首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative persistence of 2,4-D, MCPA and 2,4,5-T in some Saskatchewan soils was assessed under laboratory conditions. Under moist conditions, 2,4-D and MCPA showed half-life times of between 14 and 41 days but the MCPA half-life was usually 1 or 2 days longer. 2,4,5-T exhibited a half-life period over twice the length of the other chemicals. The half-life times were directly correlated to microbial plate counts, the larger numbers of soil microorganisms being associated with shorter residence times. Half-lives depended on soil moisture content and the best moisture levels for chemical loss appeared to be just less than field capacity. The use of 14C in 2,4-D incubation studies showed that the initial cleavage of the 2,4-D molecule was associated with the ether linkage and was not a decarboxylation.  相似文献   

2.
Twenty-eight non-heterocystous filamentous cyanobacterial strains were isolated from different locations in the rice fields of Uttar Pradesh. These strains belonged to seven genera, namely Pseudanabaena, Limnothrix, Phormidium, Microcoleus, Plectonema, Lyngbya and Oscillatoria. A wide variation was observed in these strains with respect to dry weight, generation time and tolerance to biocides. Lyngbya palmarum and Oscillatoria acuminata showed maximum biomass (dry weight), while Pseudanabaena frigidum, Phormidium foveolarum, O. acuminata, Lyngbya palmarum and Lyngbya spiralis showed a significantly shorter generation time as compared to other strains studied. An interesting feature observed was that these non-heterocystous filamentous cyanobacteria possessed a remarkable tolerance to the biocides 2,4-dichlorophenoxyacetic acid, Malathion and Dimecron, at doses much higher than those recommended for rice crops.  相似文献   

3.
A method has been developed for the simultaneous analysis of 2,4-D (2,4-dichlorophenoxy-acetic acid), dicamba (2-methoxy-3,6-dichloro-benzoic acid), and mecoprop (MCPP; 2-[(4-chloro-o-tolyl) oxy] propionic acid) residues in soil, wheat, and barley. Soil and crop samples are extracted with acidic acetone and methanol, respectively. The extracts in diethyl ether are esterified with diazomethane and cleaned up by passing through a Florisil column. Extracts are analyzed by gas-liquid chromatography, using an electron capture detector to determine 2,4-D and dicamba residues. Mecoprop in the extract is not detected at low levels of concentration. However, bromination of the extract increases the response of the electron capture detector to mecoprop. The method is sensitive to about 0.05 ppm 2,4-D and dicamba and 0.5 ppm mecoprop. Recoveries of these 3 herbicides added to soil, wheat, and barley samples at 0.05, 0.1, 0.5, and 1.0 ppm levels were between 65 and 93%. The method was used for the simultaneous analysis of 2,4-D, dicamba, and mecoprop residues in wheat, barley, and soil samples obtained from fields sprayed with the herbicide formulation Kil-Mor.  相似文献   

4.
Enantiomers of 6 propionic acid-derived herbicides in the form of their esters were resolved using liquid chromatography with a chiral column. Free acids are converted to methyl esters by means of a BF3-catalyzed reaction. Chromatographic resolutions for 6 of 8 herbicides investigated were in the range of 2 to 4. The method was applied for the simultaneous determination of mecoprop and 2,4-D content and individual mecoprop enantiomers in 2 formulations containing racemic and R-mecoprop in mixture with 2,4-D. Precision and accuracy of content determination was comparable to standard methods, and enantiomer contents were in good agreement with declared values. The enantiomers of dichlorprop and mecoprop were also resolved as diastereomeric menthyl esters by achiral high resolution gas chromatography (HRGC). HRGC data on enantiomer composition were in good agreement with those from the LC method and other data.  相似文献   

5.
Much is known about mechanisms and regulation of phenoxy acid herbicide degradation at the organism level, whereas the effects of environmental factors on the performance of the phenoxy acid degrading communities in soils are much less clear. In a microcosm experiment we investigated the small-scale effect of litter addition on the functioning of the MCPA degrading communities. 14C labelled MCPA was applied and the functional genes tfdA and tfdAα were quantified to characterise bacterial MCPA degradation. We identify the transport of litter compounds as an important process that probably regulates the activity of the MCPA degrading community at the soil-litter interface. Two possible mechanisms can explain the increased tfdA abundance and MCPA degradation below the litter layer: 1) transport of α-ketoglutarate or its metabolic precursors reduces the costs for regenerating this co-substrate and thereby improves growth conditions for the MCPA degrading community; 2) external supply of energy and nutrients changes the internal resource allocation towards enzyme production and/or improves the activity of bacterial consortia involved in MCPA degradation. In addition, the presence of litter compounds might have induced fungal production of litter-decaying enzymes that are able to degrade MCPA as well.  相似文献   

6.
A simple and rapid analytical method has been developed for the determination of N-nitrosodimethylamine (NDMA) in amine salts of phenoxy herbicide formulations of 2,4-D and MCPA, plus mixtures of these with mecoprop and dicamba amine salts. Sample preparation consists of direct extraction using pre-packed disposable extraction tubes eluted with dichloromethane followed by cleanup on a disposable silica gel mini-column using ethyl acetate as eluting solvent. Samples are injected on-column for gas chromatography with a Megabore fused silica column; the NDMA is measured by a thermionic specific detector (TSD) that is selective for nitrogen-phosphorus (NP). A detection limit of 0.1 microgram/mL was easily attainable without any concentration step because the solvent volume is minimal. TSD and thermal energy analyzer (TEA) results have been compared and confirmed by gas chromatography/mass spectrometry. Recovery studies were performed as well as a reproducibility study on one of the 2,4-D formulations.  相似文献   

7.
The herbicides 2,4-diclorophenoxiacetic and 4-chloro-2-methylphenoxyacetic acids (2,4-D and MCPA) are widely used in agricultural practices worldwide. Not only are these practices responsible of surface waters contamination, but also agrochemical industries through the discharge of their liquid effluents. In this investigation, the ability of a 2,4-D degrading Delftia sp. strain to degrade the related compound MCPA and a mixture of both herbicides was assessed in batch reactors. The strain was also employed to remove and detoxify both herbicides from a synthetic effluent in a continuous reactor. Batch experiments were conducted in a 2-L aerobic microfermentor, at 28 °C. Continuous experiments were carried out in an aerobic downflow fixed-bed reactor. Bacterial growth was evaluated by the plate count method. Degradation of the compounds was evaluated by UV spectrophotometry, gas chromatography (GC), and chemical oxygen demand (COD). Toxicity was assessed before and after the continuous process by using Lactuca sativa seeds as test organisms. Delftia sp. was able to degrade 100 mg L?1 of MCPA in 52 h. When the biodegradation assay was carried out with a mixture of 100 mg L?1 of each herbicide, the process was accomplished in 56 h. In the continuous reactor, the strain showed high efficiency in the simultaneous removal of 100 mg L?1 of each herbicide. Removals of 99.7, 99.5, and 95.0% were achieved for 2,4-D, MCPA, and COD, respectively. Samples from the influent of the continuous reactor showed high toxicity levels for Lactuca sativa seeds, while toxicity was not detected after the continuous process.  相似文献   

8.
The sorption and desorption behaviors of four phenoxyalkanoic acid herbicides and their metabolites on four agricultural soils and soil particle size fractions were examined. Generally, there was a trend of increasing adsorption and decreasing desorption in the order mecoprop < MCPA < dichlorprop < 2,4-D. The significant increase in adsorption of the phenolic metabolites can be explained by their lower polarity and enhanced partition in the organic soil matrix. Estimation of sorption distribution coefficients from particle size fraction adsorption data was possible for a sandy soil and a silty Cambisol soil only. It is suggested that increasing steric demand, for example, molecular volume, and slight changes in the polarity of the compounds affect their adsorption properties. Comparison of adsorption and desorption data of structurally similar compounds obtained from a variety of soils allows investigation of structure-induced differences in sorption strength.  相似文献   

9.
A comparison of three atrazine-degrading bacteria for soil bioremediation   总被引:3,自引:0,他引:3  
The ability of three atrazine-degrading bacteria, Pseudomonas sp. strain ADP, a Pseudaminobacter sp., and a Nocardioides sp., to degrade and mineralize this herbicide in a loam soil was evaluated in laboratory microcosms. These bacteria all hydrolytically dechlorinate atrazine, and degrade atrazine in pure culture with comparable specific activities. The Pseudaminobacter and Nocardioides can utilize atrazine as sole carbon and nitrogen source, whereas the Pseudomonas can utilize the compound only as a nitrogen source. The Pseudomonas and Pseudaminobacter mineralize the compound; the end product of atrazine metabolism by the Nocardioides is N-ethylammelide. At inoculum densities of 105 cells/g soil, only the Pseudaminobacter and Nocardioides accelerated atrazine dissipation. The Pseudaminobacter mineralized atrazine rapidly and without a lag, whereas atrazine was mineralized in the Nocardioides-inoculated soil but only after a lag of several days. The Pseudaminobacter remained viable longer than did the Pseudomonas in soil. PCR analysis of recovered bacteria indicated that the genes atzA (atrazine chlorohydrolase) and atzB (hydroxyatrazine ethylaminohydrolase) were less stable in the Pseudaminobacter than the Pseudomonas. In summary, this study has revealed important differences in the ability of atrazine-hydrolyzing bacteria to degrade this compound in soil, and suggests that the ability to utilize atrazine as a carbon source is important to establish "enhanced degradation" by ecologically meaningful inoculum densities.  相似文献   

10.
Seventy-six rhizobial isolates belonging to four different genera were obtained from the root nodules of several legumes (Vicia sativa, Vicia faba, Medicago sativa, Melilotus sp., Glycine max and Lotus corniculatus). The action of five commonly used herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate (GF), dicamba, atrazine and metsulfuron-methyl] on the growth of rhizobial strains was assessed. Subsequently, GF and 2,4-D were tested in a minimum broth as C and energy sources for 20 tolerant strains. The ability of these strains to metabolize different carbon sources was studied in order to detect further differences among them. Tolerance of the bacteria to agrochemicals varied; 2,4-D and GF in solid medium inhibited and diminished growth, respectively, in slow-growing rhizobial strains. Among slow-growing strains we detected Bradyrhizobium sp. SJ140 that grew well in broth + GF as the sole C and energy source. No strain was found which could use 2,4-D as sole C source. The 20 strains studied exhibited different patterns of C sources utilization. Cluster analysis revealed three groups, corresponding to four genera of rhizobia: Rhizobium (group I), Sinorhizobium (group II) and Mesorhizobium–Bradyrhizobium (group III). On the basis of the results obtained on responses to herbicides and C sources utilization by the isolates investigated, it was possible to differentiate them at the level of strains. These results evidenced a considerable diversity in rhizobial populations that had not been previously described for Argentinean soils, and suggested a physiological potential to use natural and xenobiotic C sources.  相似文献   

11.
Method 8150, published in the second edition of Test Methods for Evaluating Solid Waste, Manual SW-846, required optimization, ruggedness testing, linearity determinations, precision tests, bias testing, gas chromatographic/mass spectrometric confirmation, and quality control guidelines for validation of the protocol. This single-laboratory validation, which is applicable to the determination of the herbicides dicamba, silvex, 2,4-D, 2,4-DB, 2,4,5-T, dinoseb, MCPP, MCPA, and dichlorprop in hazardous waste extracts, was completed and is described in this report. Final ruggedness testing of the optimized procedure gave a mean recovery of 89.3% with a standard deviation of 4.3%. Percent relative standard deviations are less than 10 (n = 20, each analyte) over a 10(2) linear range of concentration for MCPP and MCPA and over a 10(3) linear range of concentration for the other target herbicide esters. Instrumental detection limits for electron capture detection and mass spectrometric identity confirmation were determined and found to be matrix-dependent.  相似文献   

12.
There is no data currently available on acidic pesticides in the drinking water of Greece, although considerable quantities of them are in use. In this study, the occurrence of the six most important acidic herbicides in the drinking water of Greece was investigated. The target compounds studied include four chlorophenoxy herbicides, namely mecoprop, dichlorprop, MCPA and 2,4-D, and two other acidic herbicides, i.e. bromoxynil and bentazone. Analysis was carried out at a concentration level of 100 ng L?1 using capillary gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring (SIM). The method involved a pre-concentration with solid phase extraction and derivatization with pentafluorobenzyl bromide. Thirty-eight samples of drinking water from nine regions in Greece were screened. No herbicides were detected although fortification experiments with parallel water samples resulted in recovery rates better than 70%. The detection limits of the recovered compounds were found to be between 10 and 50 ng L?1.  相似文献   

13.
Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding α-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P<0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T. pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic α-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.  相似文献   

14.
Two strains of Pseudomonas MRS23 and CRP55b showed antagonistic activity towards the pathogenic fungi Aspergillus sp., Fusarium oxysporum f. sp. ciceri, Pythium aphanidermatum and Rhizoctonia solani under culture conditions. Larger growth inhibition zones were obtained on nutrient agar (NA) and King's B media in comparison to potato dextrose agar and pigment production media. Both the strains produced siderophore in agar plates as well as in liquid cultures. Fungal inhibition zones were reduced in size and abolished in iron-supplemented NA medium by Pseudomonas strains MRS23 and CRP55b, respectively, indicating that some other metabolites along with siderophores are involved in growth inhibition of fungi by strain MRS23, whereas CRP55b produced only siderophores. Only Pseudomonas strain MRS23 was found to produce hydrocyanic acid (HCN). Seed bacterization with Pseudomonas strains of two chickpea (Cicer arietinum L.) cultivars, H8618 and C235, showed root-stunting effects at 5 days, whereas this inhibitory effect was overcome at 10 days of seedling growth in cv. H8618. Coinoculation of chickpea with Pseudomonas strains MRS23 and CRP55b, and Mesorhizobium sp. Cicer strain Ca181 resulted in the formation of 68.2-115.4% more nodules at 80 and 100 days after planting as compared to single inoculation with the Mesorhizobium strain under sterile conditions. The shoot dry weight ratios of coinoculated treatments at different stages of plant growth varied from 1.18 to 1.35 times that of Mesorhizobium-inoculated and 3.25 to 4.06 times those in uninoculated controls. The plant N contents were also increased significantly on coinoculation. Coinoculation effects of HCN-producing strain MRS23 were significantly lower than those of non-HCN-producing strain CRP55b in terms of shoot dry weight and shoot N. The results demonstrated the potential benefits of using rhizosphere bacteria as coinocula in nodule promotion and plant growth in chickpea.  相似文献   

15.
This study evaluated the response of pea (Pisum sativum cv. Trapper) to arbuscular mycorrhizal fungi (AMF) and Rhizobium leguminosarum bv. viceae strains varying in their effectiveness on pea. Plants were inoculated with the AMF species Glomus clarum NT4 or G. mosseae NT6 and/or ten Rhizobium strains, and grown for 90 days in soil containing indigenous AMF and rhizobia. The effectiveness of the Rhizobium strains on the growth (P <0.046; r =0.64) and N nutrition (P <0.04; r =0.65) of 6-week-old pea grown under gnotobiotic conditions was correlated with the growth and N nutrition of 90-day-old pea grown in natural soil for all strains except LX48. The growth and yield response of pea to co-inoculation with AMF and Rhizobium strains depended on the particular AMF-Rhizobium strain combination. In some cases, the yield and N nutrition of pea inoculated with a superior Rhizobium strain was significantly (P <0.05) enhanced by an apparently compatible AMF species compared to the Rhizobium treatment. On the other hand, an apparently incompatible AMF species significantly (P <0.05) reduced the performance of an effective Rhizobium strain. In general, treatments with effective Rhizobium strains or co-inoculation treatments with effective Rhizobium strains and a compatible AMF species produced the best results. Changes in total shoot dry matter production was significantly (P <0.05) correlated with the total shoot N (P <0.0001; r =0.95) and P content (P <0.0001; r =0.87), indicating that this response was mediated by enhanced N and P nutrition. Growth, yield and nutrition of pea were not related to AMF colonization of roots. Our results suggest that careful co-selection of AMF species and Rhizobium strains can enhance pea yield and nutrition.  相似文献   

16.
Humic acids (HAs) from a pseudogley soil with various metal contents were added as supplemental sources of nutrients, or as the sole sources of carbon or nitrogen, to aerobic cultures of complex microbial populations indigenous to the same individual soils. Depending on nutrient conditions in the individual cultures and origin of HAs, between 44% and 67% of the added HAs were utilized. The lowest utilization rate was obtained for HAs from soil heavily contaminated with Mg. The overall carbon mineralization in the microbial cultures was significantly reduced in the presence of HAs. Simultaneously, the formation of microbial biomass was enhanced up to 261%. Variovorax (Alcaligenes) paradoxus, Pseudomonas fluorescens, and a yeast Cryptococcus sp. have been identified as the dominant microbial species utilizing HAs. The individual HA preparations re-isolated from the microbial cultures exhibited distinct changes in elemental and structural characteristics. Diminished contents of ash and alterations in infra-red absorptions indicated a splitting of organic and mineral components in HAs exposed to microbial activities.  相似文献   

17.
Microbial populations able to degrade 2,4-D (2,4-dichlorophenoxyacetate) and MCPA (4-chloro-2-methylphenoxyacetate) were enumerated by means of a most probable number (MPN) procedure in eight Natal soils not previously treated with these herbicides. Estimated 2,4-D-degrading populations ranged from 1.26 to 245.2 and MCPA-degrading populations from 0.34 to 1377 g?1 dry soil; in seven of the soils the populations of these organisms were less than 40 and 30 g?1, respectively. Such counts indicate that for the successful isolation of 2,4-D- or MCPA-degrading microorganisms from soil, at least 1 g dry weight of soil should be used for enrichment cultures. The 2,4-D-degrading organisms occurred among the aerobic soil bacteria detectable by plate count, at frequencies of only 1 in 30 × 103 to 1 in 36 × 106 and the MCPA-degrading organisms at frequencies of 1 in 5 × 103 to 1 in 133 × 106; the ease with which the herbicide-degrading organisms can be isolated from enriched soil cultures treated with 2,4-D or MCPA is evidence of their massive preferential proliferation in response to the herbicides.Log 2,4-D- and MCPA-degrading populations did not differ significantly in four soil samples, but in the others either the 2,4-D- or the MCPA-degrading population was dominant. The longer persistence of MCPA compared with that of 2,4-D could therefore not be ascribed to quantitative differences in the populations of MCPA- and 2,4-D-degrading soil microorganisms.No relationship was evident between the soil populations of 2,4-D- or MCPA-degrading microorganisms and aerobic soil bacteria, and variations of the three populations among the soil samples were not associated in any obvious way with the soil physical and chemical characteristics, except perhaps an association of the highest counts of herbicide-degrading organisms with a sugar cane soil of sandy texture and high C: N ratio.  相似文献   

18.
The biodegradation of organic compounds in soil is a key process that has major implications for different ecosystem services such as soil fertility, air and water quality, and climate regulation. Due to the complexity of soil, the distributions of organic compounds and microorganisms are heterogeneous on sub-cm scales, and biodegradation is therefore partly controlled by the respective localizations of organic substrates and degraders. If they are not co-localized, transfer processes become crucial for the accessibility and availability of the substrate to degraders. This spatial interaction is still poorly understood, leading to poor predictions of organic compound dynamics in soils. The objectives of this work were to better understand how the mm-scale distribution of a model pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D), and its degraders drives the fate of 2,4-D at the cm soil core scale. We constructed cm-scale soil cores combining sterilized and “natural” soil aggregates in which we controlled the initial distributions of 2,4-D and soil microorganisms with the following spatial distributions: i) a homogeneous distribution of microorganisms and 2,4-D at the core-scale, ii) a co-localized distribution of microorganisms and 2,4-D in a single spot (360 mm3) and iii) a disjoint localization of microorganisms and 2,4-D in 2 soil spots (360 mm3) separated by 2 cm. Two sets of experiments were performed: one used radiolabeled 14C-2,4-D to study the fate of 2,4-D, and the other used 12C-2,4-D to follow the dynamics of degraders. Microcosms were incubated at 20 °C and at field capacity (−31.6 kPa). At the core scale, we followed 2,4-D mineralization over time. On three dates, soil cores with microorganisms and 2,4-D localized in soil spots, were cut out in slices and then in 360 mm3 soil cubes. The individual soil cubes were then independently analysed for extractable and non-extractable 14C and for degraders (quantitative PCR of tfdA genes). Knowing the initial position of each soil cube allowed us to establish 3D maps of 2,4-D residues and degraders in soil. The results indicated that microorganisms and pesticide localizations in soil are major driving factors of i) pesticide biodegradation, by regulating the accessibility of 2,4-D to degrading microorganisms (by diffusion); and ii) the formation of non-extractable residues (NER). These results also emphasized the dominant role of microorganisms in the formation and localization of biogenic NER at a mm-scale. To conclude, these results demonstrate the importance of considering micro-scale processes to better understand the fate of pesticides and more generally of soil organic substrates at upper scales in soil and suggest that such spatial heterogeneity should not be neglected when predicting the fate of organic compounds in soils.  相似文献   

19.
Two solid-phase enzyme immunoassays were developed to measure 2,4-dichlorophenoxyacetic acid (2,4-D), using 2 sets of structurally distinct immunogens and enzyme ligands. The 2,4-D analog, 2-methyl-4-chlorophenoxyacetic acid (MCPA), gave a similar response with both methods, whereas other phenoxy herbicides cross-reacted differently. In method A, the aromatic moiety of 2,4-D was distal from the carrier protein and labeled enzyme, whereas in method B, the acetic acid portion of the herbicide was distal. The use of both methods to screen for this herbicide in ground water and municipal and river water reduced the number of false-positive responses. Water sources having a low background response could be monitored with either method alone. When a concentration step, with disposable C18 extraction columns, was used, the limit of sensitivity was 5 micrograms/L. Method A was the more sensitive of the 2 methods with a limit of detection of 10 micrograms/L without the concentration step.  相似文献   

20.
A pot experiment was undertaken under net house conditions, with three rhizobacterial strains AW1 (Bacillus sp.), AW5 (Providencia sp.) and AW7 (Brevundimonas sp.), applied along with 2/3 recommended dose of nitrogen (N) and full dose of phosphorus (P) and potassium (K) fertilizers (N90P60K60). An enhancement of 14–34% in plant biometric parameters and 28–60% in micronutrient content was recorded in treatments receiving the combination of AW1?+?AW5 strains, as compared to full dose of fertilizer application. The treatment involving inoculation with AW5?+?AW7 recorded highest values of % P and N, with a two-fold enhancement in phosphorus and 66.7% increase in N content, over full dose application of P and K fertilizers. A significant correlation was recorded between plant biomass, panicle weight, grain weight, N, P and iron (Fe) with acetylene reduction activity, indicating the significance of N fixation in overall crop productivity. Our study illustrates the multiple benefits of plant growth promoting rhizobacteria (PGPR) inoculation in integrated nutrient management and biofortification strategies for wheat crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号