首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weekly morphological measurements of trees in permanent growth plots and periodic destructive sampling were used to monitor growth and development of two Populus clones with contrasting morphology and phenology during the establishment year in a short-rotation, intensive-culture system. Tristis (P. tristis Fisch. x P. balsamifera L.) grew rapidly for 48 days before setting bud in July. By contrast, Eugenei (P. x euramericana (Dode) Guinier) grew at a slower rate than Tristis, but maintained this rate for 75 days before setting bud in September. By early October, the total leaf area and dry weight of Eugenei exceeded that of Tristis by 39 and 11%, respectively. In addition, Eugenei had a greater harvest index than Tristis throughout most of the growing season because a larger proportion of photosynthate produced was directed to shoot growth; however, a high shoot/root ratio in Eugenei predisposed it to water stress. Differences in aboveground biomass between clones were largely attributable to clonal differences in seasonal leaf area development.  相似文献   

2.
Diurnal and seasonal photosynthesis patterns were studied in poplar clones Populus tristis Fisch. x P. balsamfera L. cv. Tristis #1 (NC 5260) and Populus x euramericana (Dode) Guiner cv. Eugenei (NC 5326, Carolina poplar) during their first season in the field in a short rotation, intensive culture plantation. Photosynthetic rates were low in immature leaves; increased basipetally on the shoot and peaked in leaves that had recently reached full expansion; and thereafter declined in lower-crown leaves in both clones. Photosynthesis was associated with leaf age and stomatal conductance in immature leaves; adaxial photosynthetic photon flux density (PPFD) and leaf temperature in recently mature leaves; and leaf age and adaxial PPFD in lower-crown leaves. Diurnal photosynthesis patterns within trees were highly variable due to differential light interception among leaves. Results of clonal comparisons of photosynthetic rates were dependent on which leaves were pooled for comparison and how photosynthesis was expressed. Compared to Eugenei, Tristis produced smaller leaves which had higher unit-area photosynthesis rates. The more indeterminate Eugenei outgrew Tristis principally because it more fully utilized the growing season for leaf area production. Photosynthetic production integrated over the growing season was closely related to dry matter production in both clones.  相似文献   

3.
Liu Z  Dickmann DI 《Tree physiology》1992,11(2):109-122
Cuttings of hybrid Populus clones Tristis and Eugenei growing in pots in a greenhouse were treated with nitrogen fertilizer at two rates and subjected to repeated soil flooding or drying. Periodically, gas exchange measurements and radioimmunoassays, to determine abscisic acid (ABA) concentrations, were made on recently mature leaves.In both clones, photosynthesis and stomatal conductance were depressed five days after flooding, but leaf ABA concentrations remained relatively constant. In contrast, an initial, 9-day period of soil drying resulted in substantial ABA accumulation in leaves, which closely correlated with declines in photosynthesis and conductance. A second soil drying cycle of up to 9 days was less effective in modifying gas exchange and leaf ABA concentrations. High-N supply stimulated leaf ABA production as the soil dried. On the resumption of watering, gas exchange in Tristis recovered fully and rapidly and leaf ABA concentrations quickly returned to control values, whereas gas exchange in Eugenei recovered slowly and leaf ABA concentrations remained high for longer.Gas exchange in Eugenei was unaffected by soil drying until leaf ABA concentrations exceeded 100 ng g(dw) (-1), whereas Tristis showed a reduction in stomatal conductance and photosynthesis at leaf ABA concentrations of only 10 ng g(dw) (-1). A rise in internal CO(2) concentrations was associated with increased leaf ABA concentrations in Tristis, but not in Eugenei. Clonal differences in the relationship between gas exchange and leaf ABA concentration suggest contrasting physiological strategies for survival under prolonged drying conditions.  相似文献   

4.
观赏海棠品种对土壤干旱胁迫的响应差异   总被引:5,自引:1,他引:4  
探讨观赏海棠适应土壤干旱胁迫及复水的生长生理机制,筛选观赏海棠抗旱性鉴定的生长生理指标。研究盆栽人工模拟干旱条件及复水条件下的13个观赏海棠品种的叶片相对含水量(RWC)、叶片失水量(WWL)、新梢增长率(SGR)、比叶重(SDW)、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Cs)、水分利用效率(WUE)、相对电导率(REC)、脯氨酸含量(PRO)、可溶性蛋白含量(SPC)和旱害指数(DI)的变化,并采用聚类分析法对品种的抗旱性进行综合评价。土壤干旱胁迫明显降低观赏海棠的RWC,WWL,SGR,Pn,Tr和Cs;提高DI,WUE和REC;对SDW,PRO和SPC的影响不一。供试观赏海棠品种抗旱性可分4类,比利时直立和王族为特抗型;比利时垂枝、凯尔斯和钻石为高抗型;当娜、高原之火、红花、绚丽和雪球为中抗型;红丽、红玉和印第安魔力为低抗型。不同观赏海棠品种对土壤干旱胁迫和复水的响应不同,其抗旱性存在差异。  相似文献   

5.
《Southern Forests》2013,75(3):105-111
This study describes the stomatal response occurring during water stress and subsequent recovery of three Eucalyptus grandis clonal hybrids. The aim was to investigate the degree to which stomatal conductance (g s) and stomatal density differ between the clonal hybrids across seasons and in response to water stress. Plants from one E. grandis × E. camaldulensis (GC) and two E. grandis × E. urophylla (GU1 and GU2) clones were grown for 18 months in 80 l planting bags. Plants were subjected to three watering treatments: control (100% field capacity), chronic water stress (maintained at 15% of field capacity) and acute water stress (cyclic water stress, where water was withheld until leaf wilting point, and a subsequent period of recovery followed). Stomatal conductance was measured after 6, 12 and 18 months growth. At 12 months of age, the recovery of g s 1, 2 and 7 d after rewatering (following acute water stress) was further investigated. The GC hybrid showed consistently higher g s than the GU clones at each measurement period. Stomatal conductance was 24–66% higher during winter (after 12 months growth) than during summer. The recovery of stomatal conductance from acute water stress was more rapid in the GC clone than the GU clones. Chronic water stress was shown to decrease g s in GU clones by up to 70%, but not in the GC clone. Water stress did not affect stomatal density or size. Remarkably, stomata were absent from the adaxial leaf surface of clone GU1 leaves, but not from the leaves of the other E. urophylla hybrid cross (GU2). Total biomass of the GC clone was significantly greater at 9 months growth, but after 18 months growth the GU1 clone had attained greater biomass accumulation (although not significantly). Measurement of g s, transpiration, stomatal density and total biomass in the GU1 clone indicated stomatal sensitivity to water stress, a favourable trait during periods of drought. The differing growth strategies of the GU and GC clones could be partially explained by their differences in stomatal sensitivity in response to water stress.  相似文献   

6.
Pollution of leaf and needle surfaces near a highway and its effect on stomatal diffusive resistance. Young clones of several trees and shrubs were exposed on the dividing strip of a highway in spring 1976. After three months, surfaces of leaves and needles were extremely polluted and their stomata occluded. During warm dry days in June and July stomatal diffusive resistance in aspen, birch, alder and ash showed a significant (P<0.02) decrease compared to control plants. Compared with the control, temperature on the strip was higher in the soil but not in the air. It is suggested that this pollution effect may cause an increased water stress and reduced growth of plants in dry, hot periods.  相似文献   

7.
Omi SK  Yoder B  Rose R 《Tree physiology》1991,8(3):315-325
Post-storage water relations, stomatal conductance, and root growth potential were examined in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings from high- and low-elevation seed sources that had been lifted either in October or November and freezer stored, or in March, and then grown hydroponically in a greenhouse for 31 days. Seedlings lifted in October had poor root initiation (< 17 new roots per seedling), low predawn leaf water potentials (< -1.5 MPa), and low stomatal conductance (7.10 mmol m(-2) s(-1)) compared with seedlings lifted in November or March. There was little difference in post-storage water relations and stomatal conductance between seedlings lifted in November and those lifted in March. Throughout the 31-day test, seedlings from the high-elevation seed source produced 3-9 times more new roots, had higher predawn leaf water potentials (-0.6 to -0.7 MPa versus -1.1 to -1.6 MPa), and 1.3-5 times greater stomatal conductance than seedlings from the low-elevation seed source. For all seedlings on Day 31, the number of new roots was significantly related to predawn leaf water potential (r(2) = 0.65) and stomatal conductance (r(2) = 0.82). Similarly, the dry weight of new roots per seedling on Day 31 accounted for a significant amount of the variation in predawn leaf water potential (r(2) = 0.81) and stomatal conductance (r(2) = 0.49).  相似文献   

8.
Variations in several growth, gas exchange and leaf traits among greenhouse-grown black locust (Robinia pseudoacacia L.) seedlings from 11 half-sib families were investigated. Three weeks after germination, early growth rates ranged from a minimum of 1 cm d(-1) in the slowest growing family, to a maximum of 3 cm d(-1) in the fastest growing family. Significant family variation in net photosynthetic rate per unit leaf area (P(N)), stomatal conductance, chlorophyll content, height, diameter, stem dry weight and total dry weight was observed. Net photosynthetic rate declined with seedling age. Net photosynthetic rate per unit leaf area was significantly correlated (r < 0.4) with specific leaf area, total chlorophyll, root dry weight, foliage dry weight and total dry weight. The correlation coefficients were higher (r >/= 0.55) between P(N) x total leaf area and growth traits (height, stem dry weight, foliage dry weight and total dry weight). The study indicated that variation in leaf area among the families was one reason for the lack of a strong relationship between P(N) and growth.  相似文献   

9.
We compared responses to drought and re-watering of greenhouse-grown cuttings of Populus x euramericana (Dode) Guinier clones, Luisa Avanzo and Dorskamp. Total leaf area, leaf number, leaf area increment and stomatal conductance were evaluated periodically during a 29-day drought period and for 16 days after re-watering. Soil water content and predawn leaf water potential (Psi(wp)) were measured on Days 29 and 45. On the same days, relative water content (RWC), specific leaf area (SLA), nitrogen, chlorophyll, soluble sugars, total phenols, flavanols and antioxidant activity were determined for leaves taken from the bottom to the top of each cutting. Leaves of Luisa Avanzo cuttings grew more rapidly than leaves of Dorskamp and exhibited higher SLA, but lower concentrations of nitrogen, chlorophyll and soluble sugars and lower antioxidant activity per unit area. On Day 29, after withholding water, both clones had closed their stomata, reduced rates of leaf growth, and lower Psi(wp) and RWC; however, the clones differed in their responses to soil water depletion. Compared to Dorskamp, Luisa Avanzo closed its stomata earlier and maintained higher Psi(wp), but lower RWC and leaf sugar concentrations. Antioxidant activity of leaf methanolic extracts decreased in response to water stress only in Luisa Avanzo. Leaf physiology and its modulation by water stress were age dependent in Luisa Avanzo.  相似文献   

10.
The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However, few studies have investigated this relationship, especially in areas with highly productive forests. This study aimed to determine the interaction between biomass production and leaf water potential, as a surrogate of potential water stress, in different clonal Eucalyptus genotypes across a range of planting densities. Four clones (two clones of E. urophylla × E. grandis, one clone of E. urophylla, and one clone of E. grandis × E. camaldulensis) and four planting densities (ranging from 591 to 2 949 trees ha?1) were evaluated in an experimental stand in south-eastern Brazil. Biomass production was estimated 2.5 years after planting and predawn (ψpd) and midday (ψmd) leaf water potential were measured 2 and 2.5 years after planting, in February (wet season) and August (dry season) in 2014. For all clones, total stand stemwood biomass production increased and leaf water potential decreased with planting density, and their interaction was significant. Thus, wood biomass at tighter spacings was higher but exhibited lower leaf water potentials, resulting in a trade-off between productivity and potential water stress. These are preliminary findings and still need to be supported by more experimental evidence and repetitions. However, in light of the increased frequency of extreme climate events, silvicultural practices that are tailored to the potential productivity of each region and that result in low potential water stress should be considered.  相似文献   

11.
Spiraea pubescens, a common shrub in the warm-temperate deciduous forest zone which is distributed in the Dongling Mountain area of Beijing, was exposed to ambient and enhanced ultraviolet-B (UV-B, 280–320 nm) radiation by artificially supplying a daily dose of 9.4 kJ/m2 for three growing seasons, a level that simulated a 17% depletion in stratospheric ozone. The objective of this study was to explore the effects of long-term UV-B enhancement on stomatal conductance, leaf tissue δ 13C, leaf water content, and leaf area. Particular attention was paid to the effects of UV-B radiation on water use efficiency (WUE) and leaf total nitrogen content. Enhanced UV-B radiation significantly reduced leaf area (50.1%) but increased leaf total nitrogen content (102%). These changes were associated with a decrease in stomatal conductance (16.1%) and intercellular CO2 concentration/ air CO2 concentration (C i /C a) (4.0%), and an increase in leaf tissue δ 13C (20.5‰), leaf water content (3.1%), specific leaf weight (SLW) (5.2%) and WUE (4.1%). The effects of UV-B on the plant were greatly affected by the water content of the deep soil (30–40 cm). During the dry season, differences in the stomatal conductance, δ 13C, and WUE between the control and UV-B treated shrubs were very small; whereas, differences became much greater when soil water stress disappeared. Furthermore, the effects of UV-B became much less significant as the treatment period progressed over the three growing seasons. Correlation analysis showed that enhanced UV-B radiation decreased the strength of the correlation between soil water content and leaf water content, δ 13C, C i/C a, stomatal conductance, with the exception of WUE that had a significant correlation coefficient with soil water content. These results suggest that WUE would become more sensitive to soil water variation due to UV-B radiation. Based on this experiment, it was found that enhanced UV-B radiation had much more significant effects on morphological traits and growth of S. pubescens than hydro-physiological characteristics. __________ Translated from Journal of Plant Ecology, 2006, 30(1): 47–56 [译自: 植物生态学报]  相似文献   

12.
Variation in net photosynthesis, CO(2) exchange parameters, stomatal characteristics, leaf area and seedling dry weight were investigated among 10 provenances of neem (Azadirachta indica A. Juss.). Significant provenance variation was established for net photosynthesis (8.14 to 15.13 &mgr;mol m(-2) s(-1)), stomatal conductance (0.37 to 0.59 mol m(-2) s(-1)), stomatal density (145 to 204 mm(-2)), and total guard cell length (2681 to 3873 &mgr;m). Net photosynthesis was positively correlated with whole-plant dry weight and leaf area. Stomatal density was positively correlated with net photosynthesis, whole-plant dry weight, and leaf area. Total guard cell length was positively correlated with all of these traits. Information on six traits was used in a cluster analysis to construct a dendrogram to assess phenetic relationships among the provenances. With a few exceptions, the dendrogram revealed three major clusters grouped according to rainfall distribution. The study indicated that whole-plant phytomass production of neem seedlings was associated with photosynthesis and stomatal characteristics during the early stages of growth.  相似文献   

13.
Photosynthetic and stomatal responses to a soil drying cycle were examined in half-sib seedlings of four walnut (Juglans nigra L.) families. Well-watered seedlings of an Iowa seed source had significantly higher rates of net photosynthesis than seedlings from New York or Michigan sources. This superior photosynthetic potential was associated with both greater stomatal conductance and mesophyll capacity for CO(2) fixation. In a drying soil, net photosynthesis and leaf conductance to water vapor of all families declined substantially, even under mild water stress. These responses were more strongly related to soil water status, as estimated by predawn leaf water potential, than to leaf water potential at the time of gas exchange measurement. There were no differences among families in the pattern of gas exchange response to developing water stress; however, families differed in capacity for recovery of gas exchange from water stress following rehydration. Sensitivity of photosynthesis of black walnut seedlings to water stress may be associated with poor growth and survival of this species in xeric habitats.  相似文献   

14.
Water stress responses of seedlings of four Mediterranean oak species   总被引:1,自引:0,他引:1  
Effects of water stress on phenology, growth, stomatal activity and water status were assessed from April to November 1996 in 2-year-old seedlings of Quercus frainetto Ten. (Quercus conferta Kit.), Quercus pubescens Willd., Quercus macrolepis Kotschy (Quercus aegilops auct.) and Quercus ilex L. growing in containers in northern Greece. All four species developed more than 50% of their total leaf area before the beginning of June--an adaptation to arid climates. Well-irrigated plants tended to develop greater individual leaf area, number of leaves per plant, total plant leaf area, height and root:shoot ratios than water-stressed plants, but the difference between treatments was not significant for any parameter in any species. Quercus macrolepis appeared to be the most drought-tolerant of the four species. It maintained the highest number of leaves of the smallest size and increased the proportion of fine roots during drought. In all species, drought caused significant decreases in stomatal conductance and predawn and midday water potentials from mid-July until the end of August, when the lowest soil water content and highest mean daily air temperatures and midday leaf temperatures occurred; however, the responses were species-specific. Among the four species, Quercus macrolepis sustained the highest stomatal conductance despite very low water potentials, thus overcoming drought by means of desiccation tolerance. Quercus ilex decreased stomatal conductance even before severe water stress occurred, thereby avoiding desication during drought. Quercus pubescens had the highest water potential despite a high stomatal conductance, indicating that its leaf water status was independent of stomatal activity. Quercus frainetto was the least drought-resistant of the four species. During drought it developed very low water potentials despite markedly reduced stomatal aperture.  相似文献   

15.
《Southern Forests》2013,75(4):213-220
This study tested the hypothesis that water stress increases the hydraulic efficiency of Eucalyptus nitens × E. grandis saplings as a result of osmotic and elastic adjustments. Eucalyptus nitens × E. grandis clones (NH00, NH58, NH69 and NH70) were potted in coarse river sand supplemented with a slow-release fertiliser, drip-irrigated four times daily and exposed to full sunlight for eight months. Thereafter, irrigation was withheld twice for seven consecutive days from half of the saplings of each clone, with a seven-day recovery period (regular irrigation) in-between. Relative soil moisture content did not correlate with stomatal conductance (gs) at pre-dawn and at midday. Leaves of plants subjected to the water-stress treatment wilted in 7 d, and the reduction in gs was significant at midday with no significant differences between clones. Stomatal conductance and all traits derived from pressure-volume graphs (e.g. osmotic potential at full turgor) were constant in the control treatment. There were no clear patterns in osmotic and elastic adjustments in both treatments. Root hydraulic conductance was constant between treatments and clones. However, water stress reduced shoot hydraulic conductance and stem hydraulic conductivity with significant interclonal effects. Plant biomass, leaf area and leaf weight ratio were significantly lower in the water-stressed plants, but there were no differences between the clones. In conclusion, the water-stress treatment did not introduce significant differences in stomatal conductance and tissue-water relations of Eucalyptus nitens × E. grandis clones. Interclonal variation in water-stress response was found in shoot hydraulic traits, and clone NH58 may be more suitable for planting across sites prone to moderate water stress.  相似文献   

16.
Photosynthetic attributes, leaf area and early root growth patterns were studied in three Populus clones to identify traits associated with superior growth potential on sites where water could be a limiting factor. It was found that early root growth and superior leaf area production were more closely related to growth potential than were photosynthetic capacity or carboxylation efficiency. A hybrid clone of Populus nigra var. charkowiensis (syn. P. nigra var. plantierensis) x P. nigra cv. 'Incrassata' (NE308) had more leaf area production and greater root system development in both wet and dry soil than did a P. trichocarpa clone (T6) and a P. balsamifera clone (B3). Despite greater above- and below-ground productivity, plants of clone NE308 had significantly lower photosynthetic capacity and carboxylation efficiency and a slightly higher CO(2) compensation point than plants of clones T6 and B3. Rapid early leaf and root growth appear to be key attributes associated with productivity in these clones regardless of soil water availability.  相似文献   

17.
Sap flux density in branches, leaf transpiration, stomatal conductance and leaf water potentials were measured in 16-year-old Quercus suber L. trees growing in a plantation in southern Portugal to understand how evergreen Mediterranean trees regulate water loss during summer drought. Leaf specific hydraulic conductance and leaf gas exchange were monitored during the progressive summer drought to establish how changes along the hydraulic pathway influence shoot responses. As soil water became limiting, leaf water potential, stomatal conductance and leaf transpiration declined significantly. Predawn leaf water potential reflected soil water potential measured at 1-m depth in the rhizospheres of most trees. The lowest predawn leaf water potential recorded during this period was -1.8 MPa. Mean maximum stomatal conductance declined from 300 to 50 mmol m(-2) s(-1), reducing transpiration from 6 to 2 mmol m(-2) s(-1). Changes in leaf gas exchange were attributed to reduced soil water availability, increased resistances along the hydraulic pathway and, hence, reduced leaf water supply. There was a strong coupling between changes in soil water content and stomatal conductance as well as between stomatal conductance and leaf specific hydraulic conductance. Despite significant seasonal differences among trees in predawn leaf water potential, stomatal conductance, leaf transpiration and leaf specific hydraulic conductance, there were no differences in midday leaf water potentials. The strong regulation of changes in leaf water potential in Q. suber both diurnally and seasonally is achieved through stomatal closure, which is sensitive to changes in both liquid and vapor phase conductance. This sensitivity allows for optimization of carbon and water resource use without compromising the root-shoot hydraulic link.  相似文献   

18.
We studied limitations caused by variations in leaf temperature and soil water availability on photosynthetic electron transport rates calculated from foliar chlorophyll fluorescence analysis (U) in a natural deciduous forest canopy composed of shade-intolerant Populus tremula L. and shade-tolerant Tilia cordata Mill. In both species, there was a positive linear relationship between light-saturated U (Umax) per unit leaf area and mean seasonal integrated daily quantum flux density (Ss, mol per square m per day). Acclimation of leaf dry mass per area and nitrogen per area to growth irradiance largely accounted for this positive scaling. However, the slopes of the Umax versus Ss relationships were greater on days when leaf temperature was high than on days when leaf temperature was low. Overall, Umax varied 2.5-fold across a temperature range of 20-30 degrees C. Maximum stomatal conductance (Gmax) also scaled positively with Ss. Although Gmax observed during daily time courses, and stomatal conductances during Umax measurements declined in response to seasonally decreasing soil water contents, was insensitive to prolonged water stress, and was not strongly correlated with stomatal conductances during its estimation. These results suggest that photorespiration was an important electron sink when intercellular CO2 concentration was low because of closed stomata. Given that xanthophyll cycle pool size (VAZ, sum of violaxanthin, antheraxanthin, and zeaxanthin) may play an important role in dissipation of excess excitation energy, the response of VAZ to fluctuating light and temperature provided another possible explanation for the stable Umax. Xanthophyll cycle carotenoids per total leaf chlorophyll (VAZ/Chl) scaled positively with integrated light and negatively with daily minimum air temperature, whereas the correlation between VAZ/Chl and irradiance was best with integrated light averaged over 3 days preceding foliar sampling. We conclude that the potential capacity for electron transport is determined by long-term acclimation of U to certain canopy light conditions, and that the rapid adjustment of the capacity for excitation energy dissipation plays a significant part in the stabilization of this potential capacity. Sustained high capacity of photosynthetic electron transport during stress periods provides an explanation for the instantaneous response of U to short-term weather fluctuations, but also indicates that U restricts potential carbon gain under conditions of water limitation less than does stomatal conductance.  相似文献   

19.
Reconstituted dikaryons of Pisolithus sp. (Pers.) Coker & Couch from South Africa influenced growth parameters (shoot length, shoot/root ratio and leaf area), nutrition and physiological indicators (transpiration rate, stomatal conductance and xylem water potential) of maritime pine (Pinus pinaster Ait.) seedlings during drought and recovery from drought. Seedlings colonized with certain dikaryons were more sensitive to water stress and showed less mycorrhiza formation under water stress than seedlings colonized with other dikaryons. Control (uninoculated) seedlings were significantly smaller than those inoculated with dikaryons. Transpiration rate, stomatal conductance and xylem water potential varied among mycorrhizal treatments during the water stress and recovery periods. After rewatering, the controls and seedlings inoculated with dikaryon 34 x 20 had a weaker recovery in transpiration rate, stomatal conductance and xylem water potential than the other treatments and appeared to have experienced damage due to the water stress. Concentrations of various elements differed in the shoots of Pinus pinaster colonized by the various dikaryons. It is suggested that breeding of ectomycorrhizal fungi could constitute a new tool for improving reforestation success in arid and semi-arid zones.  相似文献   

20.
Above- and belowground phenology and water relations of Enterolobium cyclocarpum Jacq. trees in the dry forest of Santa Rosa National Park, Costa Rica were studied during two consecutive phenological cycles, from November 1998 to June 2000. Aboveground phenological activity, including leaf shedding, growth and maturation of dormant fruits, new leaf flushing and flowering, occurred during the dry season. Measurements of leaf water potential, stomatal conductance and sap flow indicated that stomata of newly flushed leaves remained essentially closed until the onset of the first rains, suggesting that the main factor accounting for the favorable water balance of dry-season flushed leaves was their capacity to restrict water loss. Evidence of a contribution from stem and root water stores to shoot expansion was mixed because only the first dry-season flushing episode monitored was accompanied by a marked decrease in stem and root water potentials. Fine root production did not precede leaf flushing, occurred only after the onset of the rainy season and stopped under drought conditions, suggesting that soil water content was the most important variable controlling fine root dynamics in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号