首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对木材蒸汽爆破预处理过程中热量传递规律进行了数值模拟研究,建立了木材蒸汽爆破预处理过程中三维传热数学模型,并通过试验验证了数值模型准确性。模型定量分析了木材初含水率、孔隙率、环境温度对蒸汽爆破预处理过程中传热的影响,结果表明:1)随着初含水率增加,木材升温速率逐渐减小,但当初含水率低于30%,含水率对升温速率的影响不明显;2)随着孔隙率增加,木材升温速率逐渐增加,孔隙率对传热影响大于木材初含水率对传热的影响;3)随着环境温度增加,木材升温速率逐渐增加,环境温度对传热影响弱于木材初含水率及孔隙率对传热的影响。  相似文献   

2.
为给尾巨桉(Eucalyptus urophylla×E. grandis)木材的增值利用提供参考,以8年生尾巨桉木材为研究对象,探究高温热处理(处理温度为185℃)对尾巨桉木材机械加工性能的影响。结果表明,热处理材的刨削、铣削和钻削性能提升,砂削性能的提升不明显;高温热处理可提升尾巨桉木材的机械加工性能,促进其实木利用。  相似文献   

3.
以低龄桉树(Eucalyptus spp.)为试验材料,通过蒸汽热处理,研究热处理条件变化对木材密度的影响。结果表明,经高温热处理后,桉树木材全干密度、气干密度均有不同程度降低,基本密度有增大趋势。升温速度对处理材3种木材密度有显著或极显著影响,处理温度对气干密度、基本密度有显著影响,恒温时间对3种木材密度影响不显著。3种因素对木材密度影响程度为升温速度处理温度恒温时间。对低龄桉树木材进行热处理,要准确把握升温速度和处理温度,才能有效控制热处理材密度降低。  相似文献   

4.
热处理是显著提高木材尺寸稳定性的重要途径之一。该研究采用完全随机区组设计方法,以 处理温度 180~220 ℃、处理时间 1~5 h 等不同组合条件在真空度为 -0.08 MPa 的密闭容器内对木材进行热 处理,测定了尾叶桉(Eucalyptus urophylla)、尾巨桉(E. urophylla × E. grandis)、巨桉(E. grandis)3 种 木材的体积从全干至全湿过程中的体积变化率。结果表明,尾叶桉、尾巨桉、巨桉 3 种木材的抗湿胀性 能分别提高了 6.60~ 59.27、6.72~ 64.91 和 11.85~ 60.02 个百分点。  相似文献   

5.
高温条件下木材升温时间的理论计算和实测   总被引:1,自引:0,他引:1  
提出了木材热处理过程中高温干燥阶段升温时间的理论计算公式,并以20、40、60 mm厚的杨木为试材,进行了验证试验.试验设置100、130、180 ℃三个升温阶段,测定了试材表面和芯层达到温度平衡的时间.结果表明,理论计算时间与试验实测时间能较好地吻合,应用理论计算公式,可为合理制定木材高温热处理工艺参数提供依据.  相似文献   

6.
高温热处理木材工艺的初步研究   总被引:3,自引:0,他引:3  
以我国杉木木材为试验材料,采用自制小型热处理木材试验装置进行了高温热处理木材工艺试验.结果表明,下述工艺切实可行:待处理木材的含水率应控制在15%以内;在温度升高与高温干燥阶段,迅速升温至100℃,再缓慢升温到130℃干燥到绝干,再迅速升温到热处理目标温度,目标温度一般应控制在180-220℃范围内;保温处理时间根据需要确定,一般为2~4h;在处理过程中应适当喷蒸.处理终了时,降温到80℃,调整含水率到4%~8%,出窑.热处理后的木材具有高尺寸稳定性,可广泛应用于室外建筑、室内装修.  相似文献   

7.
以脲醛树脂作为浸渍剂,纳米SiO_2作为改性材料对速生桉木进行改性处理,以纳米SiO_2质量与脲醛树脂浸渍溶液固含量的质量比(W)、高温处理温度(H)和时间(T)作为影响因素,探究浸渍高温热处理改性对速生桉木力学性能的影响。研究结果表明:浸渍高温热处理能够提高桉木的握钉力、抗弯强度和抗弯弹性模量。当W为2%、H为180℃、T为4 h时,浸渍热处理桉木的径面和弦面握钉力达到了理想值;当W为1%、H为160℃、T为4 h时,浸渍热处理桉木的端面握钉力较为理想;当W为1%,H为160℃、T为2 h时,浸渍热处理桉木具有较好的抗弯强度和抗弯弹性模量。  相似文献   

8.
热处理可改变木材的颜色,使其由原来的浅色系逐渐过渡到咖啡色乃至深褐色。以尾叶桉 (Eucalyptus urophylla)木材为研究对象,采用完全随机区组设计方法,以 180~220 ℃、处理时间 1~5 h 的 条件对其进行高温热改性处理。结果表明,随着处理时间的延长和处理温度的升高,木材的总体色差 ΔE * 和色相差 ΔH * 逐渐增大,而色饱和度差值 ΔC * 逐渐减小,表明热处理后尾叶桉木材的颜色由原色逐步 过渡到深褐色。双因素方差分析结果表明,在 0.01 水平上,热处理温度和时间均对木材颜色变化有显著 影响,热处理温度对桉树木材颜色变化的影响要比热处理时间更为重要。  相似文献   

9.
基于热流耦合的木材干燥窑风速温度分布解算   总被引:1,自引:0,他引:1  
为构建木材干燥窑内部循环风速和温度合理分布,采用二维数值模拟方法,利用Fluent软件对试验型小型干燥窑进行仿真模拟,对比安装导流板前后干燥窑内温度和分布情况。木材干燥窑的设计,风速、温度分布是关键问题。首先利用ICEM CFD软件对结构简化的试验型小型干燥窑进行参数化建模,将简化的模型进行网格划分,利用Fluent软件对木材干燥窑内的流动与传热耦合环境进行数值模拟,得出风速分布云图和温度分布云图,研究干燥窑内热流耦合系统,得出其内部速度和温度的具体状态,通过导流板安装前后数值对比,找到导流板合理性的参数。采用二维数值的模拟方法,不能代表实际干燥窑工作状况,具有一定的局限性。  相似文献   

10.
预冻及压缩预处理对尾巨桉干燥特性的影响   总被引:1,自引:0,他引:1  
桉木在干燥过程中极易发生皱缩,使木材降等严重甚至报废,有效地解决桉木干燥皱缩问题是桉木资源高附加值实木化利用的重大难题之一。对桉木进行适度的预处理能够改变其内部细胞的微观结构,形成新的水分迁移通道。以尾巨桉(Eucalyptus urophylla×E.grandis)为试材,对其进行预冻、压缩及预冻-压缩预处理,然后进行常规干燥,研究预处理条件对桉木干燥速率、干燥应力应变及皱缩特性的影响。结果表明:3种预处理条件都能有效提高桉木的干燥速率,其中,预冻-压缩预处理后试件的干燥速率提高20%,幅度最大。预处理材与未处理材残余应力指标变化趋势一致,干燥后期预处理材指标值小于未处理材,残余应力小。3种预处理方式都不同程度地改变了细胞壁微观构造,破坏了皱缩发生的条件,抑制了木材的干燥皱缩。其中,预冻-压缩预处理材全干缩率最大减少15.8%,抑制木材皱缩效果最为显著。预冻-压缩预处理能够改变木材的微观结构,改善了木材的干燥特性,是一种有效抑制木材干燥皱缩的预处理技术。  相似文献   

11.
不同油浴热处理对马尾松木材尺寸稳定性影响的研究   总被引:4,自引:1,他引:3  
文章采用石蜡油和植物油浴热处理方法对马尾松木材进行热处理,并采用SPSS统计分析研究不同处理方法对马尾松木材的尺寸稳定性(ASE值)的影响。结果表明:在油浴热处理木材中,处理时间和处理温度都显著影响着木材的尺寸稳定性(ASE值)。在低温和浸泡时间短条件下,石蜡油热处理材的ASE优于植物油热处理材的ASE;而在高温或浸泡时间长条件下,植物油热处理材的ASE优于石蜡油热处理材的ASE。  相似文献   

12.
桉树是我国南方地区人工林主要造林树种之一,对缓解我国木材供需矛盾发挥着巨大作用。然而,桉树自身所具有的易开裂、变形等缺陷长期以来极大限度的限制了其高效利用。高温干燥处理是提高木材抗干缩性能的有效方法之一。为提高桉树木材的抗干缩特性,采用完全随机区组设计,测定尾叶桉(Eucalyptus urophylla)、尾巨桉(E. urophylla × E. grandis)和巨桉(E. grandis)木材在不同温度、不同时间高温干燥处理下的全干体积干缩率和气干体积干缩率。结果表明,在220℃、5 h的处理条件下,尾叶桉、尾巨桉和巨桉木材的抗干缩性能分别提高了68.24%,70.43%和76.37%。  相似文献   

13.
蒸汽热处理马尾松木材工艺初探   总被引:1,自引:0,他引:1  
以浙江本地的马尾松为试材,采用自制的小型热处理木材实验装置进行高温热处理木材工艺实验.通过对热处理前后马尾松木材力学性能和尺寸稳定性的比较,探讨了热处理温度、热处理时间以及升温速度对其性能的影响.研究结果表明:热处理温度对热处理马尾松木材的抗弯强度有显著影响,经热处理后的马尾松木材与未处理材相比,其顺纹抗压强度下降了1.823%~11.084%,抗弯强度下降了0.259%~34.451%,体积干缩湿胀率也有所降低.经综合分析并考虑到热源损耗及尺寸稳定性,得出马尾松木材的热处理最佳工艺为:热处理温度190℃,热处理时间2h,升温速度15℃/h  相似文献   

14.
以马尾松(Pinus massoniana)为研究对象,分别在 180, 200, 220 ℃条件下对其进行水蒸气 热处理 1, 3, 5 h。借助干燥器法测试不同温度热处理材的甲醛吸附量变化,利用程序升温化学吸附法、 比表面积测试以及表面接触角方法探索不同温度处理的热处理材表面特性的变化规律。结果表明:与未 热处理的素材相比,(1)热处理后的木材甲醛吸附性能得到改善,经 180 ℃、 1 h 处理后的木材甲醛吸附 性能最好,且随处理温度升高、时间延长,甲醛吸附性能降低,总体呈降低趋势;(2)热处理木材对甲 醛的吸附不仅是物理吸附,还存在化学吸附;(3)不同温度处理后,木材的比表面积均减小;(4)经热 处理后,极性的蒸馏水在木材表面的接触角较素材大且热处理的温度越高、表面接触角越大,而非极性 的二碘甲烷在其表面的接触角变化趋势相反。  相似文献   

15.
桉树真空热处理材表面性能分析   总被引:3,自引:0,他引:3  
用真空热处理法对粗皮桉木材进行热处理,处理温度分别为160,180,200,220及240℃,处理时间均为4 h.采用接触角测定法,对素材及不同温度条件下热处理材的接触角及表面自由能进行分析;用傅里叶红外光谱分析法,研究木材在热处理过程中的化学(官能团)变化;用热分析仪分析不同温度条件下木材的热解质量损失率.结果表明:素材的表面自由能(50 mN·m-1)<160℃热处理材的表面自由能(46 mN·m-1)<240℃热处理材的表面自由能(32 mN·m-1).热处理后木材中极性的羰基官能团减少,当热处理温度≤180℃时,木材的质量损失率在1%左右;而热处理温度>180 ℃时,每升高20℃,木材的质量损失率约下降2倍.  相似文献   

16.
主要针对钢琴用云杉木材进行了吸湿性及尺寸稳定性研究,通过高温热处理及二次干燥两种工艺分别对木材进行了处理,试验结果表明:两种工艺处理方法可以有效降低木材的吸湿性,提高木材的尺寸稳定性,同时,在温度140℃、时间8 h的条件下进行的高温热处理,云杉木材吸湿性最低、尺寸稳定性最好.  相似文献   

17.
高温热处理对欧洲云杉和花旗松吸湿特性的影响   总被引:1,自引:0,他引:1  
研究了高温热处理对欧洲云杉和花旗松平衡含水率及吸湿特性的影响。采用水蒸气作为保护介质,设定160,180,200和220℃4个温度条件下进行高温热处理2 h,以双室温、湿度控制法获得等温吸附曲线,并采用GAB模型拟合,分析高温热处理对木材水蒸气等温吸附曲线线型、平衡含水率、有效比表面积的影响。结果表明:高温热处理可以显著降低2个树种试样的吸湿平衡含水率,处理温度越高,平衡含水率下降值越明显,220℃处理后试样的平衡含水率相较于未处理材的平衡含水率下降可达40%以上;利用GAB吸附模型能够较好地描述高温热处理欧洲云杉木材和花旗松木材的等温吸附过程,等温吸附线拟合度较高(拟合度决定系数均高于0.98)。高温热处理并未改变木材等温吸附线的线型,高温热处理试样和未处理试样均呈现第2类等温吸附曲线特征,但热处理会影响等温吸附曲线斜率;高温热处理后2个树种试样的有效比表面积显著降低,处理温度越高,有效比表面积下降值越明显,且试样高温热处理后比表面积相较于素材的下降比例与平衡含水率受高温热处理的影响相近。本研究可为热处理木材吸湿特性科学评价及实际高温热处理木材生产提供参考。  相似文献   

18.
高温水蒸气处理固定大青杨木材横纹压缩变形的研究   总被引:6,自引:0,他引:6  
刘君良  李坚  刘一星  杨霞 《林业科学》2003,39(1):126-131
采用高温水蒸气处理和加热处理固定大青杨木材压缩变形,并对两种处理结果进行比较。测定了木材的抗胀(缩)率(ASE)、阻湿率(MEE)、质量损失率(WL)、压缩率、压缩变形恢复率等各项指标。结果表明:无论是高温加热处理还是高温水蒸气处理,木材的尺寸稳定性明显得到提高。在相同温度条件下,当ASE的值超过50%时,高温水蒸气处理所需要的时间远远小于高温加热处理所需要的时间,当温度为180℃时加热处理需要15-20h,而水蒸气处理仅需要8min,压缩变形被固定。  相似文献   

19.
以非洲圆盘豆地板坯料为试验材料,使用改造后的德国木材干燥机进行过热蒸汽热处理工艺试验.结果表明下述工艺切实可行:待处理试件含水率控制在10%;预热阶段将试件在80℃温度下保持2h;在高温干燥阶段升温至120℃并保持1h;然后迅速升温至热处理目标温度160~220℃范围内,热处理时间为2~8h,在试件热处理过程中进行喷蒸;热处理结束后,调整试件含水率至4%~6%,降温至60℃后出窑.经过该热处理可使地板材颜色加深及尺寸稳定性提高,进而提高地板产品质量.  相似文献   

20.
热作用下温度分布和含水率分布的变化规律,是实木层状压缩形成机制研究的基础。以初含水率处于非均匀分布状态下的毛白杨木材为对象,研究在180℃热板夹持加热过程中的温度分布变化规律,为揭示层状压缩形成机制提供科学依据。结果表明:初始含水率表层高、内部低的木材,在热板夹持加热过程中,厚度方向上始终存在一个明显的升温速率峰值。随着加热时间的延长,升温速率峰值和高含水率层逐渐向中心移动;高含水率区域内木材,温度较玻璃化转变温度高6.11~47.58℃,处于层状软化状态,是层状压缩形成的重要原因之一;采用多元线性回归分析方法建立的木材厚度方向温度预测多变量函数模型,决定系数为0.985,预测木材内部温度的标准误差为3.21℃,能够用于木材内部温度分布的预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号