首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trees can influence both the supply and availability of nutrients in the soil. Trees increase the supply of nutrients within the rooting zone of crops through (1) input of N by biological N2 fixation, (2) retrieval of nutrients from below the rooting zone of crops and (3) reduction in nutrient losses from processes such as leaching and erosion. Trees can increase the availability of nutrients through increased release of nutrients from soil organic matter (SOM) and recycled organic residues. Roots of trees frequently extend beyond the rooting depth of crops. Research on a Kandiudalfic Eutrudox in western Kenya showed that fast-growing trees with high N demand (Calliandra calothyrsus, Sesbania sesban and Eucalyptus grandis) took up subsoil nitrate that had accumulated below the rooting depth of annual crops. Sesbania sesban was also more effective than a natural grass fallow in extracting subsoil water, suggesting less leaching loss of nutrients under S. sesban than under natural uncultivated fallows. Nutrient release from SOM is normally more dependent on the portion of the SOM in biologically active fractions than on total quantity of SOM. Trees can increase inorganic soil N, N mineralization and amount of N in light fraction SOM. Among six tree fallows of 2- and 3-year duration on an Ustic Rhodustalf in Zambia, inorganic N and N mineralization were higher for the two tree species with lowest (lignin + polyphenol)-to-N ratio (mean = 11) in leaf litter than for the two tree species with highest ratio (mean = 20) in leaf litter. Trees can also restore soil fauna, which are important for SOM and plant residue decomposition. Some agroforestry trees have potential to provide N in quantities sufficient to support moderate crop yields through (i) N inputs from biological N2 fixation and retrieval of nitrate from deep soil layers and (ii) cycling of N from plant residues and manures. The cycling of P from organic materials is normally insufficient to meet the P requirements of crops. Sustained crop production with agroforestry on P-deficient soils will typically require external P inputs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
In order to understand nutrient dynamics in tropical farming systems with fallows, it is necessary to assess changes in nutrient stocks in plants, litter and soils. Nutrient stocks (soil, above ground biomass, litter) were assessed of one-year old fallows with Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. The experiment was conducted on a high base status soil (Typic Eutropepts), and in Papua New Guinea such soils are intensively used for agriculture. Soil samples were taken prior to fallow establisment and after one year when the fallows were slashed and above ground biomass and nutrients measured. The above ground and litter biomass of piper was 13.7 Mg dry matter ha-1, compared to 23.3 Mg ha-1 of gliricidia and 14.9 Mg ha-1 of imperata. Gliricidia produced almost 7 Mg ha-1 wood. Total above ground biomass returned to the soil when the fallows were slashed was the same for piper and gliricidia (8 Mg ha-1). Gliricidia accumulated the largest amounts of all major nutrients except for K, which was highest in the above ground piper biomass. Imperata biomass contained the lowest amount of nutrients. The largest stocks of C, N, Ca and Mg were found in the soil, whereas the majority of P was found in the above ground biomass and litter. Almost half of the total K stock of piper and gliricidia was in the biomass. During the fallow period, soil organic C significantly increased under gliricidia fallow whereas no net changes occurred in piper and imperata fallows. The study has shown large differences in biomass and nutrient stocks between the two woody fallows (piper, gliricidia) and between the woody fallows and the non-woody fallow (imperata). Short-term woody fallows are to be preferred above grass (imperata) fallows in the humid lowlands of Papua New Guinea because of higher nutrient stocks.  相似文献   

3.
The rotation of maize (Zea mays) with fast-growing, N2-fixing trees (improved fallows) can increase soil fertility and crop yields on N-deficient soils. There is little predictive understanding on the magnitude and duration of residual effects of improved fallows on maize yield. Our objectives were to determine the effect of fallow species and duration on biomass production and to relate biomass produced during the fallow to residual effects on maize. The study was conducted on an N-deficient, sandy loam (Alfisol) under unimodal rainfall conditions in Zimbabwe. Three fallow species — Acacia angustissima, pigeonpea (Cajanus cajan), and Sesbania sesban — of one-, two-, and three-year duration were followed by three seasons of maize. Pigeonpea and acacia produced more fallow biomass than sesbania. The regrowth of acacia during post-fallow maize cropping provided an annual input of biomass to maize. Grain yields for the first unfertilized maize crop after the fallows were higher following sesbania (mean = 4.2 Mg ha–1) than acacia (mean = 2.6 Mg ha–1). The increased yield of the first maize crop following sesbania was directly related to leaf biomass of sesbania at the end of the fallow. Nitrogen fertilizer did not increase yield of the first maize crop following one- and two-year sesbania fallows, but it increased yield following acacia fallows. Nitrogen fertilizer supplementation was not required for the first maize crop after sesbania, which produced high-quality biomass. For acacia, which produced low-quality biomass and regrew after cutting, N fertilizer increased yield of the first post-fallow maize crop, but it had little benefit on yield of the third post-fallow maize crop.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
Management of crop—fallow rotations should strike a balance between exploitation, during cropping, and restoration of soil fertility during the fallow period. The Trenbath model describes build-up of soil fertility during a fallow period by two parameters (a maximum level and a half-recovery time) and decline during cropping as a simple proportion. The model can be used to predict potential crop production for a large number of management options consisting of length of cropping period and duration of fallow. In solving the equations, the model can be restricted to sustainable systems, where fallow length is sufficient to restore soil fertility to its value at the start of the previous cropping period. The model outcome suggests that the highest yields per unit of land can be obtained by starting a new cropping period after soil fertility has recovered to 50–60% of its maximum value. This prediction is virtually independent of the growth rate of the fallow vegetation. The nature of the fallow vegetation (natural regrowth, planted trees, or cover crops) mainly influences the crop yield by modifying the required duration of fallow periods. Intensification of land use by shortening fallow periods will initially increase returns per unit land at the likely costs of returns per unit labor. When fallows no longer restore soil fertility to 50% of the maximum, overall productivity will decline both per unit land and per unit labor, unless external inputs replace the soil fertility restoring functions of a fallow.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Weeds in tropical agricultural systems can cause serious economic damage, and their control often requires the commitment of substantial resources in the way of labor, capital, or pesticides. Tropical shifting cultivation systems employ a fallow period to help overcome weed infestations in addition to improving soil productivity and reducing other pest populations. Short-term, intensive fallow systems that employ herbaceous and woody species to facilitate rapid restoration of soil productivity have evolved as an alternative to long-term fallows. Short-term fallows can impact weeds at all growth stages and play a role in the integrated management of weeds and crops. Fallow management that promotes vegetative soil cover may reduce weed recruitment due to attenuation of soil temperature and/or shift in light quality at the soil surface. Residues or litterfall from fallow species may alter the chemical and microbial ecology of the soil to favor losses from the weed seed bank due to germination, loss of seed vigor, or seed decay. In addition, fallow vegetation can influence weed seed predation. Enhancement of soil productivity should increase the vigor of crop growth and enable crops to better compete with weeds. The burning of fallow species residues may result in weed seed death due to extreme temperatures or may induce seed germination by the release of mechanical dormancy or chemical germination cues. Certain weeds may serve as improved fallow species due to their high nutrient scavenging efficiency in low-fertility environments and their ease of establishment. Short-term improved fallows can be an important component of integrated weed management, particularly by promoting the prevention and tolerance of weeds in crops.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
A model (ROTATE) of the nitrogen (N) cycle during the tree and crop phases of fallow systems [Robertson, 1994] was used to determine the primary factors influencing longterm crop yields. The model simulated the expected patterns of increase in old (recalcitrant) soil organic N during tree rotations and their decrease under continuous cropping. After 3–4 fallow cycles an equilibrium soil organic N content is reached, where N losses by crop removal are balanced by N gains by the trees (either by fixation or pumping from depth) plus small inputs in rain. The rotation period has two variable components; the cycle length (tree plus crop period) and the fraction of years in each cycle occupied by trees (1 = sole trees, 0 = sole crops). Both components have optima determined by the time taken for the trees to increase the old soil organic N pool to an optimal (but not maximal) size. This optimum exists because the rate of increase in old organic N slows as the tree fallow progresses and a time is reached (often soon after the trees reach full size) when the benefits of further improvements in soil fertility are outweighed by crop yield foregone. In the example chosen of Acacia/sorghum in the Sahel, the optimum cycle seemed to be about 50 years with half of the time in trees. The optimum fallow period is shortened by growing fast-growing trees, and the benefit of fallow periods are greatest when (i) a large proportion of the N in litter (above and belowground) is transferred to the recalcitrant soil pool, and (ii) the trees attain a large size with correspondingly large annual additions of N to the soil.  相似文献   

7.
In many parts of Africa, farmers periodically fallow their land, which is allowing land to lie idle for one or more seasons primarily to restore its fertility. This paper assesses the feasibility, profitability, and acceptability of improved tree fallows, which are the deliberate planting of trees or shrubs in rotation with crops to improve soil fertility. Improved tree fallows are assessed at different stages of intensification, drawing on farmers' experiences in three different settings. In extensive systems where land is plentiful and existing fallows with natural regeneration of vegetation restore soil fertility (southern Cameroon), farmers have little incentive to invest labor in establishing improved fallows. Where population density is higher and fallow periods are decreasing and farmers perceive a decline in soil fertility (eastern Zambia), improved fallows have great potential. In intensive systems where land is unavailable and cropping is often continuous (western Kenya), many farmers find it difficult to fallow land. Even here, there is scope for introducing improved fallows, especially among farmers who have off-farm income. Labor constraints and institutional support were found to greatly influence the feasibility of improved fallows. In intensive systems, low returns to cropping, low base yields, and a high opportunity cost of labor increase the returns to improved fallows. Principal factors associated with acceptability include past perception of soil fertility problems, past use of measures for improving soil fertility, current fallowing, economic importance of annual cropping, and wealth level. Adoption potential may be increased by reducing fallow periods, intercropping trees and crops during the first season, reducing establishment costs, producing higher value by-products, and by encouraging farmers to test improved fallows on high-value crops.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
Sesbania [Sesbania sesban (L.) Merr.] fallows are being promoted as a means for replenishing soil fertility in N-depleted soils of small-scale, resource-poor farmers in southern Africa. Knowledge of soil water distribution in the soil profile and water balance under proposed systems is important for knowing the long-term implications of the systems at plot, field and watershed levels. Soil water balance was quantified for maize (Zea mays L.) following 2-year sesbania fallow and in continuous maize with and without fertilizer during 1998–1999 and 1999–2000 at Chipata in eastern Zambia. Sesbania fallow increased grain yield and dry matter production of subsequent maize per unit amount of water used. Average maize grain yields following sesbania fallow, and in continuous maize with and without fertilizer were 3, 6 and 1 Mg ha−1 with corresponding water use efficiencies of 4.3, 8.8 and 1.7 kg mm−1 ha−1, respectively. Sesbania fallow increased the soil-water storage in the soil profile and drainage below the maximum crop root zone compared with the conventionally tilled non-fertilized maize. However, sesbania fallow did not significantly affect the seasonal crop water use, mainly because rainfall during both the years of the study was above the normal seasonal water requirements of maize (400 to 600 mm). Besides improving grain yields of maize in rotation, sesbania fallows have the potential to recharge the subsoil water through increased subsurface drainage and increase nitrate leaching below the crop root zone in excess rainfall seasons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
在撒哈拉以南的非洲地区,黄独脚金寄生杂草(Strigahermonthica)侵扰是限制小农产自给性农业生产的主要因素之一。土壤肥力低加之总体环境退化是寄生杂草侵扰产生的重要原因。引入改良的耕作制度来解决寄生杂草侵扰和土壤肥力下降的问题势在必行。本文对肯尼亚西部双峰高原地区内,用豆科植物--印度田菁改良的休耕地对玉米产量和农田寄生杂草侵扰的作用进行了研究。实验处理分阶段进行,处理包括田菁改良6和18个月的休耕地、未经耕作自然植物再生6和18个月的休耕地、连续种植玉米未施肥的耕地和连续种植玉米同时施加氮和磷肥的耕地。结果表明,与未施肥玉米地相比,田菁改良休耕地明显(p〈0.5)增加玉米产量.除草管理降低了第一季度(428000±63000株·hm-2)、第二季度(51000±1500株·hm-2)玉米地寄生杂草植株种群。实验周期内,除草管理降低玉米地土壤中寄生杂草种子种群数。短期田菁改良休耕地对玉米产量的促进作用明显好于未施肥的玉米地,但是短期杂草休耕地对玉米产量无显著影响。种植玉米和除草控制寄生杂草效果要好于休耕。  相似文献   

10.
Improved fallow is a technology that can help to raise agricultural productivity in systems of poor soil fertility and low financial capital. Models, once calibrated, can be used to investigate a range of improved fallow systems relatively quickly and at relatively low cost, helping to direct experimental research towards promising areas of interest. Six fallow crop rotations were simulated using the WaNuLCAS model in a bimodal rainfall setting in Kenya over a 10 year period: (A) alternating fallow and crop seasons, (B) one season fallow followed by three seasons crop, (C) one season fallow followed by four seasons crop, (D–F) 1–3 seasons fallow periods followed by 3–5 seasons crop. The strategies were tested using a number of fallow growth rates, soil clay contents, and rainfall amounts to determine the interaction of fallow rotation and biophysical variables on maize (Zea mays (L.)) yield and sustainability (organic matter, N2 fixation, leaching). The best simulated fallow strategies doubled maize yield compared to continuous maize over a 10 year period. Across all biophysical treatments strategy A and B of no more than three consecutive cropping seasons and of one consecutive fallow season yielded the most maize. This was because fallow benefits were largely due to the immediate fallow soil fertility benefit (IFB) rather than the cumulative benefit (CFB). The difference in yield between the two strategies was through a balance between (1) their interaction with the biophysical variables affecting accumulation of organic matter, hence increasing soil fertility and (2) the extra intrinsic soil fertility used for maize productivity by the inclusion of more cropping seasons within the rotation. We propose the following conceptual framework to manage fallows for maximum maize yield: when environmental factors are strongly limiting to fallow and crop growth then fallow strategy A would be the best strategy to employ (less risk but more labour) and when factors are less limiting then strategy B would be the best to employ.  相似文献   

11.
Throughout the Amazon of Brazil, manioc (Manihot esculenta) is a staple crop produced through slash-and-burn agriculture. Nutrient losses during slash-and-burn can be large and nutrient demand by food crops so great that fields are often abandoned after two years. In recent decades, farmers have reduced the fallow phase from 20 to ~5 years, limiting plant nutrient accumulation to sustain crop yields. Improved fallows through simultaneous planting of trees with food crops may accelerate nutrient re-accumulation. In addition, slash-and-mulch technology may prevent loss of nutrients due to burning and mulch decomposition may serve as a slow-release source of nutrients. This study in Pará, Brazil, in a 7-year-old secondary forest following slashing and mulching of the vegetation, involved two main plot treatments (with and without P and K fertilizers) and two sub-plot treatments (with or without a N2-fixer Inga edulis). A mixed-culture of trees and manioc was planted in all plots. P and K fertilizer increased tree mortality due to weed competition but growth of surviving trees in four of the five tree species tested also increased as did biomass production of manioc. In the N2-fixer treatment trends of greater growth and survival of four of five tree species and manioc biomass were also observed. Fertilization increased the biomass of competing vegetation, but there was a fertilizer by N2-fixer interaction as I. edulis caused a reduction in competing biomass in the fertilized treatment. After one year, fertilization increased decomposition of the mulch such that Ca, Mg, and N contents within the mulch all decreased. In contrast, P and K contents of mulch increased in all treatments. No influence of the N2-fixer on 0–10 cm soil N contents was observed. Two years after establishment, this agroforestry system succeeded in growing a manioc crop and leaving a well-maintained tree fallow after the crop harvest.  相似文献   

12.
Managed short-duration fallows may have the potential to replace longer fallows in regions where population density no longer permits slow natural fallow successions. The purpose of fallows is not only to improve subsequent crop performance but also to restore soil fertility and organic matter content for the long term. We therefore evaluated the soil organic matter and nutrient flows and fractions in a short fallow experiment managed in the western Kenya highlands, and also compared the experimental area with a 9–12-yr-oldadjacent natural bush fallow. The factorial agroforestry field experiment with four land-use and two P fertilizer treatments on a Kandiudalfic Eutrudox showed that 31-wk managed fallows with Tithonia diversifolia(Hemsley) A. Gray and Crotalaria grahamiana Wight &Arn. improved soil fertility and organic matter content above those of a natural weed fallow and continuous maize (Zea mays L.). Post-fallow maize yields were also improved, although cumulative three-season increases in yield were small (0–1.2 Mg ha−1) when the yield foregone during the fallow season was accounted for. Improvements in yield and soil quality could be traced to quantity or quality of biomass recycled by the managed fallows. The non-woody recycled biomass produced by the continuous maize, weed fallow, and tithonia treatments was near 2Mg ha−1, whereas crotalaria produced three times more recyclable biomass and associated N and P. Increases in topsoil N due to the fallows may have been attributable in part to deep acquisition and recycling of N by the fallows. Particulate macro-organic matter produced by the fallows contained sufficient N(30–50 kg ha−1) to contribute substantially to maize production. Organic Paccumulation (29 kg ha−1) similarly may play a significant role in crop nutrition upon subsequent mineralization. The effect of the P fertilizer application on soil properties and maize yield was constant for all land-use systems (i.e., no land-use system × P fertilizer interactions occurred). There was an indication that tithonia may have stimulated infestation of Striga hermonthica (Del.) Benth., and care must be taken to evaluate the full effects of managed fallows over several seasons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Roots of trees (Sesbania sesban) and crops (Zea mays) were quantified during two tree/crop cycles in a sequential tree — crop system at Chipata, Eastern Zambia. The experiment included one- and two-year fallows as well as fertilized and unfertilized controls. The roots of S. sesban represent a standing biomass in the soil of 3 Mg hat-1 in the top 1.5 m after two years, with 45–60% and 70–75% being in the top 25 and 50 cm respectively. S. sesban fallow improved early rooting and growth of the following maize crop. Increased soil infiltration was also observed in the two-year fallow treatment, as well as decreased bulk density and resistance to penetration in the soil. No differences between maize root parameters could be detected at tasselling, nor differences between nutrient status of the different treatments. Study results indicate that under the drought-prone conditions of Eastern Zambia, where improved soil physical conditions are important for early deep rooting of crops and access to water and nutrients, tree roots could play an important role in the fallow effect. Further studies are required to assess the relative importance of the improvement of soil chemical and physical properties.Submitted as ICRAF Journal Article # 95/28.  相似文献   

14.
Food crop production in highly populated areas around major cities of the humid lowlands of Cameroon is highly dependent on a fallow system (two–four years duration) mainly of Chromolaena odorata. Where such fallows have been in use for some time, problems of soil fertility with declining crop yields and higher incidence of weeds were reported. Although improved fallows have been widely adopted in sub-humid zones, there is no evidence of successful adoption of agroforestry-based technologies for soil fertility improvement in the humid forest areas. In response, ICRAF has developed a short fallow system with Cajanus cajan for soil fertility improvement in the humid lowlands of West Africa. Farmers' response to these cajanus fallows is positive. Benefits reported are higher crop yields after cajanus fallows compared to natural fallows, clearing of cajanus is easier and the shrubs shade out the weeds. Women particularly appreciate the technology for its low labour demand and for the fact that these shrubs can be planted on land with less secure tenure. Economic analysis of cajanus fallows compared to natural fallow over six years shows that cajanus fallows are profitable under most tested scenarios, both in terms of returns to land and to labour. It seems that improved fallows with Cajanus cajan are a good response to shortening natural fallows for households in the humid lowlands of Cameroon with land constraints. However, wider dissemination of the technology requires a targeted extension approach and adequate seed supply strategies, which should be based on joint efforts between farmers, extension services and research.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
Soil fertility restoration depends on natural fallows in the slash-and-burn system of eastern Madagascar. In the Beforona-Vohidrazana study zone, none of the fallow species are able to withstand the slashing, burning and cropping frequencies of 3–5 years. Eventually soils are abandoned for agriculture. Along the degradation sequence, this study quantifies fallow biomass, nutrient stocks and soil nutrient availability of four dominant fallow species Trema orientalis, Psiadia altissima, Rubus moluccanus, and Imperata cylindrica. At 3 years, the shrubs Psiadia and Rubus were more productive (11–14.4 t/ha aboveground biomass or AGB) than the tree species Trema (8.5 t/ha). Only after 5 years did tree productivity (24.7 t/ha) exceed that of shrubs (17–20 t/ha). Imperata’s biomass stagnated at 5.5 t/ha after 3 years. A sharp decline in fallow productivity was observed with advancing fallow cycles after deforestation. While Psiadia produced highest AGB in the second fallow cycle (C2) being 100%, C1 achieved 89% of that, C3 74%, and C4 only 29%. With the ability to propagate vegetatively and to accumulate important amounts of nutrients in roots, Rubus and Imperata, both exotic and invasive species, showed improved adaptation mechanisms towards frequent disturbances compared to the two indigenous species Trema and Psiadia. Available soil nutrients P, K, Mg were highest under forest and declined rapidly with increasing fallow cycles. Ca and pH rose momentarily in the first fallow cycle before declining with advanced soil use. Al concentrations increased steadily with time. As lengthened fallow periods are not practical, there is a need to intensify upland systems based on improved nutrient cycling, targeted inputs, fire-less land management, and land use diversification. Allowing regrading tree and bush fallows to accumulate biomass (above- and belowground carbon) will significantly improve Madagascar's greenhouse gas mitigation contribution.  相似文献   

16.
In eastern Zambia, nitrogen deficiency is a major limiting factor for increased food production. Soil fertility has been declining because of nearly continuous maize (Zea mays) cultivation with little or no nutrient inputs. The use of short-duration tree fallows was one of several agroforestry options hypothesized to restore soil fertility. Sesbania sesban, an indigenous N2-fixing tree was the most promising among species tested in screening trials. Several studies since 1987 have demonstrated the dramatic potential of two- or three-year sesbania fallows in restoring soil fertility and increasing maize yields. Analyses showed that these improved fallow systems were feasible, profitable, and acceptable to farmers. Results suggest that high maize yields following fallows are primarily due to improved N input and availability by the fallows. The potential to increase maize production without applying mineral fertilizers has excited thousands of farmers who are enthusiastically participating in the evaluation of this technology. The number of farmers who are testing a range of improved fallow practices has increased from 200 in 1994 to over 3000 in 1997. Presently, a strong network of institutions comprising government, NGOs, development projects, and farmer organizations is facilitating the adaptive research and expansion of improved fallow technology in eastern Zambia. Key elements in the research process that contributed to the achievements are effective diagnosis of farmers' problems, building on farmers' indigenous knowledge, generating several different fallow options for farmers to test, ex-ante economic analysis, farmer participation in on-farm trials, and development of a network for adaptive research and dissemination.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
Improved fallows are the deliberate planting of fast-growing species — usually legumes — for rapid replenishment of soil fertility. Improved fallows are rapidly spreading in several regions of the tropics as a sensible way for in situ accumulation of large quantities of N in vegetation and soil, as well as for providing sustainability enhancing services. Research on improved fallows increased after the mid 1980s with the development of what is known as the second soil fertility paradigm, which is based on sustainability considerations. Many lessons have emerged from short-term improved fallows (<5 years duration). These include the diversity of farm sizes where improved fallows are used, the advantage of sequential versus simultaneous systems, the utilization of dry seasons unfavorable for crop production, the comparative advantages of woody versus herbaceous leguminous fallows, the magnitude of N accumulation, the strategic use of N fertilizers, and the importance of P. Other key services provided by fallows include fuelwood production, recycling of nutrients besides N, provision of a C supply to soil microorganisms, weed suppression, Striga control, and improved soil water storage. Natural fallows of non-legume shrubs belonging to the Asteraceae family, collectively called daisy fallows, may provide lessons for the development of improved fallows. The maintenance of genetic diversity in fallows is paramount. The main limiting factor in Africa is clearly the supply of germplasm of improved fallow species. This must be overcome though large-scale seed orchards and nursery development before impact at the scale of millions of farmers can take place.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Improved fallows have been used to reduce time required for soil fertility regeneration after cropping in low input agricultural systems. In semi-arid areas of Southern Africa, Acacia angustissima and Sesbania sesban are among some of the more widely used improved fallow species. However the residual effects of improved fallows on soil hydraulic properties during the cropping phase is not known. The aim of this study was to quantify the residual effects of fallows and tillage imposed at fallow termination on soil hydraulic properties (infiltration rates, hydraulic conductivity and soil porosity) during the cropping phase. Treatments evaluated were planted fallows of Acacia angustissima, Sesbania sesban and natural fallow (NF) and continuous maize as a control. Steady state infiltration rates were measured using a double ring infiltrometer and porosity was calculated as the difference between saturated infiltration rates and tension infiltration measurements on an initially saturated soil. Unsaturated hydraulic conductivity (Ko) and mean pore sizes of water conducting pores were measured using tension infiltrometer at tensions of 5 and 10 cm of water on an initially dry soil. While there was no significant difference in steady state infiltration rates from double ring infiltrometer measurements among the fallow treatments, these were significantly higher than the control. The steady state infiltration rates were 36, 67, 59 and 68 mm h-1 for continuous maize, A. angustissima, S. sesban and NF respectively. Tillage had no significant effect on steady state infiltration rate. Pore density at 5 cm tension was significantly higher in the three fallows than in maize and varied from 285–443 m−2 in fallows, while in continuous maize the pore density was less than 256 m−2. At 10 cm tension pore density remained significantly higher in fallows and ranged from 4,521–8,911 m−2 compared to 2,689–3,938 m−2 in continuous maize. Unsaturated hydraulic conductivities at 5 cm tension were significantly higher in fallows than in continuous maize and were 0.9, 0.7, 0.8 cm and 0.5 cm h−1 for A. angustissima, S. sesban, NF and continuous maize, respectively. However there were no significant treatment differences at 10 cm tension. Fallows improved infiltration rates, hydraulic conductivity and soil porosity relative to continuous maize cropping. Through fallowing farmers can improve the soils hydraulic properties and porosity, this is important as it affects soil water recharge, and availability for plant growth  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号