首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
中国大豆育成品种群体遗传结构分化和亚群特异性分析   总被引:2,自引:1,他引:1  
 【目的】研究中国大豆育成品种总群体的遗传结构分化及其地理生态亚群和育成时期亚群的遗传多样性、特异性及其相互关系,为中国大豆育种主干亲本遴选提供遗传背景依据。【方法】从1923-2005年育成的1 300个品种中抽选378份中国大豆育成品种组成代表性样本,选用大豆核基因组64个SSR标记,采用Structure Version 2.2软件,进行群体遗传结构分析、亚群体分化分析和遗传多样性与遗传特异性分析。【结果】中国大豆育成品种群体由7类血缘组成,遗传上明显分化为不同的地理生态亚群和育成时期亚群,各有其不同的血缘构成特点;各地理生态亚群具有其特有、特缺和互补等位变异,体现了其遗传来源的相对生态特异性;随着品种育成时期的推进,不同时期有不同血缘的种质加入,各育成时期亚群具有其特有、特缺和互补等位变异,体现了育种发展的特点。中国大豆育成品种群体与中国地方品种群体、中国野生大豆群体相比,其遗传基础因源于有限祖先亲本数的瓶颈效应而相对狭窄;分省亚群中黑龙江、江苏亚群的等位变异数可以向其他亚群提供的补充等位变异数均依次最多,其亲本来源较宽、遗传基础较广。分时期亚群平均等位变异数随着时期的推移各亚群等位变异数增加,遗传多样性程度增高,近期育成品种的遗传基础宽于历史上前期育成的品种。【结论】研究结果证明中国大豆育成品种群体存在遗传结构上的地理生态分化和育成时期分化,因而各亚群具有相对遗传特异性,体现在血缘构成和特有、特缺及互补等位变异上,这构成了未来大豆育种中亚群间种质或基因交流的遗传基础。  相似文献   

2.
亚洲大豆栽培品种遗传多样性、特异性和群体分化研究   总被引:6,自引:2,他引:4  
张军  赵团结  盖钧镒 《中国农业科学》2008,41(11):3511-3520
【目的】研究亚洲大豆栽培品种地理群体的遗传多样性、特异性和群体分化。【方法】应用大豆基因组64对SSR分子标记技术,对亚洲216份栽培大豆品种遗传变异进行分析。【结果】亚洲大豆栽培品种遗传多样性丰富,地理群体(中国东北、中国黄淮、中国南方、朝鲜半岛、东南亚、南亚)间存在较多互补等位变异数,最多的在中国黄淮与南亚群体间;各地理群体拥有各自特有或特缺的等位变异。亚洲大豆全群SSR标记遗传距离聚类(聚成6类)与地理群体分类间有极显著相关性,地理分群有其相应的遗传基础。亚洲全群由2类血缘组成,分别占中国国内和国外2大类群的绝大部分;地理群体间2类血缘组成的差异明显。国内与国外各群体间以中国南方与东南亚群体间分化最小;国外群以东南亚与朝鲜半岛群体间分化最小;国内群以中国黄淮与中国南方群体分化最小。【结论】亚洲大豆栽培品种地理群体间具有位点和等位变异的特异性,各群体间可以相互补充的位点及其等位变异甚丰富,利用国外栽培品种可以拓宽中国品种的遗传基础。  相似文献   

3.
【目的】筛选出多态性丰富的分子标记引物,为进一步研究广西野生大豆种质资源遗传多样性提供参考。【方法】运用SSR分子标记技术,选择60对核心SSR引物,对22份不同时期收集的广西野生大豆种质资源进行多样性分析,以筛选多态性引物。【结果】60对核心引物的等位变异数为1.0~8.0个,平均为3.5个,有23个位点表现出良好的多态性、等位变异超过4个;不同连锁群上SSR位点等位变异有所不同,变化范围为1.67~5.00个,其中J连锁群等位变异最低,平均为1.67个;B2和H连锁群等位变异最高,平均为5.00个。【结论】筛选的23对多态性丰富的SSR引物适合用于广西野生大豆遗传多样性分析。  相似文献   

4.
广西野生大豆种质资源SSR引物筛选   总被引:1,自引:1,他引:0  
【目的】筛选出多态性丰富的分子标记引物,为进一步研究广西野生大豆种质资源遗传多样性提供参考。【方法】运用SSR分子标记技术,选择60对核心SSR引物,对22份不同时期收集的广西野生大豆种质资源进行多样性分析,以筛选多态性引物。【结果】60对核心引物的等位变异数为1.0~8.0个,平均为 3.5个,有23个位点表现出良好的多态性、等位变异超过4个;不同连锁群上SSR位点等位变异有所不同,变化范围为1.67~5.00个,其中J连锁群等位变异最低,平均为 1.67个;B2和H连锁群等位变异最高,平均为5.00个。【结论】筛选的23对多态性丰富的SSR引物适合用于广西野生大豆遗传多样性分析。  相似文献   

5.
华北生态群普通杏遗传多样性与群体结构分析   总被引:2,自引:1,他引:1  
【目的】研究华北生态群普通杏在不同地理来源间的遗传多样性、特异性和群体结构差异。【方法】应用21对SSR引物对67份华北生态群普通杏的遗传多样性和群体结构进行分析。【结果】21个SSR位点在67份华北生态群的普通杏材料中共检测出301个等位变异,每个位点的等位变异范围为8—24个,平均为14.33个。每个位点Shannon’s多样性指数(I)变异范围为0.65—2.67,平均为1.934。通过不同地理来源间比较,发现来自西北黄土高原区域的杏种质多样性丰富,拥有较多的等位变异。不同地理群间存在较多的互补等位变异;各地理群体拥有各自特有等位变异。基于混合模型的Structure2.2群体结构分析显示,将华北生态群普通杏划分为7个组群,且不同地理来源的材料均被划分到3个或以上的聚类群体。当K=4时,除仁用杏外华北生态群普通杏可以划分为西南亚群、华北平原亚群和东部丘陵亚群(包括山东丘陵地和辽南丘陵地的普通杏)3个亚群,与传统生态亚群划分相似。【结论】华北生态群普通杏种质具有丰富的遗传多样性,其中来自于西北地区的普通杏多样性最为丰富,有较多的变异类型。仁用杏种质遗传基础狭窄,但具有较多的特有等位变异和独特的血缘关系。华北生态群普通杏可以划分为3个亚群,但地理来源相同的种质不一定属于同一类群。  相似文献   

6.
【目的】评价中国栽培大豆微核心种质的群体结构和遗传多样性水平,为拓宽大豆遗传基础、发掘优异基因、改良大豆品种提供理论依据。【方法】利用大豆20个连锁群上的100个SSR位点,对来自全国28个省补充完善的248份栽培大豆微核心种质进行SSR遗传多样性及群体结构分析;采用PowerMarker Version 3.25软件统计等位变异数、平均等位变异数、多态性信息量(PIC值)及亚群特有等位变异数等参数;基于遗传距离建立了栽培大豆微核心种质的无根Neighbor-Joining树;用Structure2.2软件对微核心种质的群体结构进行评价。【结果】100个SSR位点在248份材料中共检测出等位变异1460个,每个位点变异范围为2—33个,平均为14.6个,每个位点PIC值变异范围为0.158—0.932,平均为0.743。基于模型的群体结构分析显示,依据LnP(D)无法判断最佳K值(群组数),但通过计算系数ΔK发现,K=3为微核心种质的最佳群体结构。结合种质的生态类型及品种类型分析发现,地理来源相同的种质具有聚在一起的倾向,但来源相同的种质也有分在不同组的情况。不同生态类型及品种类型间均存在较多的互补等位变异和特有等位变异。【结论】中国栽培大豆微核心种质具有丰富的遗传多样性,可以用来拓宽大豆品种遗传基础;不同生态类型及品种类型间存在较多的互补及特有等位变异,是种质创新及品种改良的物质基础;栽培大豆微核心种质存在明显的群体结构,为微核心种质在育种中的直接或间接利用提供了理论依据。  相似文献   

7.
目的:研究太湖流域粳稻群体的遗传结构分化以及不同生态亚群的遗传多样性、特异性及其相互关系,为太湖流域亲本遴选提供遗传背景依据。方法:从太湖流域823份地方品种构成的核心种质中筛选出58份品种和36份育成品种构成代表样品,选用均匀分布12条染色体上的91个标记,采用Structure Version2.2软件,对粳稻群体遗传多样性、亚群遗传分化及特异性进行分析。结果:太湖流域粳稻群体由8类血缘组成,遗传上可分为5个生态亚群,每个亚群的血缘构成各不相同。不同的生态亚群中含有各自的特有和特缺等位变异,其中生态型Ⅲ特有等位变异数最多,对其他4个亚群其具有最多的补充等位变异。  相似文献   

8.
【目的】鉴定和发掘野生大豆种质可利用的优异等位变异,为进一步有效地利用野生大豆资源开展大豆分子辅助育种工作提供参考信息。【方法】采用SSR标记技术对具有野生大豆血缘的大豆推广品种及其亲本进行遗传变异性分析。【结果】10个大豆育成品种分别遗传利用了野生大豆和栽培大豆亲本的19个和10个特有等位变异,并产生了其亲本不具有的18个新的等位变异;野生大豆的小粒、高硬脂酸含量、多荚以及抗胞囊线虫等优良性状基因较易被其育成的大豆品种选择利用。【结论】野生和栽培大豆的种间杂交并不单纯是遗传物质的简单组合,它可以通过基因的重组创造出新的优良基因型种质。因而利用野生大豆特有的等位变异创造新的基因型,扩大栽培大豆的遗传多样性,进而拓宽大豆的遗传基础是有效和可行的途径。  相似文献   

9.
【目的】揭示野生大豆Glycine soja Sieb.et Zucc.在特定微环境中演化和分化的信息,为自然居群的取样提供理论依据.【方法】采用41对SSR引物对湖南新田大冠岭地区及其周围的16个居群612份野生大豆材料的遗传多样性和群体结构进行了分析,并分析了居群多样性与空间分布间的关系.【结果和结论】41个SSR位点在612份野生大豆材料中共检测出414个等位变异,每个位点的等位变异范围为4~19个,平均为10.1个.每个位点Shannon指数(I)变异范围为0.283~2.542,平均为1.751.通过比较不同居群遗传多样性指数,发现大冠岭区域向西岭至桑梓一带野生大豆遗传多样性丰富,拥有较多的等位变异,与其周围居群间有较高的基因流.用基于混合模型的Structure2.3软件分析群体结构,可将野生大豆居群分为19个组群,大冠岭区域向西岭至桑梓一带野生大豆居群互混成不同组,而远离大冠岭的野生大豆居群则大都独立.空间自相关分析显示,1 400 m以内遗传距离与地理距离呈正相关;向西岭至桑梓一带是大冠岭区域野生大豆居群的一个多样性中心,周围野生大豆自然居群呈现出明显的空间分布特点,遗传多样性与地理距离、海拔呈正相关,大冠岭野生大豆传播方式为由高海拔地区向低海拔辐射传播.因此认为该地区野生大豆遗传结构模式应属于距离隔离模式和陆岛模式.  相似文献   

10.
桃单果重与6个物候期性状的遗传关联分析   总被引:1,自引:0,他引:1  
【目的】关联分析作为传统连锁分析方法的有效补充,可以鉴定果树的数量性状位点(Quantitative Trait Loci, QTLs)。本研究通过关联分析定位桃单果重及6个物候期性状的QTLs,以研究性状间的遗传相关,为提高桃品质育种的效率奠定理论基础。【方法】以来源于中国6个生态群的104份桃地方品种为试材,利用分布于桃8条连锁群上的53对SSR(Simple Sequence Repeats)引物,用STRUCTURE 2.3.3和TASSEL 2.0.1软件分别对群体结构和全基因组SSR位点间的连锁不平衡(Linkage Disequilibrium, LD)状况进行分析。在结合单果重和6个物候期性状表型数据后进行关联分析,以定位各性状的QTLs。【结果】群体结构显示供试的104份桃地方品种基于数学模型可以分为5群;LD分析表明在53个SSR位点组成的1378个成对组合中,23个成对位点存在着显著LD且得到统计概率支持。虽然相关性分析表明单果重只与展叶期显著相关,但关联分析却显示单果重不仅与盛花期、展叶期、果实成熟期和落叶期均具有相同的关联位点;而且桃单果重的关联位点与不同连锁群上盛花期、果实发育期和落叶期的关联位点也存在显著的LD现象。对单果重具有最大增效表型效应的等位变异UDP96-013-206同时具有提前花期1.46 d、延迟果实成熟期13.77 d、延迟落叶期2.17 d的表型效应。【结论】本研究得到27个与桃单果重及6个物候期性状关联的QTLs,部分位点与前人定位的连锁群相同。关联分析表明单果重与盛花期、展叶期、果实成熟期、果实发育期和落叶期确实存在遗传相关,主要表现为这几个性状可能受到基因多效性调控或者受连锁群内及连锁群间存在连锁或关联关系的基因调控。  相似文献   

11.
【目的】改进染色体片段代换系群体,挖掘野生大豆(Glycine soja Sieb. et Zucc.)中蕴藏的农艺性状优异等位变异,为拓宽栽培大豆(Glycine max (L.) Merr.)的遗传基础提供材料和依据。【方法】通过标记加密和剔除部分单标记型片段的方法,改进以野生大豆N24852为供体,栽培大豆NN1138-2为受体的染色体片段代换系(CSSL)群体SojaCSSLP1;对改进后的群体(SojaCSSLP2)进行3年2点田间试验,通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等4种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与大豆开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的野生片段。【结果】改进后的群体(SojaCSSLP2)由150个CSSL构成,其中,有130个家系与SojaCSSLP1相同;在原遗传图谱上,新增40个SSR标记,相邻标记间平均遗传距离由16.15 cM变为12.91 cM,大于20 cM的区段由32个减少至17个,标记覆盖遗传距离总长度较原图谱(2 063.04 cM)增加103.52 cM;群体NN1138-2背景回复率变幅为79.45%-99.70%,平均为94.62%。利用SojaCSSLP2群体,分别鉴定到与开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的4、5、5、7、14和3个工作QTL(working QTL)/片段,其中有15个工作QTL/片段能在多个环境下检测到,属共性工作QTL(joint working QTL);除片段Sct_190-Sat_293上的主茎节数位点外,野生等位变异具有的加性效应方向与双亲表型差异方向一致;单个位点分别能解释5%-64%的表型变异;同时,分别检测到3、2和2个与地点存在互作的株高、主茎节数和单株荚数QTL/片段,其中与凤阳环境的互作均具有增加表型的效应,这可能与凤阳较南京所处纬度高有关;这些位点/片段分布在26个染色体片段上,其中有7个片段与2个及以上性状相关,可能是性状相关的遗传基础;与前人结果比较,有3个开花期、3个株高、2个主茎节数、2个单株荚数、8个百粒重、2个单株粒重位点能在其他遗传背景栽培大豆中检测到,说明在这些位点上野生大豆和栽培大豆间及栽培大豆间均存在遗传差异;另外18个位点(片段)为本研究利用野生大豆的新发现。【结论】大豆开花期、株高和主茎节数的遗传基础较百粒重简单,前者均存在效应较大位点/片段,后者多由小效应位点控制,遗传基础极为复杂;野生大豆中蕴藏着新的等位变异,能拓宽栽培大豆遗传基础。  相似文献   

12.
【目的】对东北大豆种质群体百粒重性状进行全基因组关联分析,全面解析中国大豆主产区百粒重QTL-等位变异遗传构成,为东北地区大豆籽粒大小遗传改良提供理论基础。【方法】以东北地区育种和生产上常用的290份大豆材料作为试验群体,于2013和2014年在东北第二生态亚区的克山、牡丹江、佳木斯和长春4个地点进行百粒重表型鉴定试验。利用RAD-seq方法对试验群体进行基因组测序分析,对原始SNP数据进行过滤及填补缺失数据后,最终获得了82 966个高质量的SNP标记。根据限制性两阶段多位点全基因组关联分析(restricted two-stage multi-locus genome-wide association analysis,RTM-GWAS)方法,首先构建获得15 546个具有复等位变异的SNPLDB标记,然后使用两阶段多位点模型对百粒重性状进行全基因组关联分析。对检测到的百粒重关联SNPLDB标记位点附近(50 kb范围内)的基因进行分析,根据基因内SNP与SNPLDB标记位点之间关联性的卡方测验,筛选可能与百粒重性状相关的候选基因并进行功能注释。最后基于检测的百粒重QTL-等位变异体系分析了不同熟期组材料间的遗传分化。【结果】试验群体百粒重变异范围为18.3—20.7 g,性状遗传率为92.3%。RTM-GWAS方法共检测到76个与大豆百粒重性状关联的SNPLDB标记位点,其中15个位点主效不显著,另外61个主效显著位点解释了65.40%的表型变异;68个与环境互作效应显著的位点解释了17.46%的表型变异,另外8个位点与环境互作效应不显著。在检测到的76个位点中有34个位点与已报道的30个百粒重QTL重叠,另外42个位点为本研究新检测百粒重位点。基于检测的SNPLDB标记位点,共筛选到137个百粒重相关候选基因,功能注释显示这些候选基因不仅参与大豆百粒重的调节,还参与了初级新陈代谢、蛋白质修饰、物质运输、胁迫响应和信号转导等。对各熟期组间QTL-等位变异的遗传分化分析显示,尽管熟期组间百粒重差异不明显,但其QTL-等位变异遗传结构却发生了新生和汰除的变化。【结论】RTM-GWAS方法能相对全面地解析东北大豆种质群体百粒重QTL-等位变异遗传构成。东北大豆种质群体百粒重由大量QTL调控,且QTL与环境互作效应大,QTL存在丰富的复等位变异。由RTM-GWAS方法建立的QTL-等位变异矩阵为群体遗传及演化研究提供了新工具。  相似文献   

13.
大豆分枝数和叶柄夹角的相关野生片段分析   总被引:2,自引:1,他引:1  
【目的】从以栽培大豆为遗传背景的野生大豆染色体片段代换系(CSSL)群体中检测出与分枝数和叶柄夹角有关的野生片段,估计其遗传效应,为未来基因克隆和功能研究提供材料基础。【方法】利用由151个家系组成的野生大豆CSSL群体(SojaCSSLP1),通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等四种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与分枝数和叶柄夹角相关的野生片段。【结果】累计共检测到3个分枝数相关的野生等位变异/片段和5个叶柄夹角相关野生等位变异/片段,其中与分枝数相关的Sat_160野生片段和与叶柄夹角相关的Sat_286野生片段能分别被所有方法检测到。在这些QTL/片段中,Sat_286位点最高能解释22%的叶柄夹角表型变异;在所有检测到的位点(片段)上,来自野生大豆的等位基因均具有正向的加性效应,这与2个亲本的表型差异相吻合。【结论】所发现的3个分枝数和5个叶柄夹角野生等位变异/片段均来自未报道的QTL/片段,体现了野生大豆的特点。  相似文献   

14.
贵州省烟蚜遗传多样性分析   总被引:4,自引:1,他引:3  
【目的】分析贵州省各生态区烟蚜(Myzus persicae)种群间是否存在遗传差异及其差异程度,探明贵州烟蚜种群异质性及种群分化情况,揭示变异发生规律及其机理,为指导虫情监测以及综合治理提供理论依据。【方法】用SSR分子标记技术对贵州省25个主要烟区的烟蚜种群进行遗传多样性分析。【结果】25个地理种群中大部分的种群呈中度分化,个别种群呈高度分化;种群遗传分化及与地理距离、海拔之间的关系分析表明,种群间的遗传距离与地理距离无显著相关性,遗传一致度与海拔差距无相关性。烟蚜种群的系统发育分析表明,25个地理种群大致分为3部分。【结论】种群的遗传分化不符合地理隔离模式,贵州省烟蚜各种群的种群分化复杂,其原因可能与贵州省特殊的地形和气候有关。  相似文献   

15.
基于微卫星分子标记的重庆地区桔小实蝇遗传分化研究   总被引:2,自引:2,他引:0  
【目的】探讨重庆地区桔小实蝇遗传分化情况。【方法】以8对微卫星引物对重庆地区6个桔小实蝇种群155个个体的遗传多样性进行研究。【结果】在8个微卫星位点上共检测到51个等位基因。6个种群在各位点的平均表观杂合度Ho为0.1731—0.2958,平均期望杂合度He为0.1311—0.6796,经卡方检验,各种群在大多数位点上不符合Hardy-Weinberg平衡。对多态位点百分率P、基因多样性指数Nei’s,Shannon信息指数I的分析表明,本文所研究的6个桔小实蝇种群具有较丰富的遗传多样性。种群间分化系数FST平均值为0.0777,说明遗传变异主要发生在种群内。武隆种群和永川种群之间的遗传距离最大(0.2367),江津种群和北碚种群之间的遗传距离最小(0.0667)。UPGMA聚类分析显示,重庆地区桔小实蝇大致分为两个亚群,北碚、江津、万州、秀山、永川5个种群为一个亚群,武隆种群单独为一个亚群。【结论】重庆地区的桔小实蝇出现了一定的遗传分化,但分化程度不高。桔小实蝇在重庆地区的入侵处于初级阶段。  相似文献   

16.
大豆巢式关联作图群体蛋白质含量的遗传解析   总被引:1,自引:1,他引:0  
【目的】大豆是重要的经济作物,是人类植物蛋白质和油脂的主要来源。蛋白质含量作为大豆育种的主要目标之一,属于多基因控制的复杂数量性状,并且受环境条件的影响。通过对大豆巢式关联作图群体的蛋白质含量进行全基因组关联分析,解析其遗传构成,为高蛋白质含量的大豆品种育种提供理论基础。【方法】以蒙8206为共同亲本,对临河×蒙8206、正阳×蒙8206、蒙8206×通山与蒙8206×WSB分别杂交,通过单粒传法自交7代衍生的4个重组自交系群体,共计623个家系,整合为一个大豆巢式关联作图群体,利用RAD-seq技术进行SNP标记基因分型,并于2012年至2014年将该群体种植在5个不同田间环境,在大豆完熟期R8时测定蛋白质含量,利用限制性两阶段多位点全基因组关联分析方法(RTM-GWAS)来解析蛋白质含量的遗传构成。【结果】试验群体的蛋白质含量变异较大,蛋白质含量性状遗传率较高,遗传变异可解释85.00%的表型变异。多环境联合方差分析表明,蛋白质含量的基因型、环境以及基因型×环境均达到差异极显著水平。全基因组关联分析共检测到90个蛋白质含量QTL,其中新检测到20个QTL,每个QTL的表型变异解释率为0.06%—3.99%,贡献率总和为45.60%。每个QTL包含2—5个等位变异,等位变异效应为-2.434%—2.845%,大多数等位变异效应为-1.000%—1.000%,表明大多数等位变异的效应较小。根据检测的90个蛋白质含量QTL,预测了73个蛋白质含量相关基因,其中Glyma20g24830参与甘氨酸与芳香族氨基酸代谢,Glyma18g03540参与半胱氨酸生物合成,推测其为重要蛋白质含量候选基因。根据试验群体的蛋白质含量QTL-allele矩阵,预测出潜在杂交组合的纯系后代的蛋白质含量育种潜力高达56.5%。【结论】检测到90个大豆蛋白质含量QTL,新检测到20个QTL,预测到73个蛋白质含量相关基因,表明大豆蛋白质含量是由多基因控制的数量性状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号