育的主要非生物胁迫因素之一。从形态结构、生理生化和相关基因3个方面综述了干旱胁迫对植物的影响,包括植物根系、叶片、光合作用、渗透调节、活性氧代谢、植物激素以及相关基因,并对今后的研究方向进行了展望。  相似文献   

14.
王喜勇  王成云  魏岩 《安徽农业科学》2014,(5):1427-1428,1434
[目的]分析梭梭属植物在荒漠干旱胁迫下,渗透调节物质对高温干旱胁迫的响应。[方法]以生长在新疆极端干旱胁迫环境下的梭梭属植物为研究对象,对其生长季内游离Pro和可溶性糖的含量进行研究。[结果]在干旱胁迫初期,梭梭属植物同化枝内可溶性糖和游离Pro含量明显较高,6~8月随着持续高温时间的延长和胁迫强度的增加,可溶性糖和游离Pro含量逐渐下降,保持较低水平,而仅在生长季末期(9—10月)胁迫减弱时又缓慢回升,可溶性糖和游离Pro含量的渗透调节作用适应于较弱的干旱胁迫。[结论]在整个生长季内,梭梭属植物可溶性糖对高温干旱反应敏感,是重要的渗透调节物质。  相似文献   

15.
水分胁迫对东北山樱幼苗呼吸等生理代谢的影响   总被引:1,自引:0,他引:1  
 【目的】探讨东北山樱幼苗对水分胁迫的响应机制,为评价其资源特性提供理论和实践依据。【方法】采用持续干旱和淹水处理,测定根系呼吸途径和相关酶活性、呼吸底物、叶片叶绿素荧光参数等指标的变化过程,比较分析东北山樱幼苗对不同程度水分胁迫响应特征的差异及形成机制。【结果】持续干旱和淹水胁迫对东北山樱幼苗根系呼吸等生理代谢造成严重影响。干旱胁迫1 d后根系活力即受到严重抑制,而淹水胁迫在3 d后表现为迅速降低;干旱胁迫后根系呼吸速率先升高,第5 天时达到峰值后迅速降低,而淹水胁迫前5 d无明显变化,之后也迅速降低。水分胁迫1 d时根系呼吸各生化途径和电子传递途径比例未发生明显变化,而后三羧酸循环(TCA)、细胞色素途径(CP)比例迅速降低,磷酸戊糖途径(PPP)和交替途径(AP)成为主要方式,第7 天后各途径所占比例均大幅降低,根系呼吸代谢被严重抑制;轻度干旱和淹水胁迫使根系中琥珀酸脱氢酶(SDH)等TCA关键酶活性降低,而诱导葡萄糖-6-磷酸脱氢酶(G-6-PDH)等PPP关键酶活性的表达;胁迫第7 天后超过幼苗耐受阈值,各关键酶活性大幅降低,严重削弱了其酶促调控作用;根系中的呼吸底物可溶性糖、淀粉及呼吸代谢中间产物丙酮酸的含量在水分胁迫期间均表现为先上升后迅速降低,而柠檬酸含量持续下降;持续干旱和淹水胁迫也造成叶片最大光化学效率(Fv/Fm)降低,光合作用受到抑制,植物干物质积累量明显下降。【结论】水分胁迫初期东北山樱幼苗通过调节SDH等呼吸关键酶活性、改变PPP、AP等呼吸途径比例的方式,调整呼吸底物的消耗及呼吸代谢中间产物的形成,以适应不良外界环境,且幼苗对淹水胁迫的响应滞后于干旱胁迫。持续干旱与淹水胁迫对幼苗根系呼吸、叶片光合等生理代谢造成严重伤害。  相似文献   

16.
干旱胁迫对冀谷34幼苗生理特性的影响   总被引:1,自引:0,他引:1  
干旱胁迫下植物体内的抗氧化保护酶活性和渗透调节物质含量与植物的抗旱性密切相关,可反映出植物的抗旱能力。冀谷34是河北省农林科学院谷子研究所选育的优质、抗旱谷子品种,研究冀谷34中抗氧化保护酶活性和渗透调节物质含量的变化,对揭示冀谷34的抗旱生理以及谷子抗旱性鉴定和抗旱品种筛选具有重要意义。分别以0、6%、18%、30%的PEG-6000浓度模拟未胁迫、轻度干旱、中度干旱和重度干旱胁迫处理,研究了不同胁迫条件下冀谷34和对照豫谷18幼苗叶片保护酶活性以及渗透调节物质和丙二醛含量的变化。结果表明:干旱胁迫下,参试品种的叶片SOD、CAT和POD活性均显著高于其未胁迫的对照,且指标值均随胁迫程度的加重呈先升高后降低的变化趋势,但相同胁迫条件下冀谷34中的3种抗氧化酶活性均显著高于豫谷18;脯氨酸、可溶性糖和可溶性蛋白质含量均显著高于其未胁迫的对照,随着胁迫程度的加重,脯氨酸含量呈逐渐升高趋势,可溶性糖和可溶性蛋白质含量在冀谷34中呈先升高后降低的明显变化趋势、在豫谷18中变化相对平稳,但相同胁迫条件下冀谷34中的3种渗透调节物质含量均显著高于豫谷18;丙二醛含量均高于其未胁迫的对照,且指标值均随胁迫程度的加重呈先升高后降低的变化趋势,但相同胁迫条件下冀谷34中的丙二醛含量变幅小于豫谷18。说明在苗期干旱胁迫下,2个品种均通过提高抗氧化保护酶活性和渗透调节物质含量来应对逆境胁迫,但冀谷34苗期较豫谷18具有较强的抗旱生理调节能力,抗旱性强于豫谷18。  相似文献   

17.
mi RNAs(Micro RNAs)在植物调控网络中是一类重要的分子,对转录因子的调控具有微调作用。此外,mi RNA在应答非生物胁迫方面起重要作用,为了应答同一非生物胁迫,一些保守的mi RNAs家族的表达模式在不同的植物物种中表现出不同的代谢调整。故对植物应答干旱胁迫过程中,mi RNAs参与渗透调节、光合和呼吸作用,提高植物抗旱性进行了论述。  相似文献   

18.
植物应答干旱胁迫的基因表达调控   总被引:2,自引:0,他引:2  
综述了植物应答干旱胁迫的基因表达调控研究及干旱基因工程方面的研究进展。干旱是植物生长发育过程中经常遇到的最严重的非生物胁迫之一。当植物遭遇干旱逆境时,细胞迅速感知外界信号,通过信号转导进而激活许多干旱胁迫应答基因的表达,在植物体内产生大量的特异蛋白,协同调节植物生理生化以及代谢的变化,从而提高植物对干旱的耐性。  相似文献   

19.
采用盆栽法,在干旱胁迫条件下,对华南地区常见树种楝叶吴茱萸Evodia meliaefolia、石斑木Rhaphiolepis in-dica和任豆Zenia insignis叶片中的渗透调节物质(脯氨酸、可溶性糖和可溶性蛋白质)进行了研究.以探明供试树种通过渗透调节来适应干旱胁迫的途径与机理,为华南石漠化干旱区的树种选择提供科学依据.结果表明:在干旱胁迫下,3个树种的脯氨酸和可溶性糖质量比均表现出逐渐增加的趋势,在重度干旱时达到最大值,其中石斑木的质量比最高(脯氨酸为490.86μg/g,可溶性糖为38.13 mg/g),楝叶吴茱萸最低(脯氨酸为278.33μg/g,可溶性糖为27.74 mg/g).而可溶性蛋白质质量比则表现出先增大后减小的规律,其中楝叶吴茱萸和任豆在轻度干旱时先达到最大值,分别为5.97和6.84 mg/g,而石斑木在中度干旱时才达到最大值(7.44 mg/g),重度干旱时,只有石斑木的可溶性蛋白质质量比高出正常水分条件53.64%,表现出很强的渗透调节能力.综上可知:在3个供试树种中,石斑木具有很强的渗透调节能力,对干旱胁迫有较强的适应性,任豆次之,楝叶吴茱萸渗透调节能力最弱,抗旱适应性较差.  相似文献   

20.
干旱胁迫下刺槐生理适应特性研究   总被引:1,自引:0,他引:1  
通过盆栽控制实验,研究了严重土壤干旱胁迫下刺槐的生理适应特性.结果表明刺槐具有很强的渗透调节和活性氧清除能力.在渗透调节上,刺槐在干旱胁迫初期可溶性糖起主要作用,在胁迫后期脯氨酸(Pro)起主要作用.在活性氧清除上,超氧化物歧化酶(SOD)在整个胁迫过程中起着重要作用,过氧化氢酶(CAT)则是胁迫后期的重要保护酶.丙二醛含量(MDA)在整个干旱胁迫过程中没有明显增加,说明刺槐具有很强的抗旱能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号