首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木材湿热软化压缩技术及其机制研究进展   总被引:1,自引:0,他引:1  
木材压缩是提高软质木材密度、强度和硬度,改善木材物理力学性能,扩大木材应用范围的有效方法。本文针对湿热软化下的木材压缩问题,从木材软化机制、软化特性、软化点的确定、热板加热下的传热传质特性、层状压缩的形成和压缩变形固定等方面分析木材压缩技术的研究现状、进展以及存在的问题。木材细胞壁的成分和组织构造是影响木材软化和压缩变形的主要内在因素,而湿和热则是影响木材压缩变形的外在因素。木材是一种具有弹塑性的天然高聚物。干燥木材缺乏塑性,水分和热量都能对木材组分起到增塑作用,特别是在湿热共同作用下增塑作用更加显著。木材细胞壁主要成分纤维素、半纤维素和木质素的特性及所占比例直接影响木材的可塑性,其中木质素的含量和软化特性是木材软化的主要影响因素。玻璃化转变温度和应力屈服点是表征木材软化最常用的参数。在木材弹塑性分析中,应力屈服点控制了木材在塑性区域的应力-应变关系,同时也决定了塑性变形潜能,但由于木材成分和结构非常复杂,应力-应变关系的拐点并不明显,因此应力屈服点和屈服应力的确定是木材塑性变形表征的关键点,也是一个难点。木材的组织构造主要影响木材的传热传质过程。利用木材3个断面渗透性的显著差异,通过干燥、浸水、放置、热板加热等处理,可使木材内部各个层面上形成差异显著的含水率梯度分布和屈服应力差,压缩后形成层状压缩木材。层状压缩木材压缩层的密度可达0.8 g·cm-3以上,未压缩层仍然保持原有的密度,而且压缩层的形成部位是可控的。层状压缩技术可以解决整体压缩木材损失大的问题,但目前木材压缩变形机制的研究都是围绕木材整体压缩开展的,缺乏木材软化点和屈服应力随含水率变化规律以及热板加热下木材内部屈服应力差变化规律的基础研究。要实现层状压缩的可控性,还需要在热板加热下的传热传质规律及木材湿热梯度分布的形成与调控等方面开展深入研究。  相似文献   

2.
木材横向压缩下应力-应变关系对压缩材料热压工艺的设计和最终产品的物理力学性能有着重要的影响。从木材横纹压缩应力-应变关系和屈服点的确定入手,重点阐述从微观到宏观角度的木材自身组织构造特性,以及压缩工艺参数中温度、含水率等因素对木材横纹压缩应力-应变关系的影响,并对今后木材横纹压缩技术研究方向提出了建议。目前木材横纹压缩变形机制的研究多是围绕木材整体压缩开展,缺乏木材应力-应变关系随木材自身特性及含水率、温度交互作用变化规律的系统研究,以及湿热状态下层状压缩木材内部屈服应力差形成机制的研究。要实现层状压缩木材压缩层位置和厚度的可控性,需要在准确确定木材屈服点和掌握木材应力-应变关系的湿热响应规律的前提下,科学构建适用于湿热条件下木材层状压缩应力-应变关系模型。  相似文献   

3.
以朴木、桦木、番龙眼3种相对软质材地板坯料为研究对象,研究层状压缩中水热预处理工艺对其厚度方向水分移动、分布的影响规律,以及与其压缩横断剖面形态的响应关系。结果表明:1)浸水温度高,进水量多。朴木、桦木进水量大小关系为,桦木≤朴木(20℃)、桦木<朴木(40℃)、桦木>朴木(60℃),两者均显著高于番龙眼;进水速率变化规律为,浸水1 h内,迅速降低,在2~4 h内趋于平缓。2)木材浸水后密度,近表面高、近心层低;水分进入深度影响因素相关性的大小关系为,树种>浸水温度>浸水时间。3)热压预热温度175℃,调整浸水、热压预热时间,可实现3种木材表层、中间层、中心层选择性压缩。其中,预热20 s:木材实现表层压缩;预热200 s:中间层压缩;预热600 s:中心层压缩。  相似文献   

4.
讨论小径木白桦锯材在连续加热和间歇加热方式下含水率的变化规律.结果表明:小径木白桦锯材的干燥速率在含水率15%以后明显降低,前期干燥过程锯材的干燥速率比后期的高2~3倍;间歇加热方式有利于内部水分向外扩散,间歇时间对干燥速率的影响很小;干燥过程中锯材厚度方向上的含水率梯度呈不对称分布,这与小径木的心材占较大比例有一定关系;间歇加热减少了锯材内含水率梯度的变化值,同时减少了应力的产生,从而提高了干燥质量.  相似文献   

5.
间歇和连续微波干燥对木材内蒸汽压力与温度变化的影响   总被引:1,自引:0,他引:1  
对间歇和连续微波干燥过程中木材内部温度、蒸汽压力的变化以及二者相互关系进行探索.结果表明:木材在连续微波干燥过程中,温度的变化大致分为快速升温段、恒温段和后期升温段;微波辐射功率增加,升温速度加快,恒温段温度提高,时间缩短;内裂通常在高含水率木材高功率连续加热时出现;在木材温度上升到100℃之后,适当减少微波功率输入,或采用间歇输入微波能的方法可有效避免内裂的发生;炭化通常出现在木材干燥后期.适当控制木材中含水率,避免过低,减少微波能输入或采用间歇输入微波能的方法,可有效防止木材炭化.  相似文献   

6.
研究了高频电场中板坯厚度方向温度分布规律以及制板工艺因素(包括原料含水率、板材厚度和板材密度)对轻质稻秸保温材料板坯内部温度的影响,试验采用荧光光纤温度测定仪自动准确测定高频热压时板坯内部温度。结果表明:板坯升温过程分为快速升温、水分排出、慢速升温三个阶段,板坯内部温度在厚度上存在差异.温度分布总体表现为芯层高表层低。与常规热压相比,高频热压大大缩短了热压时间,且板坯厚度方向温度均匀性大大优于常规热压。在快速升温阶段,在一定范围内提高含水率能加快板坯的升温速度;在水分排出阶段,通过减小原料含水率能缩短水分汽化时间;原料含水率对慢速升温阶段基本没有影响。在整个升温阶段,板材密度越低,其升温速度越快;在水分排出阶段。板材密度越低,水分汽化时间越短。板材厚度的影响作用与板材密度类似。  相似文献   

7.
采用高频加热的方法对竹方材进行软化处理,主要研究了不同竹方厚度、含水率、高频电压、加热工艺对竹方材软化温度的影响,研究结果表明:随极板间距增加,竹方材加热到软化温度70℃的时间逐渐延长,极板间距每增加20 mm,到达软化温度时间就要增加近60 min;竹方材含水率接近纤维饱和点时软化升温速度最快,纤维饱和点以上时软化升温速度高于纤维饱和点以下时,同时含水率过高,两极板容易被击穿,但是高含水率竹方材加热均匀;高频电压越大,竹方材升温越快;在低压半压时,竹方材各点温度达到40-50℃,温度不再升高;间歇式加热2(加热2 min,停止1 min)平均温度高于间歇式加热1(加热1 min,停止1 min)3.9℃·min-1。  相似文献   

8.
从热传导的物理规律出发,建立微波加热过程中木材内部热传导模型,并通过理论模拟揭示不同微波加热方式对预处理中木材内部温度分布的影响规律。结果表明:微波处理过程中,木材内部的温度分布规律及均匀性与微波加热方式直接相关;当采用单向微波辐射的方式进行加热时,沿着微波入射方向,木材温度逐渐降低,木材内部温差较大,且温度分布均匀性较差;当使用双向微波辐射的方式进行加热时,木材内能形成内高外低的温度梯度,且温度分布均匀性较好。  相似文献   

9.
高频热压胶合中板坯内温度分布及变化趋势   总被引:1,自引:0,他引:1  
以杨树人工林木材单板为试材,在进行三聚氰胺甲醛树脂浸渍组坯后,利用高频设备热压成型,并以此探讨高频热压胶合中板坯内的温度场分布和变化规律.结果表明:高频热压胶合中板坯内温度随时间变化曲线可用乘幂函数表示.对于板坯的温度场分布,在板材长宽方向,因边缘各点的含水率差异导致加热过程中温度的不一致,但在超过100℃后各点温度会逐渐接近;厚度方向上,高频电场中板坯的中心或两表层温度并非最高,最高温度出现在靠近正极板的部位,最低温度出现在紧贴负极板表层.  相似文献   

10.
以速生马尾松锯材为研究对象,采用常压过热蒸汽对其进行干燥脱脂一体化处理,系统研究了干燥脱脂过程中马尾松木材内部温度及含水率变化规律,讨论了过热蒸汽温度对锯材干燥速率、干燥质量、颜色、表面溢脂及微观构造的影响规律。结果表明:过热蒸汽干燥脱脂过程中,锯材内部温度及含水率变化可分为快速升温加速干燥段、恒温恒速干燥段和升温减速干燥段三个阶段,干燥速率介于0.14~0.26%/min,过热蒸汽温度对干燥速率影响非常显著;过热蒸汽干燥脱脂材可达到锯材干燥质量指标二级以上标准,与常规干燥材相比,发生的表裂缺陷少,140℃时出现内裂缺陷;过热蒸汽干燥脱脂处理对木材颜色的影响不显著;过热蒸汽干燥材表面不发生溢脂,达到一级脱脂松木锯材标准;过热蒸汽干燥处理破坏了树脂道内的薄壁细胞,处理后的树脂道内残存有固态松香。  相似文献   

11.
【目的】提出一种基于有限差分法逆求木材导热系数的方法,以期弥补传统测量法设备复杂、价格高昂的不足,为后续建立导热系数的回归方程提供可靠数据。【方法】运用一维热传导控制方程描述木材升温过程中内部温度变化。以兴安落叶松弦切锯材为对象,通过试验获得锯材沿厚度方向的温度数据(温度检测:使用NEC Remote Scanner Jr. DC3100多点信号巡检仪通过埋入锯材的 T形热电偶获得),采用有限差分逆求法,合理化边界条件后编程求解其在不同含水率、不同温度下的径向导热系数(其中,控制方程离散后的导热系数差分矩阵采用追赶法求解,所有差分方程均在 Matlab2010b软件编程并运行),探讨并分析其随含水率、温度的变化规律。【结果】1)兴安落叶松锯材径向导热系数计算值沿厚度方向存在一定波动性,但其平均值0.1061 W·m -1 K -1(标准差0.0108)符合实际要求,且与理论计算值(0.1109,0.1252W·m -1 K -1)较为接近;2)含水率、温度对导热系数影响显著,且前者影响高于后者(含水率与温度的 F-检验分别为126.9421,99.0083);含水率、温度共同作用对导热系数亦存在显著影响(交互作用的 F -检验为164.2975);导热系数随含水率的升高而增大,随温度的升高亦增大;3)木材材性与内部含水率分布对导热系数的影响较大。【结论】通过试验获得木材内部可靠的温度分布与变化数据后,运用有限差分逆求法可快速、准确获得内部与测温点相对应位置的导热系数,尽管计算值存在一定波动性,但其平均值与理论计算值相吻合,说明运用该方法测算木材导热系数是可行的。相比传统导热系数测量方法,该方法最大优势在于经济且不受试样尺寸限制;同时,可以测算试样内部任意层位置导热系数。今后为提高测算精度,木材内部由于水分迁移产生的热量变化与材性差异应考虑使用该方法;同时,为推广此方法,将程序可视化亦是今后研究的方向。  相似文献   

12.
较之传统加热方法,微波加热是一种新型加热技术,在简述木材微波加热的机理上,阐述了影响木材介电特性的因素,指出其中木材含水率和温度是影响木材节电性质的两个最重要的因素.通过理论计算确定微波在木材中的穿透深度.计算表明:随着木材含水率和微波工作频率的增加,微波在木材中的穿透深度减少;当用频率为915 MH z和2 450 MH z的微波加热或干燥具有高含水率的木材时,木材的最大厚度应分别控制在16 cm和6 cm左右.  相似文献   

13.
高温热处理木材工艺的初步研究   总被引:3,自引:0,他引:3  
以我国杉木木材为试验材料,采用自制小型热处理木材试验装置进行了高温热处理木材工艺试验.结果表明,下述工艺切实可行:待处理木材的含水率应控制在15%以内;在温度升高与高温干燥阶段,迅速升温至100℃,再缓慢升温到130℃干燥到绝干,再迅速升温到热处理目标温度,目标温度一般应控制在180-220℃范围内;保温处理时间根据需要确定,一般为2~4h;在处理过程中应适当喷蒸.处理终了时,降温到80℃,调整含水率到4%~8%,出窑.热处理后的木材具有高尺寸稳定性,可广泛应用于室外建筑、室内装修.  相似文献   

14.
以一步升温、分段升温两种升温方式对20 mm厚巨尾桉(Eucalyptus grandis×E.urophylla)板材分别进行140、160和180℃的高温热处理,分析升温条件对木材温度变化的影响;并采用数值模拟方法求解桉木高温热处理升温过程的三维传热模型,研究其瞬态传热特性,同时对桉木内部温度分布进行预测。结果表明:在高温热处理升温过程中,较低目标温度以及分段升温方式更有助于缩小木材内部的温度梯度。试验验证了数值模拟结果的准确性(误差小于3.0%),构建的传热模型可用来预测试验条件下任意时刻桉木的中心层温度,为高温热处理工艺的优化提供依据。  相似文献   

15.
对木材蒸汽爆破预处理过程中热量传递规律进行了数值模拟研究,建立了木材蒸汽爆破预处理过程中三维传热数学模型,并通过试验验证了数值模型准确性。模型定量分析了木材初含水率、孔隙率、环境温度对蒸汽爆破预处理过程中传热的影响,结果表明:1)随着初含水率增加,木材升温速率逐渐减小,但当初含水率低于30%,含水率对升温速率的影响不明显;2)随着孔隙率增加,木材升温速率逐渐增加,孔隙率对传热影响大于木材初含水率对传热的影响;3)随着环境温度增加,木材升温速率逐渐增加,环境温度对传热影响弱于木材初含水率及孔隙率对传热的影响。  相似文献   

16.
以白橡锯材为研究对象,采用平板热压机对其进行干燥处理,系统研究了初含水率对木材温变特性、干燥速率、干缩特性、干燥缺陷和微观构造的影响规律,探明白橡锯材的热压干燥特性。结果表明:热压干燥是一种高效快速的干燥方法,将初含水率为14%~75%的木材在温度为140℃、压力为0.1MPa的条件下干燥到2%以下终了含水率仅需120~210 min,木材干燥速率随着初含水率的增加而增加;初含水率较高的木材在热压后会产生严重内裂和皱缩缺陷,当木材初含水率降至15%以下时,热压后无内裂缺陷产生,截面变形也明显减小;随着初含水率的增加,木材厚度干缩系数呈增加趋势,而宽度干缩系数则呈下降趋势。通过观察木材的横切面微观结构发现,高初含水率试件的内裂沿木射线生成,其早材大管孔部位可观察到明显压缩。  相似文献   

17.
为确定较优的热压干燥工艺参数和实现速生材的增值利用,以热压板温度和压缩率为因素对杉木锯材(弦切板)进行周期式热压干燥处理,干燥结束后测试其含水率及残余应力,分析热压干燥对锯材干燥速率和干燥质量的影响,测定锯材的剖面密度分布并通过扫描电镜观察其微观构造变化。研究结果表明:干燥材的终含水率达到了干燥质量等级的一级,厚度上含水率偏差达到了二级,但干燥材存在较大的残余应力。干燥材出现了明显的表层密实化现象,压缩层平均密度在0.54 g/cm3以上,较气干材的平均密度增大50%以上;压缩层厚度和峰值密度随压缩率的增加而增大,而热压板温度对锯材密度分布的影响较小。干燥材的微观构造变化表明,强度较低的早材较晚材更易被压缩,压缩层厚度和细胞壁变形程度随压缩率的增加而增大,热压板温度的升高使细胞壁软化更充分,防止在较大压缩率条件下出现细胞壁受压破裂的缺陷。研究证明,热压板温度和压缩率对锯材的干燥速率均有显著影响。综合考虑杉木锯材的干燥速率、干燥质量和剖面密度,确定30 mm厚杉木锯材的较优热压干燥工艺为热压板温度150℃、压缩率30%。  相似文献   

18.
采用高温湿热饱和蒸汽对人工林樟子松进行处理,探讨了含水率和含脂率的变化规律。结果表明:樟子松在高温湿热处理过程中脱脂率和脱脂速度与温度和含水率有关。对比常规干燥处理可以发现,高温湿热处理的脱脂速度约为常规干燥的2.58倍,脱脂率约1.41倍;经高温湿热处理后的木材沿厚度方向上含脂率和含水率分布较均匀,脱脂效果更好。  相似文献   

19.
[目的]针对木材干燥耗时长、效率低的问题,以改变司职水分疏导功能的木材分子关键部位的微观结构为手段,通过改善木材的渗透性和水分的流动性,建立易于水分移动的新路径,达到缩短木材干燥时间的目的.在描述蒙古栎导管分子细胞壁构造变异的形态、数量和程度以及表征处理材在常规蒸汽干燥全程和各阶段干燥速率变动的基础上,探索并建立辊压预处理工艺条件、构造特征变异与干燥速率三者的相关关系.[方法]依托木材的黏弹性和水分移动机制,以蒙古栎为试材,对其含水率47%~55%、900 mm(长)×100 mm(宽)×30 mm(厚)的径切板和弦切板施行2个压缩方向(径向和弦向)、3种压缩率(10%,20%和30%)和3种压缩次数(1,4和9次)的辊压预处理,使用环境扫描电子显微镜(Fei Quanta 200)观察研究辊压处理材的导管分子微观构造特征变异,并在常规蒸汽干燥全程和各阶段测试和分析处理木材的干燥速率变动规律.[结果]环境扫描电镜观察表明,辊压压缩预处理使蒙古栎导管分子纹孔膜破裂和细胞壁出现裂隙,可形成水分移动的微观新路径;随着压缩率增大、压缩次数增加,纹孔膜破裂的数量和程度、细胞壁破坏的规模和尺寸增加,木材的渗透性和水分的流动性得到改善,缩短木材干燥时间.在常规蒸汽干燥的6个阶段和干燥全程,辊压预处理材的干燥速率均大于未处理材;压缩率和压缩方向相同时,干燥速率随压缩次数的增加而增大;压缩方向和压缩次数相同时,干燥速率随压缩率的增加面加快;压缩率和压缩次数相同时,径向压缩的弦切板干燥速率快于弦向压缩的径切板.[结论]以试材初含水率50%、终含水率15%计算,辊压预处理材的全程干燥时间均少于未处理材,弦向压缩径切板干燥时间缩短6.67%~23.64%,径向压缩弦切板缩短4.55% ~ 13.02%.辊压预处理可在蒙古栎试材内部形成微观的水分移动新路径,改善水分的渗透性和流动性,缩短木材干燥时间.  相似文献   

20.
木材电热远红外线干燥内部温度的实验研究   总被引:2,自引:0,他引:2  
梁健辉 《林业科学》1991,27(2):154-159
用电热远红外线干燥大量木材,发现木材内部温度高于外部温度的现象,并作了初步分析:(1)在特定条件下,木材干燥内温高于外温的快慢时间,取决于木材的含水率与厚度,厚度、含水率大者则慢,反之则快。(2)随树种材质而不同,材质致密者慢,疏松者快。(3)木材内外温差的大小,则与上述条件相反。远红外线干燥木材,主要是木材纤维素、木素和水分等强烈地吸收远红外线电磁波,其吸收率可达90%以上;辐射、吸收、再辐射、再吸收,如此循环,促进了木材含水率与干燥温度均内高外低,方向一致,达到了同步干燥目的。蒸发木材中水分1kg耗电1kwh。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号