首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interactions between Verticillium dahliae and Colletotrichum coccodes , major causal agents of potato early dying (PED) syndrome, were studied in four potato cultivars that differ in their susceptibility to these pathogens . Aseptic plantlets of Nicola, Desiree, Alpha and Cara were inoculated with identical concentrations of each pathogen or with a mixture of the pathogens, and grown for 4 weeks in a monitored growth chamber. Coinoculation of Nicola with both pathogens caused more severe foliar disease symptoms and crown rot and greater C. coccodes colonization, than inoculation with each pathogen separately. Significant reductions in weight and height were also observed in plants coinoculated with both pathogens, as compared with plants inoculated with each pathogen separately or noninoculated plants. In Desiree, more roots were covered with C. coccodes sclerotia and disease symptoms were significantly more severe in plants inoculated with both pathogens together. However, plant weight and height were similar to those of plants inoculated with C. coccodes only. In Alpha, disease symptoms and levels of sclerotia in the roots were not affected by simultaneous inoculation with both pathogens. Weight and height of all plants were similar, whether inoculated with each pathogen separately or with both pathogens together. In Cara, plants inoculated with the mixture or either pathogen alone were smaller than the noninoculated control. Disease symptoms and occurrence of sclerotia were similar in plants inoculated with the combination and with a single pathogen. Compared with the effects of inoculation with either pathogen, simultaneous inoculation with both pathogens can, in some cultivars, increase the incidence of PED syndrome and thus severely decrease yields.  相似文献   

2.
Experiments were conducted under growth-chamber conditions to determine if Pratylenchus penetrans systemically alters light use efficiency (LUE) of Russet Burbank potato infected by Verticillium dahliae. Pathogen separation was achieved by inoculating potato roots with the nematode prior to injecting fungal conidia into the stem vasculature. Treatments were P. penetrans alone, V. dahliae alone, nematode and fungus together, and a no-pathogen control. Gas exchange was repeatedly and nondestructively measured on the fifth-youngest leaf with a Li-Cor LI-6200 portable photosynthesis system. By 16 and 20 days after stem injection with the fungus, LUE was synergistically impaired in jointly infected plants. Transpiration in plants infected with both pathogens was significantly reduced. However, the combined effect of nematode and fungus was synergistic in one experiment and additive in the other. Stems were destructively harvested when LUE was synergistically impaired. Coinfected potato plants contained more colony-forming units (CFU) of V. dahliae in stem sap than those infected by the fungus alone in one experiment. Evidence is provided that infection of Russet Burbank roots by P. penetrans systemically affects disease physiology associated with stem vascular infection by V. dahliae . The findings indicate that the role of the nematode in the fungus/host interaction is more than simply to facilitate extravascular and/or vascular entry of the fungus into potato roots.  相似文献   

3.
A multiplex-nested-PCR procedure was developed for in planta detection of Verticillium dahliae isolates infecting artichoke and assessment of their vegetative compatibility groups (VCGs). PCR markers were identified and assigned to V. dahliae VCGs, including: i) a 334 bp marker amplified from VCG1A or VCG2B334 isolates; ii) a 688 bp marker amplified from VCG2A or VCG4B isolates; and iii) a 688 bp and a 964 bp PCR marker amplified from VCG2B824 isolates. The infecting V. dahliae VCGs were identified in artichoke tissues according to specific patterns of amplified markers after two rounds of PCR. The PCR-based 'molecular tool box' was first optimized using DNA extracted from artichoke plants artificially inoculated with isolates representative of known VCGs. Thereafter, the efficiency of the molecular procedure was tested using DNA extracted from naturally-infected artichoke plants showing a range of symptom severity as well as from symptomless plants. The novel multiplex-nested-PCR assay was clearly superior in detecting the pathogen compared to conventional isolation procedures, and in addition was informative about the VCGs. Moreover, the PCR method allowed the detection and VCG identification of V. dahliae infections in symptomless but infected plants, which had yielded false negatives when checked by microbiological isolation procedures. This 'molecular tool box' has uncovered the presence of several V. dahliae VCGs infecting the same artichoke plants in the Comunidad Valenciana Region. In addition, it is useful for genetic and pathogenicity diversity studies of V. dahliae populations infecting artichoke, and may help in predicting the severity of verticillium wilt epidemics.  相似文献   

4.
A Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system was employed to investigate the role of the tomato ethylene receptor ETR4. By comparing wilting symptoms of verticillium wilt in wild-type, ethylene-insensitive Never ripe ( Nr ) mutant tomato plants and ETR4 -silenced plants, it was demonstrated that disease severity in the Nr and ETR4 -silenced plants was statistically reduced compared to wild-type plants. Disease incidence and severity were reduced by 11 and 20%, respectively, in the Nr plants compared to the wild-type plants, at 33 days post-inoculation (d.p.i.). In the ETR4 -silenced plants, disease incidence and severity were reduced by 14 and 15%, respectively, compared to the TRV -only-inoculated plants, at 37 d.p.i. Quantification of Verticillium dahliae by qPCR revealed that the reduction in symptom severity in the Nr plants was associated with significant reduction of growth of the pathogen in the vascular tissues of the Nr plants compared to that in the wild-type plants, suggesting that impaired perception of ethylene via the Never-ripe receptor results in increased disease resistance. Fungal reduction was evident at each sampling day in the Nr plants, ranging from 1·5 to 1·75 times less than that in the wild-type plants. Fungal quantification in the ETR4- silenced and TRV -only-inoculated plants showed similar levels of fungal biomass.  相似文献   

5.
Eight strawberry genotypes known to differ in susceptibility to verticillium wilt were inoculated with eight isolates of Verticillium dahliae originally obtained from six different host crops: strawberry, potato, watermelon, mint, eggplant (aubergine) and cauliflower. Inoculation experiments were conducted in replicated field trials during two successive years. Known susceptible genotypes developed typical symptoms of verticillium wilt in both years. Although isolates manifested a wide range of aggressiveness, differences were significant only on the most susceptible strawberry genotype. Two isolates originating from strawberry were among the most aggressive of the eight tested, whereas the least aggressive isolate was obtained from cauliflower. Six strawberry genotypes that were regarded as resistant to verticillium wilt based on previous tests were also resistant in the present study, regardless of the isolate used. Overall, strawberry genotypes represented the largest source of variation in these experiments, with variance components approximately 10-fold greater than those associated with either isolate or the isolate × genotype interaction. The results suggest it should be possible to develop resistance to verticillium wilt in strawberry that is broadly effective against isolates of diverse host origin.  相似文献   

6.
The population of Phytophthora infestans in Brazil consists of two clonal lineages, US-1 associated with tomatoes and BR-1 associated with potatoes. To assess whether host specificity in these lineages resulted from differences in aggressiveness to potato and tomato, six aggressiveness-related epidemiological components – infection frequency (IF), incubation period (IP), latent period (LP), lesion area (LA), lesion expansion rate (LER) and sporulation at several lesion ages (SSLA) – were measured on detached leaflets of late blight-susceptible potato and tomato plants. Infection frequency of US-1 was similar on potato and tomato leaflets, but IF of BR-1 was somewhat reduced on tomato. Incubation period was longer on both hosts with US-1, although this apparent lineage affect was not significant. Overall there was no host effect on IP. On potato, BR-1 had a shorter LP (110·3 h) and a larger LA (6·5 cm2) than US-1 (LP = 162·0 h; LA = 2·8 cm2). The highest LER resulted when isolates of BR-1 (0·121 cm2 h−1) and US-1 (0·053 cm2 h−1) were inoculated on potato and tomato leaflets, respectively. The highest values of the area under the sporulation capacity curve (AUSC) were obtained for isolates of US-1 inoculated on tomato leaflets (6146) and for isolates of BR-1 on potato leaflets (3775). In general, higher values of LA, LER, SSLA and AUSC, and shorter values of LP were measured when isolates of a clonal lineage were inoculated on their original host than with the opposite combinations. There is evidence that there are quantitative differences in aggressiveness components between isolates of US-1 and BR-1 clonal lineages that probably contribute to host specificity of P. infestans populations in Brazil.  相似文献   

7.
The nutritional status of a plant is known to influence its susceptibility to pathogens. In the case of Botrytis cinerea, the role of nitrogen fertilization of various host plants on disease development appears to be variable. This study was carried out to characterize possible variability associated with isolates and inoculum density of B. cinerea in its ability to infect leaf‐pruning wounds and to develop stem lesions on tomato plants, as affected by the nitrogen input. Six isolates differing in their aggressiveness to tomato were compared. They all had similar reaction patterns in vitro in response to differential nitrogen levels. In tests on plants grown with contrasted regimes of nitrate fertilization, overall disease severity was lower for all isolates on plants with higher nitrogen inputs, regardless of inoculum concentration. However, differences among isolates were observed in the effect of plant nitrogen nutrition on infection and on lesion expansion. Disease onset was delayed on all plants with higher nitrogen inputs, but the response was greater for isolates with lower aggressiveness on tomato. The highest contrast among isolates was observed with the colonization of stems. The daily rate of stem lesion expansion decreased with increasing nitrogen fertilization levels for the more aggressive isolates, while it increased for the less aggressive isolate. Hypotheses to explain these results are discussed in light of the possible physiological effects of nitrogen fertilization on nutrient availability for the pathogen in the host tissue and of possible production of defence metabolites by the plant.  相似文献   

8.
The soilborne pathogen Verticillium dahliae invades its host via the root, and spreads systemically throughout the plant. Although a functional root system of appropriate size is essential for water and nutrient uptake, to date, effects of pathogens on root morphology have not been frequently investigated. Therefore, this study aims to improve knowledge of how V. dahliae infection impairs root morphological characteristics of tomato, considering plant growth and physiological responses, particularly those involved in defence in roots and leaves over a growing period of up to 28 days post‐inoculation. Verticillium dahliae infection suppressed the growth of both shoot and root. Diseased plants developed a smaller leaf area, and exhibited a reduction in the rate of photosynthesis and stomatal conductance. An early response to pathogen invasion in the host root was the up‐regulation of several defence‐related genes, such as proteinase inhibitor II (Pin2), β‐1,3‐glucanase A (GluA) and two pathogenesis‐related genes (PR‐1a, PR‐1b). However, this response did not prevent colonization of the roots by the pathogen. Although a high variability in pathogen density was found within the root system, a significant increase of both the specific root length and surface area was observed in response to pathogen invasion; these traits correlated with water use efficiency. Morphological changes of the root may represent an adaptive response evolved to sustain the supply of both water and nutrients in the presence of the pathogen.  相似文献   

9.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

10.
为明确引起马铃薯黄萎病的大丽轮枝菌Verticillium dahliae的遗传变异和致病力的差异,对从内蒙古及其周边地区马铃薯发病株上分离得到的29株大丽轮枝菌的营养亲和群、生理小种和交配型进行了测定,利用伤根接种法进行致病力分化研究。结果表明,供试的29株马铃薯大丽轮枝菌菌株被划分为VCG2B、VCG4B和VCG4A三个营养亲和群,其菌株数分别为11、2和16株;供试的29株菌株均鉴定为单一的2号生理小种和MAT1-2-1交配型。供试的29株大丽轮枝菌菌株间致病力存在一定的差异,其中NCP-1菌株的致病力最强,病情指数为83.33;而NWS-5菌株的致病力最弱,病情指数仅为10.85;不同营养亲和群菌株的平均致病力也存在显著差异,VCG4B型菌株的平均致病力最高,平均病情指数为67.18;其次为VCB2B型菌株,平均病情指数为42.50,而VCG4A型菌株致病力最弱,平均病情指数仅为20.54。  相似文献   

11.
Two experiments were performed in two consecutive years to test whether isolates of different vegetative compatibility groups (VCGs) differ in their ability to cause disease in woody ornamentals, to study the host specificity of the isolates and to get an insight into disease development in woody hosts. A range of woody ornamental plant species, including Acer campestre, Acer platanoides, Acer pseudoplatanus, Catalpa bignonioides, Cotinus coggygria, Robinia pseudoacacia, Rosa canina, Syringa vulgaris and Tilia cordata, were root-dip inoculated with six isolates of Verticillium dahliae, belonging to the two VCGs that occur in the Netherlands (VCG NL-1 and VCG NL-2). Isolates belonging to each VCG caused severe symptoms of verticillium wilt in most plant species tested. Disease progress differed between plant species, but was generally the same for the two VCGs. No overall differences in virulence were observed between the two VCGs for external wilt symptoms, number of dead plants, or shoot length. No significant VCG × plant species interactions were present for these characteristics. However, isolates of VCG NL-1 caused more vascular discolouration than did isolates of VCG NL-2. Isolates within VCGs often differed considerably in their virulence to certain hosts, as shown by highly significant isolate × plant species interactions. Isolates were more virulent on their original host. These findings imply that VCG identification does not contribute to disease prediction for a range of woody hosts.  相似文献   

12.
Reactions of three Polish potato cultivars to potato virus S (PVS) were investigated at 22°C. Cultivars Tajfun and Tonacja exhibited partial resistance with systemic infection detected in some inoculated plants; cultivar Bryza was susceptible to PVS with systemic infection detected in all inoculated plants. The virus was not detectable by ELISA at 23 days postinoculation (dpi) but was detected after 40 dpi. Infection rate and viral accumulation were significantly lower in Tonacja and Tajfun than in Bryza, but no statistically significant difference between Tajfun and Tonacja was detected. Both susceptible and resistant genotypes displayed various, either common or cultivar-specific, symptoms. Delayed systemic infection at 56 dpi was observed in some cases in Tonacja and Tajfun. Resistance-related alteration of a set of miRNAs and mRNA targets in the tested cultivars in response to PVS at 22°C exhibited inter- and intracultivar variability. The majority of tested genes were altered only in the partially resistant Tajfun and Tonacja but not in the susceptible Bryza. Enhanced expression of AGO1-2, DCL1, stu-miR482 and its target Gpa2 was observed in Tonacja and plants of Tajfun in which PVS was detected, with the highest induction of Gpa2 in Tajfun (30.2-fold). However, their expression remained unchanged or decreased in plants of Tajfun in which PVS was undetected. Increased expression of stu-miR168a and stu-miR172e was observed in Tonacja and the PVS-undetected plants of Tajfun, respectively, but not in the PVS-detected plants of Tajfun. This is the first report on cultivar-specific alteration of miRNA in a potato–PVS resistance interaction.  相似文献   

13.
Potato tuber worm, Phothorimae operculella Zeller (Lepidoptera: Gelechiidae) is a common pest of potato which causes a heavy loss in yield either in fields or storage. The effect of six potato cultivars (Agria, Florida, Impala, Picasso, Satina, and Sprint) were evaluated on the life history, life table and demographic parameters of P.operculella under laboratory conditions, which could be appropriate indices in resistance and susceptibility evaluation of potato cultivars. The longest development time was on Picasso (28.76 ± 0.36d) cultivar. The male longevity ranged from 4.83 ± 0.44d on Sprint to 7.45 ± 0.60d on Picasso. Impala and Satina with 53.22 ± 7.78 and 28.74 ± 3.54 eggs/individual had the highest and the lowest net reproductive rates (R0). The highest values for the intrinsic rate of increase (rm) and finite rate of increase (λ) were on Impala (rm: 0.119 day?1, λ: 1.75 day?1), and the lowest value was on Sprint (rm: 0.090 day?1, λ: 1.01 day?1). The results indicated that Sprint was the most resistant cultivar for the feeding of P.operculella, which could be useful in the development of integrated pest management programs for this pest.  相似文献   

14.
Isolates of Verticillium dahliae were collected from affected trees (Acer spp., Tilia spp. and Robinia spp.) and soils in Belgian ornamental nurseries. Nitrate non-utilizing mutants were produced and vegetative compatibility groups (VCGs) were classified based on complementation tests with reference tester strains. Of the 30 isolates analysed, 12 were classified as VCG2B and 18 as VCG4B following the American classification. In order to distinguish VCG2B from VCG4B, specific polymerase chain reaction primers were designed based on the sequence of a VCG2B-associated Direct Amplification of Minisatellite-region DNA (DAMD) band generated with the core sequence of the phage M13 minisatellite DNA. Using this test, amplification products were generated for all the VCG2B isolates characterized in this study. In contrast, no signal was seen on ethidium–bromide agarose gel for VCG4B isolates. Pathogenicity tests were carried out in a glasshouse on maple-rooted cuttings inoculated with conidial suspensions of V. dahliae belonging to both groups (VCG2B/VCG4B). Some strains proved to be highly aggressive, while others did not. However, these different behaviours were not correlated with the VCGs.  相似文献   

15.
Black dot, caused by Colletotrichum coccodes, is a common disease of potato in Turkey, affecting tuber quality and yield. The objectives of the current study were to characterize vegetative compatibility groups (VCGs) of C. coccodes isolates from three regions in Turkey, and to assess the correlation between VCGs and aggressiveness of isolates on potato. A total of 147 C. coccodes isolates were recovered from plants showing typical black dot symptoms on stolons, roots and stems. The frequency of nitrate non‐utilizing (nit) nit1/nit3 and NitM phenotypes were 79% and 21%, respectively. Complementation between nit mutants of the isolates and eight European/Israeli EU/I‐VCG tester isolates was used to characterize the VCGs. Amongst the tested isolates, 33.3% were assigned to EU/I‐VCG6, 21.8% to EU/I‐VCG8, 15.7% to EU/I‐VCG4. EU/I‐VCG1, EU/I‐VCG3, EU/I‐VCG5 and EU/I‐VCG7 were classified at 1.4%, 3.4%, 4.8% and 5.4%, frequency, respectively. No isolate was assigned to EU/I‐VCG2 group, while 21 isolates (14.3%) were not assigned to any of the EU/I‐VCGs. The pathogenicity tests indicated significant differences in aggressiveness of the isolates with respect to sclerotia density on potato tissues. The highest densities of sclerotia on roots and crown were obtained with EU/I‐VCG6 isolates and the lowest with EU/I‐VCG1, EU/I‐VCG3 and EU/I‐VCG5 isolates. The results demonstrate that there is significant VCG diversity among C. coccodes isolates from potato plants in Turkey.  相似文献   

16.
Endogenous levels of free and conjugated salicylic (SA) and gentisic (GA) acids, both putative signal molecules in plant defence, were analysed in order to investigate their involvement in the resistance of four potato ( Solanum tuberosum ) genotypes with different susceptibilities to Potato virus YNTN (PVYNTN) infection: the highly susceptible cv. Igor and its extremely resistant transgenic line, the extremely resistant cv. Sante and the tolerant cv. Pentland Squire. The lowest levels of free and conjugated SA were observed in the extremely resistant cv. Sante, while free GA, which was detected in all the other varieties, was absent. The extremely resistant transgenic cv. Igor contained the highest basal total SA level and the lowest level of total GA of all four cultivars. In susceptible cv. Igor, but not in resistant transgenic cv. Igor, a systemic increase of free SA was measured 1 day postinfection (dpi). Even more significant increases of free and conjugated SA and GA were detected 11 dpi when systemic symptoms appeared. In inoculated but not in upper noninoculated leaves of resistant transgenic cv. Igor, significant increase of SA conjugates occurred, but not before 11 dpi. The increase of SA and GA in susceptible cv. Igor could contribute to the general elevated levels of phenolic compounds as a response to stress caused by virus infection. It appears that basal levels of SA and GA do not correlate with resistance to PVYNTN in potato plants.  相似文献   

17.
18.
采用盆栽试验,比较深施、浅施、侧施、全施和不施(对照)等保水剂应用方法在充分供水和水分亏缺两种供水条件下,马铃薯(Solanum tuberosum L)生长、产量和水分利用效率(WUE)效应.结果表明,除浅施处理外其它方式施用保水剂处理都能促进马铃薯株高,水分胁迫下能促进马铃薯根系发育.在充分供水和水分胁迫下,深施保水剂使马铃薯产量较对照提高9.4%和16.6%,WUE提高12.82%和54.73%,侧施保水剂使马铃薯产量较对照提高39.4%和21.5%,WUE提高58.79%和59.46%;在水分胁迫下,全施保水剂使马铃薯产量和WUE较对照分别提高15.4%,56.76%.  相似文献   

19.
A collection of 30 strains of Verticillium dahliae, recovered during 2004–2006 from 12 cultivars of chrysanthemum (Chrysanthemum morifolium) in five districts of İzmir province in Turkey, was assigned to vegetative compatibility groups (VCGs) based on pairings of complementary nitrate-nonutilizing (nit) mutants induced on a chlorate-containing medium. Of these strains, nine were assigned to VCG1, seven to VCG2A, 11 toVCG2B and one to VCG4B. The remaining two strains could not be tested for vegetative compatibility because of their inability to yield nit mutants. Pathogenicity tests conducted by the root-dip method, demonstrated that wilt of chrysanthemum in Turkey is caused by V. dahliae, and most strains in VCG1 were significantly more aggressive to chrysanthemum than those in VCGs 2 and 4B. This is the first known study in the world of the VCGs of V. dahliae isolates from chrysanthemum.  相似文献   

20.
马铃薯早疫病病原菌鉴定及其对不同药剂的敏感性   总被引:3,自引:2,他引:3  
 为了明确马铃薯早疫病病原菌及其对不同药剂的敏感性,2009~2011年从河北省5个县采集180个早疫病样,以常规方法进行分离与纯化。根据病原菌的形态特征和致病性,结合其rDNA-ITS区域的序列分析对病原菌进行鉴定,并采用菌丝生长速率法测定病原菌对不同药剂的敏感性。结果分离到两种菌(A、B),分离比例为4:6。致病性测定证实分离菌A和B均为马铃薯早疫病病原菌。经形态学鉴定,初步认定A为茄链格孢(Alternaria solani),B为链格孢(Alternaria alternata)。采用通用引物ITS1/ITS4对病原菌A和B的rDNA-ITS序列区扩增并测序,通过与GenBank数据库比对,A与A.solani同源性为98%,B与A.alternata 的同源性达100%。两种病原菌对咯菌腈、吡唑醚菌酯、啶酰菌胺、苯醚甲环唑等药剂的敏感性差异极显著,而对异菌脲的敏感性差异不显著。因此,将河北省马铃薯早疫病菌鉴定为茄链格孢(A.solani)和链格孢(A.alternata),二者对同一药剂的敏感性不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号