首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three hundred and forty-seven serum samples from 22 Iowa swine herds were screened for TGEV/PRCV neutralizing antibody. Ninety-one percent of the sera and all 22 herds were positive. These sera were then tested by the blocking ELISA test to distinguish TGEV and PRCV antibody. The ELISA test confirmed the high percentage of TGEV/PRCV positive sera. By the blocking ELISA test, 12 herds were PRCV positive, 6 herds were TGEV positive and 4 herds were mixed with sera either positive for TGEV or PRCV antibody. The results suggest a recent increase in TGEV/PRCV seroprevalence in Iowa swine most likely due to subclinical PRCV infections.  相似文献   

2.
A competitive ELISA which differentiates between transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) was used to detect non-neutralising antibodies to the peplomer protein of TGEV in porcine sera. The test was shown to be TGEV specific, having a relative specificity of 100 per cent, and to have a relative sensitivity of 94.9 per cent when compared with the virus neutralisation test. The prevalence of TGEV in Great Britain is low; only 0.6 per cent of sows sampled in 1990 were seropositive to TGEV. Seroconversion to the virus neutralisation test occurred in a closed herd in 1984, with no apparent spread, but later testing by the ELISA did not detect any blocking antibodies. The possibility of the existence of a less contagious strain of PRCV is discussed. All British isolates of TGEV tested by the indirect fluorescent antibody test were recognised by the monoclonal antibody 1D.B12, the indicator antibody in the ELISA.  相似文献   

3.
A commercially available blocking ELISA was analyzed for its ability to identify antibodies to porcine coronaviruses (transmissible gastroenteritis virus [TGEV] or porcine respiratory coronavirus [PRCV]), to differentiate antibodies to TGEV and PRCV, and to identify TGEV-infected herds. Nine sera from uninfected pigs, 34 sera from 16 pigs experimentally infected with TGEV, and sera from 10 pigs experimentally infected with PRCV were evaluated using both the TGEV/PRCV blocking ELISA and a virus neutralization (VN) assay. The ELISA was not consistently effective in identifying pigs experimentally infected with TGEV until 21 days postinfection. Sera from 100 commercial swine herds (1,783 sera; median 15 per herd) were similarly evaluated using both tests. Thirty of these commercial herds had a clinical history of TGEV infection and a positive TGEV fluorescent antibody test recorded at necropsy within the last 35 months, while 70 herds had no history of clinical TGEV infection. The blocking ELISA and the VN showed good agreement (kappa 0.84) for the detection of porcine coronavirus antibody (TGEV or PRCV). The sensitivity (0.933) of the ELISA to identify TGEV-infected herds was good when considered on a herd basis. The ELISA was also highly specific (0.943) for the detection of TGEV-infected herds when the test results were evaluated on a herd basis. When sera from specific age groups were compared, the ELISA identified a greater proportion (0.83) of pigs in herds with TGEV antibody when suckling piglets were used. In repeatability experiments, the ELISA gave consistent results when the same sera were evaluated on different days (kappa 0.889) and when sera were evaluated before and after heating (kappa 0.888). The blocking ELISA was determined to be useful for herd monitoring programs and could be used alone without parallel use of the VN assay for the assessment of large swine populations for the detection of TGEV-infected herds.  相似文献   

4.
The spike (S) glycoprotein of the Miller strain of transmissible gastroenteritis virus (TGEV) was recently cloned and expressed in baculovirus. The recombinant S protein was used as the coating antigen in a competition (blocking) enzyme-linked immunosorbent assay (ELISA) in combination with monoclonal antibodies to the S protein epitope A (conserved on TGEV and porcine respiratory coronavirus [PRCV]) or epitope D (present on TGEV only) to differentiate PRCV- from TGEV-induced antibodies. One set (set A) of 125 serum samples were collected at different times after inoculation of caesarean-derived, colostrum-deprived (n = 52) and conventional young pigs (n = 73) with 1 of the 2 porcine coronaviruses or uninoculated negative controls (TGEV/PRCV/negative = 75/30/20). A second set (set B) of 63 serum samples originated from adult sows inoculated with PRCV and the recombinant TGEV S protein or with mock-protein control and then exposed to virulent TGEV after challenge of their litters. Sera from set A were used to assess the accuracy indicators (sensitivity, specificity, accuracy) of the fixed-cell blocking ELISA, which uses swine testicular cells infected with the M6 strain of TGEV as the antigen source (ELISA 1) and the newly developed ELISA based on the recombinant S protein as antigen (ELISA 2). The sera from set B (adults) were tested for comparison. The plaque reduction virus neutralization test was used as a confirmatory test for the presence of antibodies to TGEV/PRCV in the test sera. The accuracy indicators for both ELISAs suggest that differential diagnosis can be of practical use at least 3 weeks after inoculation by testing the dual (acute/convalescent) samples from each individual in conjunction with another confirmatory (virus neutralization) antibody assay to provide valid and complete differentiation information. Moreover, whereas ELISA 1 had 10-20% false positive results to epitope D for PRCV-infected pigs (set A samples), no false-positive results to epitope D occurred using ELISA 2, indicating its greater specificity. The progression of seroresponses to the TGEV S protein epitopes A or D, as measured by the 2 ELISAs, was similar for both sets (A and B) of samples. Differentiation between TGEV and PRCV antibodies (based on seroresponses to epitope D) was consistently measured after the third week of inoculation.  相似文献   

5.
用固定细胞阻断酶联免疫吸附试验(ELISA)对来自丹麦猪的180份血清进行了猪传染性胃肠炎病毒(TGEV)和猪呼吸道冠状病毒(PRCV)感染的鉴别诊断,共检出了PRCV抗体阳性血清107份(59.4%),TGEV抗体阳性血清0份。同时也检测了一些来自国内不同TGEV感染类型的猪场血清。该鉴别诊断方法在我国的建立和应用为从PRCV阳性国家进口猪的TGE的检疫提供了一条有效途径。  相似文献   

6.
Porcine respiratory coronavirus (PRCV) was identified for the first time in Quebec, using a blocking enzyme-linked immunosorbent assay (ELISA). Unlike the virus neutralization test (VNT), this ELISA was able to distinguish transmissible gastroenteritis virus (TGEV) from PRCV. Among the 15 seropositive fattening herds from group A, sera containing PRCV antibodies represented 74.8%, whereas those with TGEV antibodies represented only 7.2%. In group B, which consisted of 15 sow herds, nine herds expressed only PRCV-specific antibodies while the other herds had animals positive for TGEV-specific antibodies.  相似文献   

7.
用酶联免疫吸附试验对采自贵州省内88个县(市)的2906份血清进行了猪传染性胃肠炎病毒及呼吸冠状病毒抗体检测,结果检出猪传染性胃肠炎病毒抗体阳性血清12份,总体阳性率为0.41%;猪呼吸冠状病毒抗体阳性血清44份,总体阳性率为1.51%;2818份血清两种抗体均呈阴性(阴性率为96.97%),32份血清检测无效或无结论(无效率为1.10%)。  相似文献   

8.
Eight nine-week-old specific-pathogen-free pigs which had been infected with the transmissible gastroenteritis virus (TGEV)-related porcine respiratory coronavirus (PRCV) and four uninfected littermates were challenged with TGEV. The previous PRCV infection failed to protect them against the enteric TGEV infection. Virus excretion in faeces was detected by an ELISA in all the pigs for three to six consecutive days after inoculation. Although little diarrhoea was observed, the infection extended through much of the small intestine of one of the previously infected pigs four days after inoculation. Challenge with TGEV caused a secondary neutralising antibody response. By using a peroxidase conjugate of a monoclonal antibody which recognises a specific antigenic site on TGEV, antibodies against TGEV could be distinguished from antibodies against PRCV in an ELISA blocking test.  相似文献   

9.
Pigs were inoculated with various strains of transmissible gastroenteritis virus (TGEV) or with porcine respiratory coronavirus (PRCV), and antigenic site-specific antibody responses were compared. A blocking-ELISA was used to study to what extent antibodies in convalescent sera interfered with the binding of monoclonal antibodies (MAB) 57.16 or 57.110 to the attenuated TGEV/Purdue virus. Monoclonal antibody 57.16 is directed against the A site on the peplomer, neutralizes virus, and recognizes TGEV and PRCV. Monoclonal antibody 57.110 is directed against the X site on the peplomer, but does not neutralize virus, and recognizes only TGEV. Antibodies directed against TGEV and PRCV could be detected in a blocking ELISA, using MAB 57.16 as a conjugate. Antibodies directed against both viruses were detectable as early as 1 week after inoculation. Antibody titers correlated well with those in a virus-neutralization test. Antibodies against TGEV could be detected in a blocking ELISA, using MAB 57.110 as a conjugate. Such antibodies were not induced by a PRCV infection. In the blocking ELISA, using MAB 57.110 as a conjugate, antibodies were detectable as early as 2 weeks after inoculation. There was a significant difference between antibody titers reached after infection with various TGEV strains, however. This difference is ascribed to a variation of the antigenic site defined by MAB 57.110 in TGEV strains. Conditions for a differential test for TGE serodiagnosis, and for serologic discrimination between TGEV- and PRCV-infected pigs, are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We detected transmissible gastroenteritis virus (TGEV) antibodies in pig farms in Tochigi prefecture, although the farms had no past record of TGEV vaccination or TGE. Among the farms, Farm A showed a high antibody incidence. We could not confirm if either TGEV or porcine respiratory coronavirus (PRCV) induced the antibodies, since conventional tests failed to discriminate PRCV from TGEV. Therefore, we conducted virological and serological examinations of this farm for 4 years to establish the etiology - TGEV or PRCV. Although no TGEV was detected, PRCVs were isolated from the nasal samples of pigs. Using a commercial ELISA kit, it was found that the antibodies detected in pigs of all the raising stages and sows were raised against PRCV but not TGEV. The phylogenetic analysis of the nucleotide sequences of the isolates showed that they were closely related to each other, and formed a separate cluster apart from the U.S.A. and European strains. In Cesarean-derived, colostrums-deprived piglets inoculated with a PRCV isolate, no clinical signs were seen, and the viruses were mainly isolated from the nasal samples. Moreover, viral genes were detected from the nasal sample of the contact pig. The result suggested that PRCV infection was located in the nasal cavity of pigs, and horizontal transmission easily occurs. From these results, PRCVs with different origins from the exotic PRCVs might be prevalent in pig farms in Japan.  相似文献   

11.
A competitive inhibition ELISA was developed to detect non-neutralizing antibodies to the peplomer protein of transmissible gastroenteritis virus (TGEV) in porcine sera using a monoclonal antibody as an indicator. It was demonstrated that field strains of the TGEV-related porcine respiratory coronavirus (PRCV) did not induce this antibody, whereas the Miller strain and field strains of TGEV did. The sensitivity of the competitive inhibition ELISA appeared to be similar to that of the virus neutralization (VN) test. The test enables differentiation of pigs which were previously infected with TGEV or PRCV and which cannot be distinguished by the classical anti-TGEV neutralization test. The present test is useful for selective serodiagnosis.  相似文献   

12.
Eighteen litters of sucking piglets were challenged with one of two strains of transmissible gastroenteritis virus (TGEV). During pregnancy, their seronegative dams had been either inoculated intranasally with porcine respiratory coronavirus (PRCV), inoculated orally with TGEV or left untreated. On the basis of weight gain, clinical signs and survival, no differences in response to challenge was detected when piglets suckled by PRCV inoculated sows were compared with those suckled by uninoculated sows. Such a difference was evident when the litters of sows successfully pre-immunized with TGEV were compared with those of unicoculated or PRCV-inoculated sows. The possibility of transplacental transmission of PRCV was investigated in two litters born to sows that had been inoculated with this virus in late pregnancy. All sixteen live-born piglets were seronegative for the virus at birth and PRCV was not isolated from tissues taken from two stillborn piglets.  相似文献   

13.
Seroprevalence of porcine respiratory coronavirus in selected Korean pigs   总被引:8,自引:0,他引:8  
A total of 446 serum samples from 88 herds in Korea were examined for antibody to porcine respiratory coronavirus (PRCV) using blocking enzyme-linked immunosorbent assay (ELISA). All serum samples were collected from 24- to 26-week-old finishing pigs between December 1998 and June 1999. By ELISA, 237 out of 446 sera tested (53.1%) and 54 out of 88 sampled herds (61.3%) were positive against PRCV. Of 446 sera from 88 herd tested, 185 (41.5%) serum samples from 22 (25%) herds were seronegative against PRCV and transmissible gastroenteritis virus infection. Our data suggested that seropositive herds for PRCV are distributed diffusely throughout South Korea.  相似文献   

14.
15.
本研究以纯化的原核表达猪传染性胃肠炎病毒N蛋白为诊断抗原,建立了猪传染性胃肠炎病毒抗体检测的间接ELISA诊断方法,将其命名为mTGE-ELISA。该抗原不与其他常见10种猪病的阳性血清发生交叉反应。批内和批间重复性试验的变异系数均小于15%;对仔猪免疫后不同时间的血清检测结果表明mTGE-ELISA与纯化病毒ELISA符合率达95.0%;mTGE-ELISA相对于VN试验的敏感性为96.3%、特异性为92.2%:现地试验中,mTGE-ELISA与Svanova TGEV/PRCV antibody diagnosis Kit的符合率达87.0%,通过中和试验复核结果表明,mTGE-ELISA的假阳性低于Svanova TGEV/PRCV antibody diagnosis Kit。本试验建立的mTGE-ELISA诊断方法具有良好的敏感性和特异性,为免疫猪群抗体监测和TGE流行病学调查提供了一种快速、简便的血清学诊断方法。  相似文献   

16.
Five nonneutralizing monoclonal antibodies (MAb) generated to the virulent Miller strain of transmissible gastroenteritis virus (TGEV) and specific for the S protein were characterized. Competition assays between purified and biotinylated MAb indicated that MAb 75B10 and 8G11 mapped near a new subsite, designated V and 2 MAb, 44C11 and 45A8, mapped to a previously designated subsite D. A fifth MAb mapped between subsites V and E. These MAb were tested with 3 previously characterized MAb to subsites A, E, and F in fixed-cell ELISA and cell culture immunofluorescent assays against 5 reference and 9 field strains of TGEV and 2 US strains (ISU-1 and ISU-3) of porcine respiratory coronavirus (PRCV). Subsites A, E, and F were conserved on all TGEV and PRCV strains examined. The 2 MAb to subsite V, 8G11 and 75B10, reacted only with the Miller TGEV strains (M5C, M6, and M60), except that 75B10 also recognized field strain U328. The MAb 11H8 did not react with 4 field strains or the Purdue strains of TGEV. The 2 MAb to subsite D reacted with all TGEV strains examined, but not with 2 US PRCV strains, 2 European PRCV strains, 1 feline infectious peritonitis virus strain, and 1 canine coronavirus strain. Because of this specificity for TGEV, but not PRCV, these latter 2 subsite D MAb may be useful for the development of competition ELISA to differentiate serologically between TGEV and PRCV infections in swine, similar to the currently used European subsite D MAb.  相似文献   

17.
The objective of this study was to evaluate the seroprevalence and identify the strains of swine influenza virus (SwIV), as well as the seroprevalence of porcine parvovirus (PPV), transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine respiratory coronavirus (PRCV), porcine circovirus type 2 (PCV-2), and classical swine fever virus (CSFV) in pigs in Trinidad and Tobago (T&T). Blood samples (309) were randomly collected from pigs at farms throughout T&T. Serum samples were tested for the presence of antibodies to the aforementioned viruses using commercial ELISA kits, and the circulating strains of SwIV were identified by the hemagglutination inhibition test (HIT). Antibodies against SwIV were detected in 114 out of the 309 samples (37%). Out of a total of 26 farms, 14 tested positive for SwIV antibodies. HI testing revealed high titers against the A/sw/Minnesota/593/99 H3N2 strain and the pH1N1 2009 pandemic strain. Antibodies against PPV were detected in 87 out of the 309 samples (28%), with 11 out of 26 farms testing positive for PPV antibodies. Antibodies against PCV-2 were detected in 205 out of the 309 samples tested (66%), with 25 out of the 26 farms testing positive for PCV-2 antibodies. No antibodies were detected in any of the tested pigs to PRRSV, TGEV, PRCV, or CSFV.  相似文献   

18.
根据猪传染性胃肠炎病毒(TGEV)和猪呼吸道冠状病毒(PRCV)的基因组核苷酸序列,在S基因(纤突蛋白基因)5′端保守区设计了一对引物P3/P4,该对引物在TGEV扩增跨幅约为2.4kb;而PRCV由于在此区域存在一约0.6kb碱基缺失,扩增跨幅约为1.8kb。用引物P3/P4对TGEV Miller株、Purdue株和PRCV AR310株分别进行RT-PCR,根据RT-PCR扩增片段大小可以直接区分TGEV和PRCV。用引物P3/P4与引物P1/P2作Nested-PCR,提高了该RT-PCR的特异性和敏感性,建立的RT-PCR可为临床上诊断TGEV及调查我国是否存在PRCV感染提供可靠的鉴别手段。  相似文献   

19.
An enzyme-linked immunosorbent assay (ELISA) was developed for detection and quantification of serum antibodies to transmissible gastroenteritis virus (TGEV) in swine. Sera from pigs inoculated with cell culture-origin TGEV or gut-origin TGEV were tested for anti-TGEV antibody by ELISA and by serum virus-neutralization test (NT). The ELISA detected antibody 3 days (av) sooner than did the NT when sera from pigs inoculated with cell culture-origin TGEV were tested and 1 day sooner than did the NT when sera from pigs inoculated with gut-origin TGEV were tested. The ELISA appeared to be more sensitive than the NT, since ELISA was more responsive to low-level antibody and ELISA titers exceeded NT titers.  相似文献   

20.
The objective of the present study was to determine the prevalence of Toxoplasma gondii antibodies from slaughter sows and from pigs raised at an indoor and an outdoor swine farm. Serum samples were obtained from 230 slaughter sows belonging to 83 farms distributed in 5 provinces. Blood samples were collected monthly from pigs of different ages from an intensive management indoor farm (farm 1). A cross-sectional study was carried-out from an outdoor farm (farm 2). All sera were tested for T. gondii antibodies by the modified agglutination test (MAT), using formalin-fixed tachyzoites as antigen. An antibody titer > or =1:25 was considered positive. Antibodies to T. gondii were detected in 87 (37.8%) of 230 sows sera. Distribution among provinces was: 37.1% from Santa Fe, 62.8% from Buenos Aires, 3.3% from San Luis, 58.7% from La Pampa and 24% from Córdoba. Four of 88 (4.5%) serum samples from farm 1 had antibodies to T. gondii and none of the negative pigs seroconverted. However, 45 of 112 samples from farm 2 were positive (40.2%) with the following distribution: sows 100%; nursery 40%; growers 13.8% and fatteners 20%. It is concluded that the prevalence of T.gondii antibodies among sows seems to be quite variable. T. gondii prevalence was related to the facilities and management of the farm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号