首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Ultraviolet (UV) B exposure is a prominent cause of skin aging and a contemporary subject of interest. The effects are progressing through the generation of reactive oxygen species (ROS) that alter cell signaling pathways related to inflammatory responses. The present study evaluates the protective effects of (7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (HTT) isolated from the edible brown algae Sargassum horneri against UVB protective effects in human dermal fibroblasts (HDFs). HTT treatment dose-dependently suppressed intracellular ROS generation in HDFs with an IC50 of 62.43 ± 3.22 µM. HTT abated UVB-induced mitochondrial hyperpolarization and apoptotic body formation. Furthermore, UVB-induced activation of key nuclear factor (NF)-κB and mitogen-activated protein kinase signaling proteins were suppressed in HTT treated cells while downregulating pro-inflammatory cytokines (interleukin-1β, 6, 8, 33 and tumor necrosis factor-α). Moreover, HTT treatment downregulated matrix metalloproteinase1, 2, 3, 8, 9 and 13 that was further confirmed by the inhibition of collagenase and elastase activity. The evidence implies that HTT delivers protective effects against premature skin aging caused by UVB exposure via suppressing inflammatory responses and degradation of extracellular matrix (ECM) components. Extensive research in this regard will raise perspectives for using HTT as an ingredient in UV protective ointments.  相似文献   

2.
The first total synthesis of marine natural product, (−)-majusculoic acid (1) and its seven analogs (9–15), was accomplished in three to ten steps with a yield of 3% to 28%. The strategy featured the application of the conformational controlled establishment of the trans-cyclopropane and stereochemical controlled bromo-olefination or olefination by Horner–Wadsworth–Emmons (HWE) reaction. The potential anti-inflammatory activity of the eight compounds (1 and 9–15) was evaluated by determining the nitric oxide (NO) production in the lipopolysaccharide (LPS)-induced mouse macrophages RAW264.7. (−)-Majusculoic acid (1), methyl majusculoate (9), and (1R,2R)-2-((3E,5Z)-6-bromonona-3,5-dien-1-yl)cyclopropane-1-carboxylic acid (12) showed significant effect with inhibition rates of 33.68%, 35.75%, and 43.01%, respectively. Moreover, they did not show cytotoxicity against RAW264.7 cells, indicating that they might be potential anti-inflammatory agents.  相似文献   

3.
Sargassum horneri (S. horneri) is a well-known brown seaweed widely distributed worldwide. Several biological activities of S. horneri have been reported. However, its effects on lipid metabolism and the underlying mechanisms remain elusive. In the present study, we examined the inhibitory effect of the active compound “(−)-loliolide ((6S,7aR)-6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one (HTT))” from S. horneri extract on lipid accumulation in differentiated adipocytes. MTT assays demonstrated that (−)-loliolide is not toxic to 3T3-L1 adipocytes in a range of concentrations. (−)-loliolide significantly reduced intracellular lipid accumulation in the differentiated phase of 3T3-L1 adipocytes as shown by Oil Red O staining. Western blot analysis revealed that (−)-loliolide increased the expression of lipolytic protein phospho-hormone-sensitive lipase (p-HSL) and thermogenic protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1). Additionally, (−)-loliolide decreased expression of adipogenic and lipogenic proteins, including sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and fatty acid-binding protein 4 (FABP4) in 3T3-L1 adipocytes. These results indicate that (−)-loliolide from S. horneri could suppress lipid accumulation via regulation of antiadipogenic and prolipolytic mechanisms in 3T3-L1 cells. Considering the multifunctional effect of (−)-loliolide, it can be useful as a lipid-lowering agent in the management of patients who suffer from obesity.  相似文献   

4.
Saxitoxin and its analogues, paralytic shellfish toxins (PSTs), are potent and specific voltage-gated sodium channel blockers. These toxins are produced by some species of freshwater cyanobacteria and marine dinoflagellates. We previously identified several biosynthetic intermediates of PSTs, as well as new analogues, from such organisms and proposed the biosynthetic and metabolic pathways of PSTs. In this study, 12β-deoxygonyautoxin 5 (12α-gonyautoxinol 5 = gonyautoxin 5-12(R)-ol) was identified in the freshwater cyanobacterium, Dolichospermum circinale (TA04), and 12β-deoxysaxitoxin (12α-saxitoxinol = saxitoxin-12(R)-ol) was identified in the same cyanobacterium and in the marine dinoflagellate Alexandrium pacificum (Group IV) (120518KureAC) for the first time from natural sources. The authentic standards of these compounds and 12α-deoxygonyautoxin 5 (12β-gonyautoxinol 5 = gonyautoxin 5-12(S)-ol) were prepared by chemical derivatization from the major PSTs, C1/C2, produced in D. circinale (TA04). These standards were used to identify the deoxy analogues by comparing the retention times and MS/MS spectra using high-resolution LC-MS/MS. Biosynthetic or metabolic pathways for these analogues have also been proposed based on their structures. The identification of these compounds supports the α-oriented stereoselective oxidation at C12 in the biosynthetic pathway towards PSTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号