首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Soil development with time was investigated on beach ridges with ages ranging from about 1380 to 6240 14C-years BP at the eastern coast of central Patagonia. The main pedogenic processes are accumulation of organic matter and carbonate leaching and accumulation within the upper part of the soils. Soil formation is strongly influenced by incorporation of eolian sediments into the interstitial spaces between the gravel of which the beach ridges are composed. Different amounts of eolian material in the soils lead to differentiation into Leptosols (containing ≤ 10% fine earth in the upper 75 cm) and Regosols (containing > 10% fine earth). Soil depth functions and chronofunctions of organic carbon, calcium carbonate, pH, Ca:Zr, Mg:Zr, K:Zr, Na:Zr, Fe:Zr, Mn:Zr, and Si:Al (obtained from X-ray fluorescence analysis) were evaluated. To establish soil chronofunctions mean values of the horizon data of 0–10 cm below the desert pavement were used, which were weighted according to the horizon thicknesses. The depth function of pH shows a decrease towards the surface, indicating leaching of bases from the upper centimeters. Chronofunctions of pH show that within 6000 radiocarbon years of soil development pH drops from 7.0 to 6.6 in the Leptosols and from 8.1 to 7.5 in the Regosols. The higher pH of the Regosols is due to input of additional bases from the eolian sediments. Chronofunctions of Ca:Zr and K:Zr indicate progressive leaching of Ca and K in the Regosols, showing close relationships to time (R2 = 0.972 and 0.995). Na leaching as indicated by decreasing Na:Zr ratios shows a strong correlation to time only in the Leptosols (R2 = 0.999). Both, Leptosols and Regosols show close relationships to time for Fe:Zr (R2 = 0.817 and 0.824), Mn:Zr (R2 = 0.940 and 0.803), and Si:Al (0.971 and 0.977), indicating enrichment of Fe and Mn and leaching of Si. Leaching of mobile elements takes place on a higher level in the Regosols than in the Leptosols from the beginning of soil formation. Hence, a significant part of the eolian sediments must have been incorporated into the beach ridges very soon after their formation.  相似文献   

2.
Relationships between soil pH and microbial properties in a UK arable soil   总被引:1,自引:0,他引:1  
Effects of changing pH along a natural continuous gradient of a UK silty-loam soil were investigated. The site was a 200 m soil transect of the Hoosfield acid strip (Rothamsted Research, UK) which has grown continuous barley for more than 100 years. This experiment provides a remarkably uniform soil pH gradient, ranging from about pH 8.3 to 3.7. Soil total and organic C and the ratio: (soil organic C)/(soil total N) decreased due to decreasing plant C inputs as the soil pH declined. As expected, the CaCO3 concentration was greatest at very high pH values (pH > 7.5). In contrast, extractable Al concentrations increased linearly (R2 = 0.94, p < 0.001) from below about pH 5.4, while extractable Mn concentrations were largest at pH 4.4 and decreased at lower pHs. Biomass C and biomass ninhydrin-N were greatest above pH 7. There were statistically significant relationships between soil pH and biomass C (R2 = 0.80, p < 0.001), biomass ninhydrin-N (R2 = 0.90, p < 0.001), organic C (R2 = 0.83, p < 0.001) and total N (R2 = 0.83, p < 0.001), confirming the importance of soil organic matter and pH in stimulating microbial biomass growth. Soil CO2 evolution increased as pH increased (R2 = 0.97, p < 0.001). In contrast, the respiratory quotient (qCO2) had the greatest values at either end of the pH range. This is almost certainly a response to stress caused by the low p. At the highest pH, both abiotic (from CaCO3) and biotic Co2 will be involved so the effects of high pH on biomass activity are confounded. Microbial biomass and microbial activity tended to stabilise at pH values between about 5 and 7 because the differences in organic C, total N and Al concentrations within this pH range were small. This work has established clear relationships between microbial biomass and microbial activity over an extremely wide soil pH range and within a single soil type. In contrast, most other studies have used soils of both different pH and soil type to make similar comparisons. In the latter case, the effects of soil pH on microbial properties are confounded with effects of different soil types, vegetation cover and local climatic conditions.  相似文献   

3.
An investigation of the detection of water stress in non-homogeneous crop canopies such as orchards using high-spatial resolution remote sensing thermal imagery is presented. An airborne campaign was conducted with the Airborne Hyperspectral Scanner (AHS) acquiring imagery in 38 spectral bands in the 0.43–12.5 μm spectral range at 2.5 m spatial resolution. The AHS sensor was flown at 7:30, 9:30 and 12:30 GMT in 25 July 2004 over an olive orchard with three different water-deficit irrigation treatments to study the spatial and diurnal variability of temperature as a function of water stress. A total of 10 AHS bands located within the thermal-infrared region were assessed for the retrieval of the land surface temperature using the split-window algorithm, separating pure crowns from shadows and sunlit soil pixels using the reflectance bands. Ground truth validation was conducted with infrared thermal sensors placed on top of the trees for continuous thermal data acquisition. Crown temperature (Tc), crown minus air temperature (Tc  Ta), and relative temperature difference to well-irrigated trees (Tc  TR, where TR is the mean temperature of the well-irrigated trees) were calculated from the ground sensors and from the AHS imagery at the crown spatial resolution. Correlation coefficients for Tc  TR between ground IRT sensors and airborne image-based AHS estimations were R2 = 0.50 (7:30 GMT), R2 = 0.45 (9:30 GMT) and R2 = 0.57 (12:30 GMT). Relationships between leaf water potential and crown Tc  Ta measured with the airborne sensor obtained determination coefficients of R2 = 0.62 (7:30 GMT), R2 = 0.35 (9:30 GMT) and R2 = 0.25 (12:30 GMT). Images of Tc  Ta and Tc  TR for the entire field were obtained at the three times during the day of the overflight, showing the spatial and temporal distribution of the thermal variability as a function of the water deficit irrigation schemes.  相似文献   

4.
We used the eddy-covariance technique to measure evapotranspiration (E) and gross primary production (GPP) in a chronosequence of three coastal Douglas-fir (Pseudotsuga menziesii) stands (7, 19 and 58 years old in 2007, hereafter referred to as HDF00, HDF88 and DF49, respectively) since 1998. Here, we focus on the controls on canopy conductance (gc), E, GPP and water use efficiency (WUE) and the effect of interannual climate variability at the intermediate-aged stand (DF49) and then analyze the effects of stand age following clearcut harvesting on these characteristics. Daytime dry-foliage Priestley–Taylor α and gc at DF49 were 0.4–0.8 and 2–6 mm s?1, respectively, and were linearly correlated (R2 = 0.65). Low values of α and gc at DF49 as well at the other two stands suggested stomatal limitation to transpiration. Monthly E, however, showed strong positive linear correlations to monthly net radiation (R2 = 0.94), air temperature (R2 = 0.77), and daytime vapour pressure deficit (R2 = 0.76). During July–September, monthly E (mm) was linearly correlated to monthly mean soil water content (θ, m3 m?3) in the 0–60 cm layer (E = 453θ ? 21, R2 = 0.69), and GPP was similarly affected. Annual E and GPP of DF49 for the period 1998–2007 varied from 370 to 430 mm and from 1950 to 2390 g C m?2, respectively. After clearcut harvesting, E dropped to about 70% of that for DF49 while ecosystem evapotranspiration was fully recovered when stand age was ~12 years. This contrasted to GPP, which varied hyperbolically with stand age. Monthly GPP showed a strong positive linear relationship with E irrespective of the stand age. While annual WUE of HDF00 and HDF88 varied with age from 0.5 to 4.1 g C m?2 kg?1 and from 2.8 to 4.4 g C m?2 kg?1, respectively, it was quite conservative at ~5.3 g C m?2 kg?1 for DF49. N-fertilization had little first-year response on E and WUE. This study not only provides important results for a more detailed validation of process-based models but also helps in predicting the influences of climate change and forest management on water vapour and CO2 fluxes in Douglas-fir forests.  相似文献   

5.
Tree species have significant effects on the availability and dynamics of soil organic matter. In the present study, the pool sizes of soil dissolved organic matter (DOM), potential mineralizable N (PMN) and bio-available carbon (C) (measured as cumulative CO2 evolution over 63 days) were compared in soils under three coniferous species — 73 year old slash (Pinus elliottii), hoop (Araucaria cunninghamii) and kauri (Agathis robusta) pines. Results have shown that dissolved organic N (DON) in hot water extracts was 1.5–1.7 times lower in soils under slash pine than under hoop and kauri pines, while soil dissolved organic C (DOC) in hot water extracts tended to be higher under slash pine than hoop and kauri pines but this was not statistically significant. This has led to the higher DOC:DON ratio in soils under slash pine (32) than under hoop and kauri pines (17). Soil DOC and DON in 2 M KCl extracts were not significantly different among the three tree species. The DOC:DON ratio (hot water extracts) was positively and significantly correlated with soil C:N (R2 = 0.886, P < 0.01) and surface litter C:N ratios (R2 = 0.768, P < 0.01), indicating that DOM was mainly derived from litter materials and soil organic matter through dissolution and decomposition. Soil pH was lower under slash pine (4.5) than under hoop (6.0) and kauri (6.2) pines, and negatively correlated with soil total C, C:N ratio, DOC and DOC:DON ratio (hot water extracts), indicating the soil acidity under slash pine favored the accumulation of soil C. Moreover, the amounts of dissolved inorganic N, PMN and bio-available C were also significantly lower in soils under slash pine than under hoop and kauri pines. It is concluded that changes in the quantity and quality of surface litters and soil pH induced by different tree species largely determined the size and quality of soil DOM, and plantations of hoop and kauri pine trees may be better in maintaining long-term soil N fertility than slash pine plantations.  相似文献   

6.
Soil organic matter (SOM) status was evaluated using the relationships between two independent soil variables, i.e., C respiration and the weight of particulate organic matter POM (4000–50 μm) under different vegetation covers and ecosystems of central Belgium. A positive relationship was found between the weight of the finest POM fraction, i.e., fine POM fraction (250–50 μm) and C respiration after 1 week (R2 = 0.34, n = 120, p < 0.0001) and 2 weeks (R2 = 0.28, n = 120, p < 0.0001) of incubation. Therefore, we assumed that the C respiration and the weight of fine POM might be used to evaluate the SOM status under different vegetation covers and ecosystems.  相似文献   

7.
The relationship between the two radiant fluxes is studied from almost a 3-year data archive of hourly photosynthetically active photon flux (QP) and global solar irradiance (RS) performed at Athalassa, Cyprus. These data are used to determine temporal variability of the ratio (QP/RS) and its dependence on sky conditions. The seasonal variation of the ratio obtained from daily data ranges from 1.942 E MJ−1 (summer) to 1.892 E MJ−1 (winter) with an annual mean value of 1.919 E MJ−1. The ratio increased from 1.865 to 2.01 E MJ−1 (daily values) or from 1.878 to 2.197 μE J−1 (hourly values), as sky conditions changed from clear to overcast. Effective atmospheric parameters such as sky clearness, brightness and path length were found to cause substantial changes to the PAR fraction.  相似文献   

8.
It is reported a simple approach to transform daily values of grass net (all-wave) radiation (Rn, MJ m−2 day−1), as measured over standard grass surface at meteorological stations, into whole tree canopy net radiation (A, MJ tree−1 day−1). The revolving Whirligig device [McNaughton, K.G., Green, S.R., Black, T.A., Tynam, B.R., Edwards, W.R.N., 1992. Direct measurement of net radiation and photosynthetically active radiation absorbed by a single tree. Agric. For. Meteorol. 62, 87–107] describing a sphere about the tree measured A in five trees of different species (walnut, dwarf apple, normal apple, olives and citrus), with leaf area LA varying from 8.65 to 40 m2. For each tree, A and Rn were linearly related (A = bRn), as previously reported elsewhere, but it was found that the slope of such regression was also a linear function of LA or, b = 0.303 (±0.032) LA. Consequently, the hypothesis that total daily tree canopy net radiation per unit leaf area is linearly related to grass net radiation could not be rejected after 86 days of measurements in five locations, and the empirical relationship is A = 0.303 (±0.032) RnLA (R2 = 0.9306).  相似文献   

9.
A real-time PCR assay was developed to quantify in soil the fungus Hirsutella minnesotensis, an important parasite of secondary-stage juvenile (J2) of the soybean cyst nematode. A primer pair 5′-GGGAGGCCCGGTGGA-3′ and 5′-TGATCCGAGGTCAACTTCTGAA-3′ and a TaqMan probe 5′-CGTCCGCCGTAAAACGCCCAAC-3′ were designed based on the sequence of the ITS region of the rRNA gene. The primers were highly species-specific. The PCR reaction system was very sensitive and able to detect as few as 4 conidia g?1 soil. Regression analysis showed similar slopes and efficiency on DNA from pure culture (y = ?3.587x + 41.017, R2 = 0.9971, E = 0.9055) and from Log conidia g?1 soil (y = ?3.855x + 37.669, R2 = 0.9139, E = 0.8172), indicating that the real-time PCR protocol can reliably quantify H. minnesotensis in the soil. The real-time PCR assay was applied to 20 soil samples from soybean fields, and compared with a parasitism assay. The real-time PCR assay detected H. minnesotensis in six of the soils, whereas the parasitism assay detected H. minnesotensis in the same six soils and three additional soils. The real-time PCR assay was weakly correlated (R2 = 0.49) with the percentage of parasitized J2 in the six soils, indicating that different types of soil may interfere the efficiency of the real-time PCR assay, possibly due to the effect of soil types on efficacy of DNA extraction. The parasitism assay appeared to be more sensitive than real-time PCR in detecting presence of H. minnesotensis, but real-time PCR was much faster and less costly and provided a direct assessment of fungal biomass. Using the two assays in combination can obtain more complete information about the fungus in soil than either assay alone. Hirsutella parasitism was widespread and detected in 13 of the 20 field soils, indicating that these fungi may contribute to suppressiveness of soybean cyst nematode in nature and likely have high biological control potential for the nematode.  相似文献   

10.
Earthworms are important soil animals in grassland ecosystems and are considered to be important to soil quality. The overall impact of earthworms on soil properties and plant diversity, however, depends on earthworm species, functional group and the type of ecosystem. The primary purpose of this study was to document the relationship among earthworms, key soil properties and native and exotic plant diversity in the little studied, Palouse prairie grassland (Idaho, USA). A secondary objective was to determine the effectiveness of three methods commonly used to sample earthworms. A hillslope characterized by Palouse prairie vegetation, well-expressed, hummocky (mounded) topography and known to support both exotic and native earthworm species was selected for study. The hillslope was divided into three zones [annual-dominated (AD), mixed (MX) and perennial-dominated (PD)] based on characteristics of the inter-mound plant communities described in previous research. Total earthworm biomass in the MX zone (53.5 g m−2) was significantly greater than in the PD zone (14.7 g m−2) (P = 0.0384), but did not differ from the AD zone. Earthworm density ranged from 52 to 81.1 individuals m−2 but was not significantly different across zones. Total C and N at 0 to 10 and 30 to 50 cm depths were significantly greater in the AD and PD zones as compared to the same depths in the MX zone. Soil textural class was silt loam within all zones and the soil silt fraction was positively correlated with total exotic earthworm density (R = 0.783, P = 0.0125) and biomass (R = 0.816, P = 0.0072). Native earthworms were only found in the zone with the greatest total and native plant diversity (PD). Total soil C and N were not correlated to earthworm density, but soil total C and N were significantly negatively correlated with exotic plant density, which indicates that invasive plants may be decreasing soil total C (R = −0.800) and N (R = −0.800). Calculated earthworm densities using data from the electroshocker were generally lower than those based on the hand-sorting method. Electroshocking, however, created lower disturbance and was the only method that resulted in the collection of the deep-burrowing, native species Driloleirus americanus.  相似文献   

11.
Earthworms are key regulators of soil structure and soil organic matter (SOM) dynamics in many agroecosystems. They are greatly impacted by agricultural management, yet little is known about how these factors interact to control SOM dynamics. This study sought to explore linkages between agricultural management, earthworms and aggregate associated SOM dynamics through a survey of tomato (Solanum lycopersicum L.) cropping systems in northern California. Earthworms and soil samples were collected between February and April of 2005 from 16 fields under one of three types of residue management: (1) tomato mulch – no postharvest tillage and tomato residues left on the soil surface, (2) cover crop – tomato residues tilled in and leguminous cover crop planted, and (3) bare fallow – tomato residues tilled in and soil surface left exposed throughout the winter. Earthworms were collected via hand-sorting and identified to species, while soils were wet sieved to yield four aggregate size classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm), microaggregates (53–250 μm) and the silt and clay fraction (<53 μm). The combined large and small macroaggregate fraction was then fractionated into coarse particulate organic matter (cPOM; 250 μm), microaggregates within macroaggregates (mM; 53–250 μm) and macroaggregate occluded silt and clay (Msc; <53 μm). The earthworms identified in this survey were composed entirely of exotic species and were dominated by Aporrectodea caliginosa. Earthworm abundance was related to residue management, with the tomato mulch systems averaging 4.5 times greater fresh earthworm biomass than bare fallow (P = 0.024). Aggregate stability and total soil C and N also appeared to be influenced by residue management, such that the tomato mulch system displayed significantly greater mean weight diameters than the bare fallow system (P = 0.049), as well as more than 50% greater total soil C and N (P = 0.049 and P = 0.036; respectively). Earthworm biomass was also found to be positively correlated with total soil C (P = 0.009, R2 = 0.39) and N (P = 0.010, R2 = 0.039) as well as the proportion of macroaggregate C in the cPOM fraction (P = 0.028, R2 = 0.30). Our findings suggest that residue handling and the associated management practices (e.g., tillage, organic vs. conventional agriculture) are important for both earthworm populations and SOM storage. Although earthworms are known to influence SOM in many ways, other factors appear to play a more prominent role in governing aggregate associated SOM dynamics.  相似文献   

12.
A number of recent studies have focused on estimating gross primary production (GPP) using vegetation indices (VIs). In this paper, GPP is retrieved as a product of incident light use efficiency (LUE), defined as GPP/PAR, and the photosynthetically active radiation (PAR). As a good correlation is found between canopy chlorophyll content and incident LUE for six types of wheat canopy (R2 = 0.87, n = 24), indices aimed for chlorophyll assessment can be used as an indicator of incident LUE and the product of chlorophyll indices and PAR will be a proxy of GPP. In a field experiment, we investigated four canopy chlorophyll content related indices (Red edge Normalized Difference Vegetation Index [Red Edge NDVI], modified Chlorophyll Absorption Ratio Index [MCARI710], Red Edge Chlorophyll Index [CIred edge] and the MERIS Terrestrial Chlorophyll Index [MTCI]) for GPP estimation during the growth cycle of wheat. These indices are validated for leaf and canopy chlorophyll estimation with ground truth data of canopy chlorophyll content. With ground truth data, a strong correlation is observed for canopy chlorophyll estimation with correlation coefficients R2 of 0.79, 0.84, 0.85 and 0.87 for Red Edge NDVI, MCARI710, CIred edge and MTCI, respectively (n = 24). As evidence of the existence of a relationship between canopy chlorophyll and GPP/PAR, these indices are shown to be a good proxy of GPP/PAR with R2 ranging from 0.70 for Red Edge NDVI and 0.75 for MTCI (n = 240). Remote estimation of GPP from canopy chlorophyll content × PAR is proved to be relatively successful (R2 of 0.47, 0.53, 0.65 and 0.66 for Red edge NDVI, MCARI710, CIred edge and MTCI respectively, n = 240). These results open up a new possibility to estimate GPP and should inspire new models for remote sensing of GPP.  相似文献   

13.
Potatoes are an important staple crop, grown in many parts of the world. Although ozone deposition to many vegetation types has been measured in the field, no data have been reported for potatoes. Such measurements, including the latent-heat flux, were made over a fully grown potato field in central Scotland during the summer of 2006, covering a 4-week period just after rainfall and then dry, sunny weather. The magnitude of the flux was typical of many canopies showing the expected diurnal cycles. Although the bulk-canopy stomatal conductance declined as the field dried out (~300 mmol-O3 m?2 s?1 to ~70 mmol-O3 m?2 s?1), the total ozone flux did not follow the same trend, indicating that non-stomatal deposition was significant. Over a dry surface non-stomatal resistance (Rns) was 270–450 s m?1, while over a wet surface Rns was ~50% smaller and both decreased with increasing surface temperature and friction velocity. From the variation with relative humidity (RH) it is suggested that three processes occur on leaf surfaces: on a very dry surface ozone is removed by thermal decomposition, possibly enhanced by photolytic reactions in the daytime and so Rns decreases as temperature increases; at 50–70% RH a thin film of liquid blocks the “dry” process and resistance increases; above 60–70% RH sufficient surface water is present for aqueous reactions to remove ozone and resistance decreases.  相似文献   

14.
CQESTR simulates the effect of management practices on soil organic carbon (SOC) stocks. The beta version of the model had been calibrated and validated for temperate regions. Our objective was to evaluate the CQESTR model performance for simulating carbon dynamics as affected by tillage practices in two tropical soils (Ultisol and Oxisol) in southeastern and northeastern Brazil. In the southeast (20.75 S 42.81 W), tillage systems consisted of no tillage (NT); reduced tillage (RT) (one disc plow and one harrow leveling [RT1] or one heavy disc harrow and one harrow leveling [RT2]); and conventional tillage (CT) (two heavy disc harrows followed by one disc plow and two harrow levelings). In the northeast (7.55 S 45.23 W), tillage systems consisted of NT, RT (one chisel plow and one harrow leveling), and CT (one disk plow, two heavy disk harrowings, and two harrow levelings). CQESTR underestimated SOC at both sites, especially under NT systems, indicating that adjustments (e.g., the inclusion of clay mineralogy factor) are necessary for more accurate simulation of SOC in the tropics. In spite of this, measured and simulated values of SOC in the 0–20 cm depth were well correlated (southeast, R2 = 0.94, p < 0.01; northeast, R2 = 0.88, p < 0.05). With respect to initial conditions (native forest), CQESTR estimated a decrease in SOC stocks in plowed and no-tillage systems. In 2006, in the southeast, SOC stocks were 28.8, 23.7, 23.2, and 22.0 Mg ha?1 under NT, RT2, RT1, and CT, respectively; in the northeast, stocks were 36.0, 33.8, and 32.5 Mg ha?1 under NT, RT, and CT, respectively. The model estimated carbon emissions varying from 0.36 (NT) to 1.05 Mg ha?1 year?1 (CT) in the southeast and from 0.30 (NT) to 0.82 (CT) Mg ha?1 year?1 in the northeast. CQESTR prediction of SOC dynamics illustrates acceptable performance for the two tropical soils of Brazil.  相似文献   

15.
Earthworms secrete granules of calcium carbonate. These are potentially important in soil biogeochemical cycles and are routinely recorded in archaeological studies of Quaternary soils. Production rates of calcium carbonate granules by the earthworm Lumbricus terrestris L. were determined over 27 days in a range of soils with differing chemical properties (pH, organic matter content, water holding capacity, bulk composition, cation exchange capacity and exchangeable cations). Production rate varied between soils, lay in the range 00.043 mmolCaCO3 (0–4.3 mg) earthworm?1 d?1 with an average rate of 8×10?3 mmolCaCO3 (0.8 mg) earthworm?1 d?1 and was significantly correlated (r = 0.68, P  0.01) with soil pH. In a second experiment lasting 315 days earthworms repeatedly (over periods of 39–57 days) produced comparable masses of granules. Converting individual earthworm granule production rates into fluxes expressed on a per hectare of land per year basis depends heavily on estimates of earthworm numbers. Using values of 10–20 L. terrestris m?2 suggests a rate of 183139 molCaCO3 ha?1 yr?1. Data obtained from flow-through dissolution experiments suggest that at near neutral pH, granule geometric surface area-normalised dissolution rates are similar to those for other biogenic and inorganic calcites. Fits of the data to the dissolution relationship r = k(1 ? Ω)n where r = dissolution rate, k = a rate constant, Ω = relative saturation and n = the reaction order gave values of k = 1.72 × 10?10 mol cm?2 s?1 and n = 1.8 for the geometric surface area-normalised rates and k = 3.51 × 10?13 mol cm?2 s?1 and n = 1.8 for the BET surface area-normalised rates. In 196 day leaching column experiments trends in granule dissolution rate referenced to soil chemistry corresponded to predictions made by the SLIM model for dissolution of limestone in soil. If soil solution approaches saturation with respect to calcium carbonate, granule dissolution will slow or even stop and granules be preserved indefinitely. Granules have the potential to be a small but significant component of the biogeochemical cycling of C and Ca in soil.  相似文献   

16.
《Soil & Tillage Research》2007,93(1):231-235
The Sanjiang Plain has become an intensive area of land use/cover change in China. However, little is known about the effect of cultivation on soil microbiological properties in this freshwater marsh ecosystem. Our objective was to evaluate the effect of cultivation on mineralizable, microbial biomass, and total C in the Sanjiang Plain of Northeast China. Soil microbial biomass C (MBC) was 4346 ± 309 mg kg−1 in undisturbed marsh and 229 mg kg−1 in soil cultivated for 15 years. Undisturbed marsh soil had the highest microbial quotient (3.64%), which declined with increasing cultivation time (R2 = 0.97, p < 0.01). Metabolic quotient increased with increasing cultivation time. Soil C mineralization in undisturbed marsh was 3.5 times that in soil cultivated for 1 year, and was 12 times that in soil cultivated for 15 years. Cultivation strongly affected measured soil microbiological properties.  相似文献   

17.
Germinability and virulence of sclerotia of Sclerotium rolfsii were assessed after 50 days of exposure of 14C-labeled sclerotia to soil at 0, −5 and −15 kPa and pH 6.9, or to soil at 15, 25 or 30 °C, pH 5 or 8 and −1 kPa. Evolution of 14CO2 accounted for the greatest share of endogenous carbon loss from sclerotia under all soil conditions, except in water-saturated soil (0 kPa), in which sclerotial exudates contributed the major share of carbon loss. Total evolution of 14CO2 from sclerotia in soil at −15 kPa (42.4% of total 14C) and at −5 kPa (38%) was significantly higher than at 0 kPa (23.8%). Evolution of 14CO2 in soil at 25 or 30 °C was more rapid than at 15 °C with regardless of pH. Loss of endogenous carbon by sclerotia was the greater after 50 days of exposure to soil at 0 kPa, or at 25 or 30 °C and pH 8, than at other soil conditions. Sclerotia exposed to water-saturated soil (0 kPa) showed a more rapid decline in nutrient independent germinability, viability and virulence, than to those exposed to −5 or −15 kPa. Sclerotia became dependent on nutrient for germination and lost viability and virulence within 30–40 days in soil at 25 or 30 °C, pH 8. However, more than 60% of sclerotia retained viability in soil at 15 °C regardless of pH, even after 50 days. Radish shoot growth was increased significantly by the sclerotia that had been exposed to soil at 0 kPa, or to soil at 25 or 30 °C and pH 8 for 50 days. In conclusion, carbon loss by sclerotia during incubation on soil at different pH levels, temperatures and water potentials was inversely correlated with sclerotial ability to infect radish seedlings. The relationship between carbon loss by sclerotia and radish shoot length was positive.  相似文献   

18.
The aim of this study was to test the impact of compost and biochar, with or without earthworms, on the mobility and availability of metals, and on the growth of grass to re-vegetate contaminated soil from the Parys Mountain mining site, Anglesey. We also determined if the addition of earthworms compromises remediation efforts.In a laboratory experiment, contaminated soil (1343 mg Cu kg?1, 2511 mg Pb kg?1 and 262 mg Zn kg?1) was remediated with compost and/or biochar. After 77 days Lumbricus terrestris L. earthworms were added to the treatment remediated with both compost and biochar, and left for 28 days. L. terrestris was not able to survive in the biochar, compost or unamended treatments. A germination and growth bioassay, using Agrostis capillaris (Common Bent) was then run on all treatments for 28 days.The combination of biochar and compost decreased water soluble Cu (from 5.6 to 0.2 mg kg?1), Pb (from 0.17 to less than 0.007 mg kg?1) and Zn (from 3.3 to 0.05 mg kg?1) in the contaminated soil and increased the pH from 2.7 to 6.6. The addition of L. terrestris to this treatment had no effect on the concentration of the water soluble metals in the remediated soil.The compost was the only treatment that resulted in germination and growth of A. capillaris suitable for re-vegetation purposes. However, the combination of compost and biochar (with or without L. terrestris) produced the lowest concentrations of Cu (8 mg kg?1) and Zn (36 mg kg?1) in the aboveground biomass, lower than the compost treatment (15 mg Cu kg?1 and 126 mg Zn kg?1).The addition of biochar and compost both separately and as co-amendments was effective in reducing the mobility and availability of metals. The addition of L. terrestris did not re-mobilise previously sequestered metals.  相似文献   

19.
We investigated the abundance and genetic heterogeneity of bacterial nitrite reductase genes (nir) and soil structural properties in created and natural freshwater wetlands in the Virginia piedmont. Soil attributes included soil organic matter (SOM), total organic carbon (TOC), total nitrogen (TN), pH, gravimetric soil moisture (GSM), and bulk density (Db). A subset of soil attributes were analyzed across the sites, using euclidean cluster analysis, resulting in three soil condition (SC) groups of increasing wetland soil development (i.e., SC1 < SC2 < SC3; less to more developed or matured) as measured by accumulation of TOC, TN, the increase of GSM, and the decrease of Db. There were no difference found in the bacterial community diversity between the groups (p = 0.4). NirK gene copies detected ranged between 3.6 × 104 and 3.4 × 107 copies g−1 soil and were significantly higher in the most developed soil group, SC3, than in the least developed soil group, SC1. However, the gene copies were lowest in SC2 that had a significantly higher soil pH (~6.6) than the other two SC groups (~5.3). The same pattern was found in denitrifying enzyme activity (DEA) on a companion study where DEA was found negatively correlated with soil pH. Gene fragments were amplified and products were screened by terminal restriction fragment length polymorphism (T-RFLP) analysis. Among 146 different T-RFs identified, fourteen were dominant and together made up more than 65% of all detected fragments. While SC groups did not relate to whole nirK communities, most soil properties that identified SC groups did significantly correlate to dominant members of the community.  相似文献   

20.
We explore the impact of agriculture, forest and cloud feedback on the surface energy budget using data obtained using a research aircraft, mesonet towers and model data. The forest has an order of magnitude larger roughness length, a lower albedo, a much smaller seasonal cycle in surface Bowen ratio (BR) and a weak mid-summer maximum of CO2 uptake compared to agricultural areas, which have much smaller BR and much higher mid-summer CO2 uptake, but a net CO2 release and much reduced evaporation in spring and fall. Higher surface temperatures and the higher albedo over agricultural land reduce Rnet near local noon in the warm season by about 50 W m−2 in comparison with the adjacent boreal forest. The annual averaged Rnet, derived from 2 years of tower data, is 14 W m−2 less over grass sites than over forest sites. A reanalysis time-series for the BOREAS southern study area shows the coupling on daily timescales between the surface energy partition, the mean boundary layer depth, the cloud field and the long-wave and short-wave radiation fields. The albedo of the cloud field, the cloud short-wave forcing at the surface, varies over the range 0.1–0.8 with decreasing surface BR, and plays a major role in the surface energy budget. We estimate that this cloud feedback may increase albedo by 0.13 and reduce Rnet by 25 W m−2 in summer over agricultural land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号