首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction resonances, or transiently stabilized transition-state structures, have proven highly challenging to capture experimentally. Here, we used the highly sensitive H atom Rydberg tagging time-of-flight method to conduct a crossed molecular beam scattering study of the F + H2 --> HF + H reaction with full quantum-state resolution. Pronounced forward-scattered HF products in the v' = 2 vibrational state were clearly observed at a collision energy of 0.52 kcal/mol; this was attributed to both the ground and the first excited Feshbach resonances trapped in the peculiar HF(v' = 3)-H' vibrationally adiabatic potential, with substantial enhancement by constructive interference between the two resonances.  相似文献   

2.
A full quantum dynamical study of the reactions of a hydrogen atom with water, on an accurate ab initio potential energy surface, is reported. The theoretical results are compared with available experimental data for the exchange and abstraction reactions in H + D2O and H + H2O. Clear agreement between theory and experiment is revealed for available thermal rate coefficients and the effects of vibrational excitation of the reactants. The excellent agreement between experiment and theory on integral cross sections for the exchange reaction is unprecedented beyond atom-diatom reactions. However, the experimental cross sections for abstraction are larger than the theoretical values by more than a factor of 10. Further experiments are required to resolve this.  相似文献   

3.
Reactivity of the excited spin-orbit state of Cl with H2 to yield ground-state HCl products is forbidden by the Born-Oppenheimer (BO) approximation. We used new ab initio potential energy surfaces and exact quantum scattering calculations to explore the extent of electronic nonadiabaticity in this reaction. In direct contrast to recent experiments, we predict that the BO-allowed reaction of the ground spin-orbit state will be much more efficient than the BO-forbidden reaction of the excited spin-orbit state. Also, Coriolis coupling opens up an electronically nonadiabatic inelastic channel, which competes substantially with reaction.  相似文献   

4.
Experiments, employing crossed molecular beams, with vibrational state resolution have been performed on the simplest four-atom reaction, OH + D2 --> HOD + D. In good agreement with the most recent quantum scattering predictions, mode-specific reaction dynamics is observed, with vibration in the newly formed oxygen-deuterium bond preferentially excited to v = 2. This demonstrates that quantum theoretical calculations, which in the past decade have achieved remarkable accuracy for three-atom reactions involving three dimensions, have progressed to the point where it is now possible to accurately predict energy disposal in four-atom reactions involving six dimensions.  相似文献   

5.
The collision-energy dependence of the state-resolved differential cross section at a specific backward-scattering angle for the reaction H + D2 --> D + HD is measured with the D-atom Rydberg "tagging" time-of-flight technique. The reaction was modeled theoretically with converged quantum scattering calculations that provided physical interpretation of the observations. Oscillations in the differential cross sections in the backward-scattering direction are clearly observed and are attributed to the transition-state structures that originate from the interferences of different quantized transition-state pathways.  相似文献   

6.
An improved quantum Monte Carlo method has been used to calculate the classical barrier height for the hydrogen exchange reaction H + H(2) --> H(2) + H with accuracies greater than previously attained. The method is exact in that, except for the easily estimated Monte Carlo statistical or sampling error, it requires no mathematical approximations or physical approximations beyond those of the Schr?dinger equation. The minimum in the barrier, occurring for the collinear nuclear configuration with the protons separated by 1.757 bohrs, was found to be 9.61 +/- 0.01 kilocalories per mole above H + H(2).  相似文献   

7.
建立了一种基于超声辅助磁性四氧化三铁纳米微粒催化过氧化氢降解亚甲蓝染料的方法,研究了四氧化三铁纳米微粒浓度、过氧化氢浓度、pH值、反应时间、超声时间和温度等对催化降解反应的影响.结果表明,当四氧化三铁纳米粒子浓度为600mg/L,过氧化氢浓度为0.32mol/L,pH值为5,超声时间为3min,温度为30℃,反应时间为2h时,模拟染料废水中亚甲蓝的去除率最高可达到95%.  相似文献   

8.
The H + H(2) exchange reaction constitutes an excellent benchmark with which to test dynamical theories against experiments. The H + D(2) (vibrational quantum number v = 0, rotational quantum number j = 0) reaction has been studied in crossed molecular beams at a collision energy of 1.28 electron volts, with the use of the technique of Rydberg atom time-of-flight spectroscopy. The experimental resolution achieved permits the determination of fully rovibrational state-resolved differential cross sections. The high-resolution data allow a detailed assessment of the applicability and quality of quasi-classical trajectory (QCT) and quantum mechanical (QM) calculations. The experimental results are in excellent agreement with the QM results and in slightly worse agreement with the QCT results. This theoretical reproduction of the experimental data was achieved without explicit consideration of geometric phase effects.  相似文献   

9.
T Koop  KS Carslaw 《Science (New York, N.Y.)》1996,272(5268):1638-1641
Polar stratospheric clouds (PSCs) are important for the chemical activation of chlorine compounds and subsequent ozone depletion. Solid PSCs can form on sulfuric acid tetrahydrate (SAT) (H2SO4·4H2O) nuclei, but recent laboratory experiments have shown that PSC nucleation on SAT is strongly hindered. A PSC formation mechanism is proposed in which SAT particles melt upon cooling in the presence of HNO3 to form liquid HNO3-H2SO4-H2O droplets 2 to 3 kelvin above the ice frost point. This mechanism offers a PSC formation temperature that is defined by the ambient conditions and sets a temperature limit below which PSCs should form.  相似文献   

10.
The reaction of F with H2 and its isotopomers is the paradigm for an exothermic triatomic abstraction reaction. In a crossed-beam scattering experiment, we determined relative integral and differential cross sections for reaction of the ground F(2P(3/2)) and excited F*(2P(1/2)) spin-orbit states with D2 for collision energies of 0.25 to 1.2 kilocalorie/mole. At the lowest collision energy, F* is approximately 1.6 times more reactive than F, although reaction of F* is forbidden within the Born-Oppenheimer (BO) approximation. As the collision energy increases, the BO-allowed reaction rapidly dominates. We found excellent agreement between multistate, quantum reactive scattering calculations and both the measured energy dependence of the F*/F reactivity ratio and the differential cross sections. This agreement confirms the fundamental understanding of the factors controlling electronic nonadiabaticity in abstraction reactions.  相似文献   

11.
The degree of electronic and nuclear coupling in the Cl + H2 reaction has become a vexing problem in chemical dynamics. We report slow electron velocity-map imaging (SEVI) spectra of ClH2- and ClD2-. These spectra probe the reactant valley of the neutral reaction potential energy surface, where nonadiabatic transitions responsible for reactivity of the Cl excited spin-orbit state with H2 would occur. The SEVI spectra reveal progressions in low-frequency Cl.H2 bending and stretching modes, and are compared to simulations with and without nonadiabatic couplings between the Cl spin-orbit states. Although nonadiabatic effects are small, their inclusion improves agreement with experiment. This comparison validates the theoretical treatment, especially of the nonadiabatic effects, in this critical region of the Cl + H2 reaction, and suggests strongly that these effects are minor.  相似文献   

12.
Acetic acid is an important petrochemical that is currently produced from methane (or coal) in a three-step process based on carbonylation of methanol. We report a direct, selective, oxidative condensation of two methane molecules to acetic acid at 180 degrees C in liquid sulfuric acid. Carbon-13 isotopic labeling studies show that both carbons of acetic acid originate from methane. The reaction is catalyzed by palladium, and the results are consistent with the reaction occurring by tandem catalysis, involving methane C-H activation to generate Pd-CH3 species, followed by efficient oxidative carbonylation with methanol, generated in situ from methane, to produce acetic acid.  相似文献   

13.
Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO(3) hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H(2)SO(4)/H(2)O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO(3) vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO(3) and H(2)O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H(2)SO(4) solutions and on solid H(2)SO(4) hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.  相似文献   

14.
Wang F  Lin JS  Liu K 《Science (New York, N.Y.)》2011,331(6019):900-903
Exciting the CH-stretching mode of CHD(3) (where D is deuterium) is known to promote the C-H bond's reactivity toward chlorine (Cl) atom. Conventional wisdom ascribes the vibrational-rate enhancement to a widening of the cone of acceptance (i.e., the collective Cl approach trajectories that lead to reaction). A previous study of this reaction indicated an intriguing alignment effect by infrared laser-excited reagents, which on intuitive grounds is not fully compatible with the above interpretation. We report here an in-depth experimental study of reagent alignment effects in this reaction. Pronounced impacts are evident not only in total reactivity but also in product state and angular distributions. By contrasting the data with previously reported stereodynamics in reactions of unpolarized, excited CHD(3) with fluorine (F) and O((3)P), we elucidate the decisive role of long-range anisotropic interactions in steric control of this chemical reaction.  相似文献   

15.
The ultraviolet spectrum of methyl isothiocyanate (CH(3)NCS) and the quantum yield for its dissociation into methyl isocyanide (CH(3)NC) and atomic sulfur at 308 nanometers, Phi = 0.98 +/- 0.24, were measured. Methyl isothiocyanate is widely used as an agricultural fumigant and readily enters the atmosphere during and after application. The results indicate that photodissociation by sunlight is an effective pathway for its removal from the atmosphere.  相似文献   

16.
Liu X  Lin JJ  Harich S  Schatz GC  Yang X 《Science (New York, N.Y.)》2000,289(5484):1536-1538
The O((1)D) + H(2) --> OH + H reaction, which proceeds mainly as an insertion reaction at a collisional energy of 1.3 kilocalories per mole, has been investigated with the high-resolution H atom Rydberg "tagging" time-of-flight technique and the quasiclassical trajectory (QCT) method. Quantum state-resolved differential cross sections were measured for this prototype reaction. Different rotationally-vibrationally excited OH products have markedly different angular distributions, whereas the total reaction products are roughly forward and backward symmetric. Theoretical results obtained from QCT calculations indicate that this reaction is dominated by the insertion mechanism, with a small contribution from the collinear abstraction mechanism through quantum tunneling.  相似文献   

17.
目的以LaPO_4:2%Tb~(3+),X%Mn~(2+)(X=0.1、0.2、0.3、0.4、0.5、0.8、1.0、2.0、3.0、4.0、5.0)作为研究对象,利用X射线衍射、荧光光谱、红外光谱和热重分析等对产物的物相结构、发光性能、热稳定性等进行研究,筛选一种发光性能良好的新型共掺杂磷酸盐发光材料。方法采用水热法制备磷酸盐材料LaPO_4:2%Tb~(3+),X%Mn~(2+),研究改变Mn~(2+)金属离子的掺杂量等对产物的物相结构和荧光性能的影响。结果分析共掺杂的磷酸盐材料LaPO_4:2%Tb~(3+),X%Mn~(2+)的X射线衍射、红外光谱、荧光光谱和热重分析数据。结论 X=0.8,LaPO_4:2%Tb~(3+),X%Mn~(2+)的荧光性能最好,Mn~(2+)和Tb~(3+)离子能够有效掺杂到LaPO_4的晶格中,且不会改变晶体的内部结构;该样品具有很好的热稳定性,该研究结果为共掺杂的磷酸盐材料进一步开发和应用提供了重要的参考和依据。  相似文献   

18.
Very complicated inorganic solids can be self-assembled from structurally simple precursors as illustrated by the hydrothermal synthesis of the vanadium phosphate, [(CH(3))(2)NH(2)]K(4)[V(10)O(10)(H(2)O)(2)(OH)(4)(PO(4))(7)].4H(2)O, 1, which contains chiral double helices formed from interpenetrating spirals of vanadium oxo pentamers bonded together by P(5+). These double helices are in turn intertwined with each other in a manner that generates unusual tunnels and cavities that are filled with (CH(3))(2)NH(2)(+) and K(+) cations, respectively. The unit cell contents of dark blue phosphate 1, which crystallizes in the enantiomorphic space group P4(3) with lattice constants a = 12.130 and c = 30.555 angstroms, are chiral; only one enantiomorph is present in a given crystal. Magnetization measurements show that 1 is paramagnetic with ten unpaired electrons per formula unit at higher temperatures and that antiferromagnetic interactions develop at lower temperatures.  相似文献   

19.
Precision spectroscopy of simple atomic systems has refined our understanding of the fundamental laws of quantum physics. In particular, helium spectroscopy has played a crucial role in describing two-electron interactions, determining the fine-structure constant and extracting the size of the helium nucleus. Here we present a measurement of the doubly forbidden 1557-nanometer transition connecting the two metastable states of helium (the lowest energy triplet state 2 (3)S(1) and first excited singlet state 2 (1)S(0)), for which quantum electrodynamic and nuclear size effects are very strong. This transition is weaker by 14 orders of magnitude than the most predominantly measured transition in helium. Ultracold, submicrokelvin, fermionic (3)He and bosonic (4)He atoms are used to obtain a precision of 8 × 10(-12), providing a stringent test of two-electron quantum electrodynamic theory and of nuclear few-body theory.  相似文献   

20.
The transition state region of the F + H(2) reaction has been studied by photoelectron spectroscopy of FH(2)(-). New para and normal FH(2)(-)photoelectron spectra have been measured in refined experiments and are compared here with exact three-dimensional quantum reactive scattering simulations that use an accurate new ab initio potential energy surface for F + H(2). The detailed agreement that is obtained between this fully ab initio theory and experiment is unprecedented for the F + H(2) reaction and suggests that the transition state region of the F + H(2) potential energy surface has finally been understood quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号