首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小球藻蛋白具有可再生、价格低廉等优点,可用于制备蛋白基胶黏剂。采用氢氧化钠(Na OH)、十二烷基硫酸钠(SDS)和三羟甲基丙烷三缩水甘油醚(TTE)改性处理小球藻蛋白后制备胶黏剂。多种方式表征结果显示,改性处理破坏了小球藻蛋白的球形结构,提供了更多的交联位点,从而提高了胶黏剂的胶合强度及耐水性能。在优化工艺参数:双面涂胶量400g/m2,热压压力1.5 MPa、热压温度150℃、热压时间8 min的条件下,制备的三层桉木胶合板的干、湿胶合强度分别为1.78、1.11 MPa,满足GB/T 9846—2015《普通胶合板》中II类胶合板的要求。  相似文献   

2.
通过三羟甲基丙烷三缩水甘油醚(THPTG)交联聚合大豆蛋白降解液制备低黏度大豆蛋白胶黏剂,研究THPTG用量、反应时间、反应温度等工艺参数对大豆蛋白胶黏剂黏度、耐水胶合强度和固化性能的影响,优化大豆蛋白胶黏剂制备工艺条件。结果表明:THPTG用量与反应时间对大豆蛋白胶黏剂黏度、耐水胶合强度均有显著影响,而反应温度仅对黏度影响较大;THPTG用量为9%时,大豆蛋白胶黏剂固化温度为130.20℃,固化反应热达到最大值199.7 J/g。大豆蛋白胶黏剂优化的制备工艺条件为THPTG 9%、反应时间50 min、反应温度70℃,制备的胶黏剂黏度为106 mPa·s,耐水胶合强度达到0.76 MPa,满足GB/T 9846—2015对于Ⅱ类胶合板标准要求。  相似文献   

3.
仿照贻贝蛋白高黏附结构,合成邻苯二酚基多糖交联剂(CP)用以增强大豆蛋白胶黏剂的耐水胶接性能,研究CP原料中玉米淀粉与叔丁基二甲基氯硅烷保护的3, 4-二羟基苯甲酸(DHBAT)质量比、CP加入量、胶合板热压工艺(涂胶量、热压温度和热压时间)对大豆蛋白胶黏剂制备胶合板耐水胶接性能的影响规律,表征CP和改性大豆蛋白胶黏剂(SPI-CP)的功能性基团以及胶黏剂热稳定性、结晶区间、断面形貌等解析CP对大豆蛋白胶黏剂的增强机制。试验结果表明:通过4-二甲基氨基-吡啶和N, N-二环己基碳二亚胺催化的酯化反应将邻苯二酚结构成功接枝到玉米淀粉制成CP;CP的最佳配方为m(多糖)∶m(DHBAT)=1∶2,加入量为6%。SPI-CP胶黏剂制备胶合板耐水胶合强度较未改性时提高了64.62%,达1.07 MPa,干状胶合强度提高了154.44%,达2.29 MPa,满足国家标准中的Ⅱ类胶合板要求。这归因于CP中的邻苯二酚结构氧化形成醌类结构与蛋白氨基发生席夫碱反应,形成化学键交联,增强胶黏剂的耐水胶接性能;SCI-CP胶黏剂制备胶合板的优化热压工艺参数为热压温度130℃,热压时间4.5 min(板坯厚4...  相似文献   

4.
以支化聚乙烯亚胺(PEI)和尿素(U)经过脱氨缩聚反应,一步法合成高度支化的脲基聚合物;将其配制成50%的水溶液作为木材胶黏剂,制备胶合板;对所制备胶合板进行胶合强度以及耐水性能试验,并研究了 PEI的分子质量以及U/PEI的摩尔比对胶合强度的影响.试验结果表明:PEI相对分子质量为1 800,U/PEI摩尔比为3:1...  相似文献   

5.
制备合成了不同尿素用量的系列尿素改性酚醛(PUF)树脂胶黏剂,探讨了一种PUF树脂胶黏剂较优的配方和合成工艺,并通过~(13)C NMR、TG对PUF树脂的反应过程和分解过程进行了研究。结果表明:合成过程中尿素分三批加入,以CaO和NaOH为复合催化剂,在碱性条件下制备的5组尿素用量不同的PUF树脂,以这5组PUF树脂作胶黏剂压制的杨木三合板胶合强度全部符合Ⅰ类胶合板要求,甲醛释放量≤0.5 mg/L;~(13)C NMR分析结果显示,树脂合成过程中的羟甲基、亚甲基、亚甲基醚键的含量随着尿素添加量和反应时间的不同而变化,PUF树脂合成过程的主要反应为甲醛的亲电加成,TG分析表明热稳定性呈先提高后降低的趋势。  相似文献   

6.
以脱脂豆粕为原料,以环氧类树脂为交联剂,并用聚乙烯亚胺(PEI)改性缩合单宁为增强剂制备大豆蛋白基木材胶黏剂,探究缩合单宁与PEI添加比例对胶合板胶合强度的影响,并对改性后大豆蛋白胶黏剂的微观形貌、热稳定性等进行表征和分析,探讨缩合单宁改性大豆蛋白胶黏剂的增强机理。结果表明:当胶黏剂体系中缩合单宁与PEI的质量比为2∶1时,胶合板的耐水胶合强度为1.06 MPa,与未改性的相比提高了360.8%,满足GB/T 9846—2015Ⅱ类板指标要求。该胶黏剂原料为可再生资源,且具有良好的耐水性,具有工业应用的潜力。  相似文献   

7.
将油菜籽蛋白和丙烯酸酯乳液共混制备胶黏剂,以其代替部分醛类胶黏剂用于胶合板生产。采用单因素试验方法,确定油菜籽蛋白和丙烯酸酯乳液添加比例;采用正交试验方法,优化该胶黏剂制备胶合板工艺;通过热重分析评价胶黏剂的热稳定性。结果表明:油菜籽蛋白与丙烯酸酯乳液配比为8∶2,胶合板制备理想的热压工艺为二苯甲烷二异氰酸酯(MDI)添加量4%、热压温度140℃、热压时间700s、热压压力0.8MPa,板材剪切强度1.71MPa,符合GB/T9846—2015《普通胶合板》中Ⅱ类胶合板的要求。  相似文献   

8.
湿地松单宁制造胶合板胶黏剂的研究   总被引:1,自引:0,他引:1  
用湿地松缩合单宁替代部分苯酚研制耐水性胶合板胶黏剂;选定四因素三水平进行正交试验,寻找制备胶合板胶黏剂的最佳工艺条件,探求湿地松缩合单宁胶制备的可行性,以达到充分利用废弃物,降低胶合板胶黏剂的工业生产成本,减少环境污染的目的。本实验研究表明:用湿地松缩合单宁替代40%的苯酚制成的胶黏剂用于压制胶合板,其质量符合Ⅰ类胶合板国家标准。  相似文献   

9.
以硫酸/磷酸为催化剂和苯酚液化,将大豆粉转化为胶黏剂的制备原料,并制备得到耐水性木材胶黏剂。采用GPC,HPLC,FTIR等手段结合胶合板压制,对豆粉苯酚液化产物及其与甲醛缩聚得到的胶黏剂进行表征。结果表明:以苯酚/豆粉质量比为3/1~2/1、5%硫酸为催化剂下,将豆粉在130~150℃下液化90min,90%以上的豆粉转化成相对分子质量为250~7250的产物,部分苯酚以1,4-取代和1,2-取代方式与豆粉反应形成结合酚;苯酚液化不仅破坏大豆蛋白的紧密球形结构,还使液化豆粉的活性基团增加,由此通过苯酚液化豆粉与甲醛缩聚,制得低游离甲醛释放的、胶接性能满足国家标准要求的Ⅰ类胶黏剂,由此所制备胶合板的28h煮-烘-煮湿强度在1.24~1.81MPa之间,达到耐候胶合板要求;苯酚/豆粉的比例对液化产物以及苯酚液化豆粉-甲醛胶黏剂的许多特性都有不同的影响,其中以苯酚/豆粉比例为3的胶黏剂胶接强度最好。  相似文献   

10.
由于世界范围内石油资源的紧缺和传统木材用胶黏剂引发的环境问题,使得木材胶黏剂工业重新重视研发豆基胶黏剂。笔者以脱脂豆粉为原料,以尿素、戊二醛为改性试剂制备复合改性木材胶黏剂。分别探讨了尿素浓度、反应温度、反应时间以及戊二醛添加量对改性胶黏剂胶合性能及耐水性的影响,并采用FT-IR分析复合改性胶黏剂样品中活性基团的变化,探索耐水胶合强度增强机理。通过试验结果分析,在试验研究范围内较优合成工艺参数为:尿素浓度为2.0M、反应时间1.0h、反应温度40℃、戊二醛添加量为2.0%(以脱脂豆粉质量为基准)。经30℃热水浸泡处理后,胶合强度达到0.85MPa。  相似文献   

11.
研究了丙烯酰胺改性降解玉米蛋白、制备Ⅱ类胶合板用无醛胶黏剂。通过正交试验表明,当降解玉米蛋白500g、丙烯酰胺40g、顺丁烯二酸酐10g时,用所制得的改性玉米蛋白胶黏剂压制的胶合板的胶合强度达到0.97MPa,符合Ⅱ类胶合板国家标准要求。  相似文献   

12.
改性豆基蛋白胶黏剂的胶合工艺初探   总被引:2,自引:0,他引:2  
以杨木单板为试材研究了改性豆基蛋白胶黏剂的胶合性能,采用单因素实验方法,探讨了改性豆基蛋白胶黏剂压制胶合板的胶合工艺。分析了热压温度、热压时间和涂胶量对三层杨木胶合板胶合性能的影响。结果表明:采用改性后的豆基蛋白胶黏剂,在压力为1.4MPa,温度为165℃左右,热压时间为1.4~1.6 min/mm,涂胶量为220g/m~2,压制的杨木胶合板胶合性能较佳且达到Ⅰ类胶合板的标准。  相似文献   

13.
研究利用高反应活性酚化木质素制备高性能酚化木质素-糠醛胶黏剂。木质素酚化后,在756 cm-1和695 cm-1处新增了两个峰,证实了木质素侧链位的羟基和酚环的活性位点发生了取代反应。在糠醛和苯酚的摩尔比为1.4/1,糠醛和木质素的质量比为0.05/1,缩合时间为3.5 h,氢氧化钠的用量为11%条件下,所制备的酚化木质素-糠醛胶黏剂各项性能良好。该胶黏剂的固体含量为56.25%,pH为11.2,黏度为1 525 m Pa·s,游离糠醛含量为0.04%,游离苯酚含量为0.05%,胶合强度为1.67 MPa。采用六亚甲基四胺优化,胶层均匀分布,与木材面紧密结合,有效胶钉较多,改善了胶合强度。该酚化木质素-糠醛胶黏剂与桉木粉复配所得复合腻子,应用于胶合板表面缝隙填充和平整度调控,不含甲醛,与胶合板相容性好,干燥速度快,耐水性好,打磨性好,粘结强度高,为胶合板可直接饰面和提高饰面高光性提供了技术支撑。  相似文献   

14.
以玉米酒精粕(DDGS)为原料、聚酰胺环氧氯丙烷树脂(PAE)为交联剂、水溶性豆粕(SM)为增强剂制备玉米酒精粕基木材胶黏剂,对比了DDGS与SM蛋白质含量及其氨基酸种类与含量,测试了胶黏剂黏度与制备胶合板的胶合强度,表征了固化胶黏剂功能性基团、热稳定性、断面形态,解析了DDGS基胶黏剂组分对性能的影响规律与增强作用机...  相似文献   

15.
魔芋葡苷聚糖/壳聚糖共混胶黏剂应用于胶合板的研究   总被引:2,自引:0,他引:2  
以胶合强度为考察指标,进行魔芋葡苷聚糖/壳聚糖共混配比胶黏剂工艺的制备研究.试验结果表明,胶黏剂中各组分用量的较佳参数为:壳聚糖1%,魔芋葡苷聚糖1.5%,NaOH为1%.此配比制备的胶黏剂压制的胶合板,干状胶合强度最大;在壳聚糖1%,魔芋葡苷聚糖1.5%,NaOH为2%的配比时,胶合板的湿状胶合强度最大.  相似文献   

16.
为解决醛系合成树脂胶黏剂甲醛释放、热稳定性差和阻燃效果较差的难题,探讨了一种功能叠加型无机镁质胶黏剂的制备技术,以期替代醛类合成树脂胶黏剂在木材工业上的使用。本研究中镁质胶黏剂的优化配方为n(MgO)/n(MgCl_2)=6,n(H_2O)/n(MgCl_2)=16,胶合板制备工艺为施胶量700 g/m~2(双面),冷压时间28 h,养护时间15 d。试验结果显示,养护天数对镁质胶黏剂制备胶合板胶合强度的影响最显著。当养护天数为3~19 d时,胶合板的干、湿胶合强度均呈现先增大后下降的趋势,13 d时干、湿胶合强度均达到峰值,干、湿胶合强度分别为1.40和1.08 MPa。通过对胶合板剪切破坏界面进行扫描电镜观察发现,镁质胶黏剂渗透到木材孔隙中形成了胶钉,产生了机械咬合结构。利用热重分析仪和锥形量热仪等对镁质胶黏剂的热稳定性和燃烧性能进行了测试,结果表明,镁质胶黏剂在本研究温度范围(30~800℃)内的总质量损失率为48%。在50 k W/m~2的热辐射功率下,镁质胶黏剂制备胶合板的平均热释放速率(HRR)为35.84 k W/m~2,总热释放量(THR)为20.97MJ/m~2。与普通酚醛树脂胶黏剂相比,镁质胶黏剂具有较好的热稳定性和阻燃性能。  相似文献   

17.
为了制备性能更优异的大豆蛋白基胶黏剂,本研究采用"低温-保碱"工艺,以高浓度甲醛制备多羟甲基酚作为后续大豆蛋白基胶的交联剂使用,并借助电喷雾电离质谱仪(ESI-MS)和核磁共振(13C-NMR)进行表征。结果表明,最终合成的交联剂羟甲基总含量和多羟甲基含量较高,反应48 h制备的交联剂羟甲基总含量和多羟甲基含量分别高达94.9%和76%,并且体系中的游离甲醛或甲醛聚合物含量微乎其微(1.1%),后续可直接用于大豆蛋白胶的交联改性。多羟甲基酚基本是以2个三羟甲基酚或者1个三羟甲基酚和1个二羟甲基酚的二聚体形式存在。二聚体的存在并没有减少可以反应的活性点,使得可以参加后续缩聚反应的游离羟甲基更多,可能更容易与蛋白质分子形成大分子网状结构。  相似文献   

18.
低游离甲醛羟甲基化木质素磺酸盐-酚醛复合胶黏剂研究   总被引:5,自引:1,他引:4  
以工业木质素为原料,采用羟甲基化反应提高木质素反应活性,确定了羟甲基化反应木质素和催化剂的最佳配比:木质素与甲醛质量比为3:1、催化剂用量为0.25%(以木质素原料计).并用FT-IR和13C NMR对羟甲基化反应结果进行了分析.通过羟甲基化木质素磺酸盐(HLF)与酚醛树脂(PF)共混制得木质素酚醛树脂(LPF)胶黏剂.实验结果表明,该胶具有制备工艺简单、游离甲醛低的特点,用HLF替代40%的PF时,其胶合强度达到国家Ⅰ类胶合板的要求.  相似文献   

19.
采用低成本、富含活性基团的无甲醛尿素-环氧树脂(代号为HN)为共交联改性剂,与交联剂聚酰胺多胺-环氧氯丙烷(PAE)树脂共混制备大豆蛋白胶。红外光谱(FTIR)表征与热重分析表明:HN树脂能与PAE树脂有效共交联,同时HN-PAE树脂能与大豆蛋白上的活性基团反应,提高大豆蛋白胶的热稳定性。通过胶合板性能测试对HN树脂用量和豆粉用量进行配方优化,将HN-PAE复合树脂溶液(HN树脂质量分数70%)稀释至质量分数为6%,豆粉相对用量为30%~35%时,制备的Ⅱ类胶合板的胶合强度满足GB/T 9846—2015《普通胶合板》的要求。  相似文献   

20.
蔗渣液化产物改性环氧树脂的制备和性能研究   总被引:3,自引:1,他引:2  
将蔗渣在碳酸乙烯酯中以硫酸为催化剂进行快速液化,然后将液化产物与双酚A缩水甘油醚混合,或将液化产物与双酚A及环氧氯丙烷反应,可制成环氧树脂胶黏剂.该胶黏剂用三乙烯基四胺固化剂固化.讨论了环氧树脂制备方式、液化产物含量和固化剂用量对所得环氧树脂黏合强度及固化物的力学性能的影响,并用DSC和TGA对环氧树脂固化物的热稳定性进行了表征.发现本实验制备的环氧树脂的黏接剪切强度和热稳定性优于传统的双酚A型环氧树脂,用液化产物通过化学改性方法制备的环氧树脂性能优于用共混方法制得的环氧树脂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号