首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed’s currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed’s extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host’s defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed’s bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed’s bioactive compounds are analyzed, suggesting seaweed’s potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.  相似文献   

2.
3.
The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.  相似文献   

4.
SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2’s spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein’s RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.  相似文献   

5.
Walleye dermal sarcoma virus (WDSV) is a type of retrovirus, which affects most of the adult walleye fishes during the spawning time. The virus causes multiple epithelial tumors on the fish’s skin and fins that are liable for more than 50% of the mortality rate of fish around the world. Till now, no effective antiviral drug or vaccine candidates have been developed that can block the progression of the disease caused by the pathogen. It was found that the 582-amino-acid (aa) residues long internal structural gag polyprotein of the virus plays an important role in virus budding and virion maturation outside of the cell. Inhibition of the protein can block the budding and virion maturation process and can be developed as an antiviral drug candidate against the virus. Therefore, the study aimed to identify potential natural antiviral drug candidates from the tropical mangrove marine plant Avicennia alba, which will be able to block the budding and virion maturation process by inhibiting the activity of the gag protein of the virus. Initially, a homology modeling approach was applied to identify the 3D structure, followed by refinement and validation of the protein. The refined protein structures were then utilized for molecular docking simulation. Eleven phytochemical compounds have been isolated from the marine plant and docked against the virus gag polyprotein. Three compounds, namely Friedlein (CID244297), Phytosterols (CID12303662), and 1-Triacontanol (CID68972) have been selected based on their docking score −8.5 kcal/mol, −8.0 kcal/mol and −7.9 kcal/mol, respectively, and were evaluated through ADME (Absorption, Distribution, Metabolism and Excretion), and toxicity properties. Finally, molecular dynamics (MD) simulation was applied to confirm the binding stability of the protein-ligands complex structure. The ADME and toxicity analysis reveal the efficacy and non-toxic properties of the compounds, where MD simulation confirmed the binding stability of the selected three compounds with the targeted protein. This computational study revealed the virtuous value of the selected three compounds against the targeted gag polyprotein and will be effective and promising antiviral candidates against the pathogen in a significant and worthwhile manner. Although in vitro and in vivo study is required for further evaluation of the compounds against the targeted protein.  相似文献   

6.
The high risk of morbidity and mortality associated with SARS-CoV-2 has accelerated the development of many potential vaccines. However, these vaccines are designed against SARS-CoV-2 isolated in Wuhan, China, and thereby may not be effective against other SARS-CoV-2 variants such as the United Kingdom variant (VUI-202012/01). The UK SARS-CoV-2 variant possesses D614G mutation in the Spike protein, which impart it a high rate of infection. Therefore, newer strategies are warranted to design novel vaccines and drug candidates specifically designed against the mutated forms of SARS-CoV-2. One such strategy is to target ACE2 (angiotensin-converting enzyme2)–Spike protein RBD (receptor binding domain) interaction. Here, we generated a homology model of Spike protein RBD of SARS-CoV-2 UK strain and screened a marine seaweed database employing different computational approaches. On the basis of high-throughput virtual screening, standard precision, and extra precision molecular docking, we identified BE011 (Dieckol) as the most potent compounds against RBD. However, Dieckol did not display drug-like properties, and thus different derivatives of it were generated in silico and evaluated for binding potential and drug-like properties. One Dieckol derivative (DK07) displayed good binding affinity for RBD along with acceptable physicochemical, pharmacokinetic, drug-likeness, and ADMET properties. Analysis of the RBD–DK07 interaction suggested the formation of hydrogen bonds, electrostatic interactions, and hydrophobic interactions with key residues mediating the ACE2–RBD interaction. Molecular dynamics simulation confirmed the stability of the RBD–DK07 complex. Free energy calculations suggested the primary role of electrostatic and Van der Waals’ interaction in stabilizing the RBD–DK07 complex. Thus, DK07 may be developed as a potential inhibitor of the RBD–ACE2 interaction. However, these results warrant further validation by in vitro and in vivo studies.  相似文献   

7.
Herpes simplex virus type 1 (HSV-1) is one of the most prevalent pathogens worldwide requiring the search for new candidates for the creation of antiherpetic drugs. The ability of sea urchin spinochromes—echinochrome A (EchA) and its aminated analogues, echinamines A (EamA) and B (EamB)—to inhibit different stages of HSV-1 infection in Vero cells and to reduce the virus-induced production of reactive oxygen species (ROS) was studied. We found that spinochromes exhibited maximum antiviral activity when HSV-1 was pretreated with these compounds, which indicated the direct effect of spinochromes on HSV-1 particles. EamB and EamA both showed the highest virucidal activity by inhibiting the HSV-1 plaque formation, with a selectivity index (SI) of 80.6 and 50.3, respectively, and a reduction in HSV-1 attachment to cells (SI of 8.5 and 5.8, respectively). EamA and EamB considerably suppressed the early induction of ROS due to the virus infection. The ability of the tested compounds to directly bind to the surface glycoprotein, gD, of HSV-1 was established in silico. The dock score of EchA, EamA, and EamB was −4.75, −5.09, and −5.19 kcal/mol, respectively, which correlated with the SI of the virucidal action of these compounds and explained their ability to suppress the attachment and penetration of the virus into the cells.  相似文献   

8.
Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2 and NO). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in NO assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs.  相似文献   

9.
Seventeen lactones including eight territrem derivatives (1–8) and nine butyrolactone derivatives (9–17) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162 under solid-state fermentation of rice. Compounds 1–3 and 9–10 were new, and their structures were elucidated by spectroscopic analysis. The acetylcholinesterase inhibitory activity and antiviral activity of compounds 1–17 were evaluated. Among them, compounds 1 and 2 showed strong inhibitory activity against acetylcholinesterase with IC50 values of 4.2 ± 0.6, 4.5 ± 0.6 nM, respectively. This is the first time it has been reported that 3, 6, 10, 12 had evident antiviral activity towards HSV-1 with IC50 values of 16.4 ± 0.6, 6.34 ± 0.4, 21.8 ± 0.8 and 28.9 ± 0.8 μg·mL−1, respectively. Antifouling bioassay tests showed that compounds 1, 11, 12, 15 had potent antifouling activity with EC50 values of 12.9 ± 0.5, 22.1 ± 0.8, 7.4 ± 0.6, 16.1 ± 0.6 μg·mL−1 toward barnacle Balanus amphitrite larvae, respectively.  相似文献   

10.
Two novel isobenzofuranone derivatives, pseudaboydins A (1) and B (2), along with five known compounds, including (R)-2-(2-hydroxypropan-2-yl)-2,3-dihydro-5-hydroxybenzofuran (3), (R)-2-(2-hydroxypropan-2-yl)-2,3-dihydro-5-methoxybenzofuran (4), 3,3′-dihydroxy-5,5′-dimethyldiphenyl ether (5), 3-(3-methoxy-5-methylphenoxy)-5-methylphenol (6) and (−)-regiolone (7), were isolated from the culture broth of the marine fungus, Pseudallescheria boydii, associated with the starfish, Acanthaster planci. Their structures were elucidated primarily based on NMR and MS data. The absolute configurations of 1–4 were determined by CD spectroscopy and single-crystal X-ray diffraction studies. The cytotoxic and antibacterial activities of 1–4 were evaluated. Pseudaboydin A (1) showed moderate cytotoxic activity against human nasopharyngeal carcinoma cell line HONE1, human nasopharyngeal carcinoma cell line SUNE1 and human glandular lung cancer cell line GLC82 with IC50 values of 37.1, 46.5 and 87.2 μM, respectively.  相似文献   

11.
The effects of temperature on growth and production of Lipophilic Toxins (LT) by a monoclonal culture of Dinophysis caudata was studied. The cell density of D. caudata increased significantly with increasing temperature, and was the highest under 27, 30, and 32.5 °C. Temperature affected the average specific growth rate (µ) during the exponential growth phase (EG), which increased from 15 °C to 30 °C, and then decreased at 32.5 °C. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that this strain of D. caudata produced only pectenotoxin-2 (PTX-2) whose concentration increased significantly with incubation period, except at 32.5 °C. It was significantly different between temperatures ≤18 °C, ≥21 °C, and 32.5 °C. The cellular toxin production (CTP, pg·cell−1·day−1) showed variation with growth phase and temperature, except at 32.5 °C. The average net toxin production (Rtox) was not affected by temperature. During EG, the average specific toxin production rate (µtox) increased significantly with increase in temperature, reaching a peak of 0.66 ± 0.01 day−1 at 30 °C, and then decreased. Over the entire growth span, µtox was significantly correlated to µ, and this correlation was most significant at 27 and 30 °C. During EG, µtox was affected by both temperature and growth. This study shows that temperature affects growth and toxin production of this strain of D. caudata during EG. In addition, a positive correlation was found between toxin production and growth.  相似文献   

12.
From the marine-derived fungus Penicillium sumatrense (Trichocomaceae), a pair of enantiomers [(+)-1 and (−)-1] were isolated with identical 1D NMR data to drazepinone, which was originally reported to have a trisubstituted naphthofuroazepinone skeleton. In this study, we confirmed the structures of the two enantiomers as drazepinone and revised their structures by detailed analysis of extensive 2D NMR data and a comparison of the calculated 13C chemical shifts, ECD, VCD, and ORD spectra with those of the experiment ones. (+)-1 and (−)-1 were evaluated for their PTP inhibitory activity in vitro. (−)-1 showed selective PTP inhibitory activity against PTP1B and TCPTP with IC50 values of 1.56 and 12.5 μg/mL, respectively.  相似文献   

13.
Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction and decrease in nitric oxide (NO) bioavailability are critical for the development of atherosclerotic lesion. We thus examined whether xyloketal B had an influence on the atherosclerotic plaque area in apolipoprotein E-deficient (apoE−/−) mice fed a high-fat diet and investigated the underlying mechanisms. We found in our present study that the administration of xyloketal B dose-dependently decreased the atherosclerotic plaque area both in the aortic sinus and throughout the aorta in apoE−/− mice fed a high-fat diet. In addition, xyloketal B markedly reduced the levels of vascular oxidative stress, as well as improving the impaired endothelium integrity and NO-dependent aortic vasorelaxation in atherosclerotic mice. Moreover, xyloketal B significantly changed the phosphorylation levels of endothelial nitric oxide synthase (eNOS) and Akt without altering the expression of total eNOS and Akt in cultured human umbilical vein endothelial cells (HUVECs). Here, it increased eNOS phosphorylation at the positive regulatory site of Ser-1177, while inhibiting phosphorylation at the negative regulatory site of Thr-495. Taken together, these findings indicate that xyloketal B has dramatic anti-atherosclerotic effects in vivo, which is partly due to its antioxidant features and/or improvement of endothelial function.  相似文献   

14.
Racemic dinaphthalenone derivatives, (±)-asperlone A (1) and (±)-asperlone B (2), and two new azaphilones, 6″-hydroxy-(R)-mitorubrinic acid (3) and purpurquinone D (4), along with four known compounds, (−)-mitorubrinic acid (5), (−)-mitorubrin (6), purpurquinone A (7) and orsellinic acid (8), were isolated from the cultures of Aspergillus sp. 16-5C. The structures were elucidated using comprehensive spectroscopic methods, including 1D and 2D NMR spectra and the structures of 1 further confirmed by single-crystal X-ray diffraction analysis, while the absolute configuration of 3 and 4 were determined by comparing their optical rotation and CD with those of the literature, respectively. Compounds 1, 2 and 6 exhibited potent inhibitory effects against Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) with IC50 values of 4.24 ± 0.41, 4.32 ± 0.60 and 3.99 ± 0.34 μM, respectively.  相似文献   

15.
Three new napyradiomycins (1–3) were isolated from the culture broth of a marine-derived actinomycete strain SCSIO 10428, together with six known related analogues napyradiomycin A1 (4), 18-oxonapyradiomycin A1 (5), napyradiomycin B1 (6), napyradiomycin B3 (7), naphthomevalin (8), and napyradiomycin SR (9). The strain SCSIO 10428 was identified as a Streptomyces species by the sequence analysis of its 16S rRNA gene. The structures of new compounds 1–3, designated 4-dehydro-4a-dechloronapyradiomycin A1 (1), 3-dechloro-3-bromonapyradiomycin A1 (2), and 3-chloro-6,8-dihydroxy-8-α-lapachone (3), respectively, were elucidated by comparing their 1D and 2D NMR spectroscopic data with known congeners. None of the napyradiomycins 1–9 showed antioxidative activities. Napyradiomycins 1–8 displayed antibacterial activities against three Gram-positive bacteria Staphylococcus and Bacillus strains with MIC values ranging from 0.25 to 32 μg mL−1, with the exception that compound 3 had a MIC value of above 128 μg mL−1 against Staphylococcus aureus ATCC 29213. Napyradiomycins 2, 4, 6, and 7 exhibited moderate cytotoxicities against four human cancer cell lines SF-268, MCF-7, NCI-H460, and HepG-2 with IC50 values below 20 μM, while the IC50 values for other five napyradiomycins 1, 3, 5, 8 and 9 were above 20 μM.  相似文献   

16.
The world is already facing the devastating effects of the SARS-CoV-2 pandemic. A disseminated mucormycosis epidemic emerged to worsen this situation, causing havoc, especially in India. This research aimed to perform a multitargeted docking study of marine-sponge-origin bioactive compounds against mucormycosis. Information on proven drug targets and marine sponge compounds was obtained via a literature search. A total of seven different targets were selected. Thirty-five compounds were chosen using the PASS online program. For homology modeling and molecular docking, FASTA sequences and 3D structures for protein targets were retrieved from NCBI and PDB databases. Autodock Vina in PyRx 0.8 was used for docking studies. Further, molecular dynamics simulations were performed using the IMODS server for top-ranked docked complexes. Moreover, the drug-like properties and toxicity analyses were performed using Lipinski parameters in Swiss-ADME, OSIRIS, ProTox-II, pkCSM, and StopTox servers. The results indicated that naamine D, latrunculin A and S, (+)-curcudiol, (+)-curcuphenol, aurantoside I, and hyrtimomine A had the highest binding affinity values of −8.8, −8.6, −9.8, −11.4, −8.0, −11.4, and −9.0 kcal/mol, respectively. In sum, all MNPs included in this study are good candidates against mucormycosis. (+)-curcudiol and (+)-curcuphenol are promising compounds due to their broad-spectrum target inhibition potential.  相似文献   

17.
Chemical investigation of the South China Sea soft coral Lemnalia sp. afforded 13 structurally diverse terpenoids, including three new neolemnane sesquiterpene lineolemnenes E–G (1–3); a new aristolane-type sesquiterpenoid, 2-acetoxy-aristolane (4); four new decalin-type bicyclic diterpenes, named biofloranates A−D (5−8); a new serrulatane, named euplexaurene D (9); and a new aromadendrane-type diterpenoid cneorubin K (10), together with three known related compounds (11−13). The structures of the new compounds were elucidated by NMR spectroscopy, the Mosher’s method, and ECD analysis. Compounds 1–13 were tested in a wide panel of biological assays. Lineolemnene J (3) showed weak cytotoxicity against the CCRF-CEM cancer cell line. The isolated new diterpenes, except euplexaurene D (9), demonstrated moderate antimicrobial activity against Bacillus subtilis and Staphylococcus aureus with a MIC of 4−64 μg/mL. Compound 2 exhibited a mild inhibitory effect against influenza A H1N1 virus (IC50 = 5.9 µM).  相似文献   

18.
(−)-Untenospongin B isolated from the marine sponge Hippospongia communis has been tested for its antimicrobial activity against bacteria and human pathogenic fungi using agar disk method and was found to possess a broad and strong activity toward the test organisms. Its antifungal activity was further characterized by determination of the minimum inhibitory concentration (MIC) against five fungal species using broth microdilution method.  相似文献   

19.
Liver cancers, such as hepatocellular carcinoma (HCC), are a highly prevalent cause of cancer-related deaths. Current treatments to combat liver cancer are limited. (−)-Agelasidine A, a compound isolated from the methanol extract of Agelas nakamurai, a sesquiterpene guanidine derived from sea sponge, has antibacterial activity. We demonstrated its anticancer capabilities by researching the associated mechanism of (−)-agelasidine A in human liver cancer cells. We found that (−)-agelasidine A significantly reduced viability in Hep3B and HepG2 cells, and we determined that apoptosis was involved in the (−)-agelasidine A-induced Hep3B cell deaths. (−)-Agelasidine A activated caspases 9, 8, and 3, as well as PARP. This effect was reversed by caspase inhibitors, suggesting caspase-mediated apoptosis in the (−)-agelasidine A-treated Hep3B cells. Moreover, the reduced mitochondrial membrane potential (MMP) and the release of cytochrome c indicated that the (−)-agelasidine A-mediated mitochondrial apoptosis was mechanistic. (−)-Agelasidine A also increased apoptosis-associated proteins (DR4, DR5, FAS), which are related to extrinsic pathways. These events were accompanied by an increase in Bim and Bax, proteins that promote apoptosis, and a decrease in the antiapoptotic protein, Bcl-2. Furthermore, our results presented that (−)-agelasidine A treatment bridged the intrinsic and extrinsic apoptotic pathways. Western blot analysis of Hep3B cells treated with (−)-agelasidine A showed that endoplasmic reticulum (ER) stress-related proteins (GRP78, phosphorylated PERK, phosphorylated eIF2α, ATF4, truncated ATF6, and CHOP) were upregulated. Moreover, 4-PBA, an ER stress inhibitor, could also abrogate (−)-agelasidine A-induced cell viability reduction, annexin V+ apoptosis, death receptor (DR4, DR5, FAS) expression, mitochondrial dysfunction, and cytochrome c release. In conclusion, by activating ER stress, (−)-agelasidine A induced the extrinsic and intrinsic apoptotic pathways of human HCC.  相似文献   

20.
Four new chlorinated meroterpenoids, merochlorins G−J (1−4), and 10, a dihydronaphthalenedione precursor, along with known merochlorins A (5) and C−F (6−9), were obtained from cultivation of the bacterium strain Streptomyces sp. CNH-189, which was isolated from marine sediment. The planar structures of compounds 1−4 and 10 were elucidated by interpretation of MS, UV, and NMR spectroscopic data. The relative configurations of compounds 1−4 were determined via analysis of nuclear Overhauser effect (NOE) spectroscopic data, after which their absolute configurations were established by comparing the experimental electronic circular dichroism (ECD) spectra of compounds 1−4 to those of previously reported possible enantiomer models and DP4 calculations. Compound 3 displayed strong antibacterial activities against Bacillus subtilis, Kocuria rhizophila, and Staphylococcus aureus, with MIC values of 1, 2, and 2 μg/mL, respectively, whereas compound 1 exhibited weak antibacterial effects on these three strains, with a 16−32 μg/mL MIC value range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号