首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field investigations between 2002 and 2011 identified soil structural degradation to be widespread in SW England with 38% of the 3243 surveyed sites having sufficiently degraded soil structure to produce observable features of enhanced surface‐water runoff within the landscape. Soil under arable crops often had high or severe levels of structural degradation. Late‐harvested crops such as maize had the most damaged soil where 75% of sites were found to have degraded structure generating enhanced surface‐water runoff. Soil erosion in these crops was found at over one in five sites. A tendency for the establishment of winter cereals in late autumn in the South West also often resulted in damaged soil where degraded structure and enhanced surface‐water runoff were found in three of every five cereal fields. Remedial actions to improve soil structure are either not being undertaken or are being unsuccessfully used. Brown Sands, Brown Earths and loamy Stagnogley Soils were the most frequently damaged soils. The intensive use of well‐drained, high quality sandy and coarse loamy soils has led to soil structural damage resulting in enhanced surface‐water runoff from fields that should naturally absorb winter rain. Surface water pollution, localized flooding and reduced winter recharge rates to aquifers result from this damage. Chalk and limestone landscapes on the other hand show little evidence of serious soil structural degradation and <20% of fields in these landscapes generate enhanced runoff.  相似文献   

2.
黄土坡面径流剥离土壤的水动力过程研究   总被引:7,自引:1,他引:7  
坡面土壤侵蚀是径流冲刷和坡面抗蚀作用以及地面物质补充能力之间相互作用的复杂过程。本研究采用野外实地放水冲刷实验,研究了20°裸地(CK)及鱼鳞坑(YLK)、苜蓿草地(MXCD)、秸秆覆盖(JGFG)径流调控措施坡面薄层水流剥离土壤颗粒的水动力学过程,并运用水流切应力、单位水流功率、径流动能三种理论进行了详细分析。结果表明:(1)对于裸地和调控措施坡面,输沙率与径流剪切力、径流功率之间均呈现良好线性关系,与水流动能之间呈现良好对数关系;土壤侵蚀发生时均存在临界切应力和临界功率。(2)随放水流量增加,坡面流速迅速增大,导致水流切应力、单位水流功率、径流动能增大,进而水流对土壤颗粒的剥离能力增强,最终土壤侵蚀加剧。总之,三种理论在描述土壤侵蚀过程时各具特点,径流切应力更能详细地揭示土壤颗粒分离过程,而径流动能及功率理论更能简便、准确地描述坡面土壤侵蚀过程。  相似文献   

3.
Knowledge on anisotropy of saturated hydraulic conductivity can improve the understanding of transport phenomena in soil. We hypothesized that saturated hydraulic conductivity (Ks) in the upper part of the root zone of an agricultural sandy loam soil was anisotropic at different soil depths and times after tillage. Ks was measured on undisturbed 100 cm3 core samples taken in the horizontal and vertical directions in up to four soil layers (Surf: surface layer (0–5 cm); Top: topsoil (10–15 cm); Trans: transition layer between topsoil and subsoil; Sub: subsoil (40–60 cm)) 1, 8 and 32 months, respectively, after mouldboard ploughing and drilling. The ratio between estimated geometric mean values for Ks in the vertical and the horizontal directions (Kms,v/Kms,h) was used to test the hypotheses. A total of 669 soil samples were analysed.Kms,v/Kms,h varied with time after tillage and between soil layers. One month after ploughing, Kms,v/Kms,h was <0.23 (P = 0.975) in the Trans layer with an average value of 0.084, i.e. Kms,h was 12 times larger than Kms,v. Anisotropy could not be documented in this layer 8 or 32 months after ploughing, i.e. Kms,v/Kms,h was not significantly different from 1.0. For the Surf and Top layers 32 months after ploughing, Kms,v/Kms,h was in the intervals 1.4–50 and 3.1–77, respectively, (P = 0.95) with average values of 8.4 and 15, respectively. Thus, Kms,v was 8.4 respectively 15 times larger than Kms,h in the two layers. Anisotropy was not found in these layers 1 or 8 months after tillage. Strong anisotropy was found in the Sub layer with Kms,v/Kms,h averaging to 14 and 32, respectively, 8 and 32 months after tillage. Kms,v and Kms,h generally decreased with time in the Surf, Top and Trans layers, except in the vertical direction in the Top layer between 8 and 32 months after ploughing, and in the Trans layer between 1 and 8 months after ploughing. Overall, the geometric means of Ks varied between 10−4.0 and 10−7.1 m s−1.The results may reflect systematic effects of soil settlement and drying/wetting phenomena coupled with biological activity and the existence of stable, vertically oriented biopores in the subsoil. It appears to be necessary to consider anisotropy of Ks and its variation in the analysis and modelling of water flow and chemical transport in agricultural soils, particularly to explain heterogeneous flow phenomena at the plot and field scales.  相似文献   

4.
Soil compaction limits soil water availability which adversely affects coconut production in Sri Lanka. Field experiments were conducted in coconut (Cocos nucifera L.) plantations with highly and less compacted soils in the intermediate climatic zone of Sri Lanka. Soil physical properties of sixteen major soil series planted with coconut were evaluated to select the most suitable soil series to investigate the effect of deep ploughing on soil water conservation. Soil compaction and soil water retention with respect to deep ploughing were monitored during the dry and rainy seasons using cone penetrometer and neutron scattering techniques, respectively. Evaluation of soil physical properties showed that the range of mean values of bulk density (BD) and soil penetration resistance (SPR) in the surface soil (0–10 cm depth) of major soil series in coconut lands was from 1.38 ± 0.02 to 1.57 ± 0.07 g/cm3 and 55 ± 10 to 315 ± 16.4 N/cm2 respectively. The total available water fraction increased with clay content of soil as a result of high micropores. However, due to soil compaction, ability of soils to conserve water and to remain aerated was low for those series. Deep ploughing during the rainy and dry periods in highly compacted soils (BD > 1.5 g/cm3 and SPR > 250 N/cm2) greatly increased conserved soil water in the profile, while in less compacted soils (BD < 1.5 g/cm3 and SPR < 250 N/cm2) conserved water content was adversely affected. Soil water retention in bare soils of both highly and less compacted soil series was higher than that of live grass-covered soil. Amount of water conserved in ploughed Andigama series with respect to bare soils and grass-covered treatments during the severe dry period was 10.4 and 16.9 cm/m, while water storage reduction in the same treatments with ploughed Madampe series was 6.55 and 5.45 cm/m respectively. In addition, deep ploughing even in the effective root zone with live grass-covered highly compacted soils around coconut tree was favorable for soil water retention compared to that of live grass-covered less compacted soils.  相似文献   

5.
野外放水条件下坡面流水动力学特征   总被引:3,自引:0,他引:3  
坡面流是土壤侵蚀的主要动力因素之一,也是侵蚀泥沙搬运、农业面源污染的重要载体,为探讨坡面流水力学特征变化规律,本文通过径流小区放水冲刷试验,研究不同坡面覆盖和放水条件下坡面流水动力学特征.结果表明:坡面流雷诺数和弗劳德数受植被覆盖情况和坡面坡度的影响较小,受放水流量影响较显著.其中,坡面流人流断面雷诺数和弗劳德数随时间基本保持不变;出流断面雷诺数动态变化呈增加趋势,弗劳德数呈缓慢下降趋势,其动态变化幅度随植株密度增加而趋于平缓,植株布设方式对雷诺数和弗劳德数的动态变化影响较小.流量和植株密度增加会引起阻力系数增长,阻力系数随冲刷历时呈增长趋势,坡度和植株密度可以控制这种增长趋势.  相似文献   

6.
This study was conducted in Champagne vineyards in France, and the objectives were to compare the main cultivation practices in Champagne vineyards and to specify the conditions required for the optimum effect of inter‐row grass cover on runoff and erosion in experimental plots of 0.25 m² under simulated rainfall. Three types of ground cover were studied. In the bark‐and‐vine‐prunings plots, the runoff coefficient (RC) ranged from 1.3 to 4.0% and soil losses were <1 g/m2/h. In the bare soil (BS) plot, the highest RC of the study was found (80.0%) and soil losses reached 7.4 g/m2/h. In the grass cover plots, the RC and amount of eroded soil were highly variable: the RCs ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m2/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter‐row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid RCs close to the RC achieved with BS.  相似文献   

7.
坡面径流类型对侵蚀产沙及水沙传递关系的影响   总被引:1,自引:4,他引:1  
降雨-径流格局对土壤侵蚀过程具有重要影响,以团山沟七号全坡面径流场1961-1969年间65次径流事件的径流泥沙数据为基础,选取历时、径流深和径流变率为径流过程的特征指标,采用K均值聚类和判别分析相结合的方法,将坡面径流划分为5种类型。其中,A型径流具有超长历时、低变率、小径流的特点,是较为特殊的类型,B、C型径流具有中长历时、中高变率、大径流的特点,D型径流具有短历时、低变率、小径流的特点,是最为普遍的类型。E型径流具有中历时、中变率、中径流的特点。不同径流类型下的输沙模数、平均含沙量及最大含沙量由大到小依次为:CBEDA,B、E、C型径流应是坡面径流调控的重点。不同径流类型输沙模数的差异主要来源于径流量(深)的变化,相同径流量(深)条件下,不同径流类型输沙模数的差异主要来源于由径流历时和径流变率所引起的水沙传递关系的改变;与A型径流相比,其作用使D、E、B、C型径流的输沙模数相对增大7.9、6.3、4.8和4.5倍,增大倍数随径流量(深)的增加呈逐渐减小趋势。通过构建包含主要径流特征指标的动力参数ξ,对不同径流类型及径流阶段的径流-泥沙传递关系进行数学描述,其最优回归关系均符合S=alnξ+b的一般形式,能合理解释不同径流类型及不同径流阶段含沙量变化的主要驱动因素。研究结果可为坡面径流类型划分、水沙传递关系构建、全面评估坡面径流调控系统的水土保持意义、进一步丰富坡面径流调控理论的内涵提供一定的参考。  相似文献   

8.
含砾石土壤坡面流速及产流产沙过程研究   总被引:10,自引:0,他引:10       下载免费PDF全文
 在模拟降雨条件下对5种土壤(砾石质量分数分别为0、10%、20%、30%、40%)的坡面流速及产流产沙过程进行研究,以期深入了解含砾石土壤的水土流失过程。结果表明:含砾石土壤的坡面流速和径流量大于不含砾石的土壤;在降雨初期0~10min内,含砾石土壤的产沙量随时间呈显著增加趋势,峰值出现在10 min左右,随后产沙量逐渐降低;降雨后期30~60min内,含砾石土壤的产沙量又呈增加趋势,尤其是砾石含量为30%和40%的土壤产沙量显著增加,且随时间有一定波动。试验中,5种土壤的总产沙量与砾石含量正相关,径流含沙率与产沙量则呈显著线性正相关。  相似文献   

9.
前期含水量对机械压实后黑土团聚体特征的影响   总被引:3,自引:0,他引:3  
以东北典型黑土区耕地土壤为研究对象,通过对不同前期含水量下机械碾压处理后土壤干筛团聚体和水稳性团聚体粒级分布、破坏率(PAD0.25)、分形维数(D)、平均重量直径(MWD)、平均重量比表面积(MWSSA)等特征指标的测定和分析,对比研究了干湿处理条件下模拟机械作业过程中土壤团聚体特征的变化。结果表明:黑土耕作区0~30 cm范围内团聚体组成上干筛团聚体以>2 mm粒级的团聚体比例最高,而水稳性团聚体则随着粒级的减小,比例逐渐增加。不同前期土壤含水量能够对机械压实黑土的团聚体组成分布、分形等特征产生影响,低含水量时,机械碾压在一定程度上能够促进土壤团聚体的团聚,但同等负荷下多次积累压实会削弱土壤的水稳定性和机械稳定性;而在高含水量时,机械碾压相对更易对黑土团聚体产生负效应,加剧破坏、抑制团聚,降低其水稳定性和机械稳定性。同时发现,MWSSA与其他常用团聚体特征值PA0.25、MWD、D、PAD0.25的线性关系达到了极显著水平,说明MWSSA同样可以作为分析和研究土壤团聚体特征的有效指标。研究结果可为科学指导大机械作业提供理论依据。  相似文献   

10.
坡面径流实时监测装置的测试与率定   总被引:1,自引:0,他引:1  
径流小区观测技术是水土保持监测评价的基础.研发适用于径流小区尺度的径流观测装备可有效减少人工监测的随机性,降低监测人员的工作强度.通过人工模拟不同强度的产流汇水条件,对“径流泥沙含量实时测量装置”开展径流测量性能的专项测试,结果表明:该装置在测试环境条件下的径流测量相对误差范围为-4.33%~-24.01%,稳定时长范围为55 ~ 130 s.偏相关分析发现:测量稳定时长与径流的含沙量、流量分别呈显著正相关关系和显著负相关关系(P<0.05);测量精度与含沙量和流量的相关系数均呈负相关关系,但含沙量和流量对测量精度的影响有限(α=0.05).通过回归分析,得到该装置径流量修正模型;经验证,该模型可使平均相对误差由修正前的11.53%降低至6.80%,平均测量数据稳定时间由修正前的96 s降低至80 s.研究分析提出,通过对上述设备增设波浪过滤消减装置、增大滤波管直径等措施可进一步降低测量误差,提高工作稳定性.基于上述测试结果,本研究认为通过利用修正模型,测试设备的径流测量效果在测试流量范围内较为理想,即该设备在降雨强度范围为3.60 ~ 66.96 mm/h的产流工作条件下较为适宜.  相似文献   

11.
Cover crops (CC) in vineyards and olive groves provide an alternative to conventional tillage (CT) for land management. Runoff, sediment and nutrient loss from six sites in France, Spain and Portugal were compared over 3–4 yr. In general, runoff loss was not significantly reduced by the CC alternatives: average annual runoff coefficients ranged from 4.9 to 22.8% in CT compared with 1.9–25% in the CC alternatives. However, at two sites, reductions in average annual runoff coefficients were greater for CC: 17.2 and 10.4% in CT, 6.1 and 1.9% in CC. Nutrient loss in runoff followed a similar pattern to runoff, as did pesticide loss on the one site; reductions occurred when runoff losses were significantly reduced by CC. The lack of differences at the other sites is thought to be due to a combination of soil conditions at the surface (compaction and capping) and sub‐surface (low‐permeability horizons close to the surface). In contrast, CC always resulted in reductions in soil erosion loss, plus similar reductions in nutrients and organic matter (OM) associated with sediment. Soil erosion loss ranged from 1.4 to 90 t/ha/yr in CT compared with 0.04–42.7 t/ha/yr in CC. Overall, reductions in runoff and associated nutrient and pesticide loss from vineyards and olives occurred with the introduction of CCs only when soil permeability was sufficiently high to reduce runoff. In contrast, reduction in soil erosion and associated nutrients and OM occurred even when the amount of runoff was not reduced. In the most extreme encountered situations (highly erodible soils in vulnerable landscape positions and subject to highly erosive rainfall), additional conservation measures are needed to prevent unsustainable soil loss.  相似文献   

12.
西南山区林地空间格局和微地形对坡面地表产流的影响   总被引:2,自引:2,他引:0  
为明确柏木空间格局和微地形对坡面地表产流的影响,该研究测定了西南山区10个径流小区的柏木空间格局及微地形特征,并观测其降雨和坡面产流过程,利用响应面分析法解析柏木空间格局和微地形对产流特征的影响.结果表明:1)中长历时大雨和中长历时暴雨条件下,地形起伏度、地表粗糙度、径流路径密度、柏木角尺度及柏木密度5个因子均与洪峰流...  相似文献   

13.
Summary Column experiments were carried out to quantify the effect of earthworms on compacted soil. The earthworms (Lumbricus terrestris) were able to burrow into soil which was artificially compacted to a pore volume as low as 40%; they may also penetrate an artificial plough pan deep in the soil. The effect of the burrowing activity of Lumbricus terrestris was quantified by measuring hydraulic conductivities and infiltration rates through the whole soil column (19 cm wide, 40 cm long). Morphological parameters, mainly the vertically projected burrow depth, were correlated with the saturated hydraulic conductivity. The amount of casts deposited by Lumbricus terrestris on the soil surface increased with the degree of soil compaction. The bulk density of casts was always less than that of the original soil.  相似文献   

14.
Hillslopes are thought to be most susceptible to enhanced surface runoff and erosion immediately following wildfire due to removal of protective vegetation and litter cover, and in many cases a fire-induced reduction in soil wettability. This enhanced susceptibility declines as vegetation and litter layer recover. For logistical reasons, however, few studies have been able to examine the responses of burnt terrain immediately following burning and little is therefore known about the effect of the wettable ash layer that often covers the ground until it is redistributed or removed by wind or water erosion.  相似文献   

15.
草被减流减沙效应及其力学机制分析   总被引:6,自引:0,他引:6  
 利用人工模拟降雨试验,定量研究不同降雨强度下20°坡面草地的减流减沙效应,探讨草被坡面固土作用的力学机制。结果表明:在45、87和127mm/h降雨强度下,草地坡面土壤的平均入渗率是裸地坡面入渗率的2.1~4.2倍;与裸地相比,草地径流流速减少77.3%~79.8%,径流量减少51.9%~99.1%,产沙量减少93.6%~99.2%;从力学角度分析坡面土壤颗粒的受力情况,建立的坡面产沙量与径流切应力的关系模型可用于草被坡面土壤流失量预测;试验条件下,草地临界径流切应力值为2.857N/m2,裸地临界径流切应力值为0.861N/m2,坡面产沙量随径流切应力的增大而增大。研究结果对定量评价草被减流减沙作用和深化土壤侵蚀力学过程有一定的参考意义。  相似文献   

16.
Forest fires on granitic soils often increase overland flow and erosion. Runoff generation was monitored on a small hillslope plot on Mt. Vision near Point Reyes Peninsula, California, after it had been burned by a wildfire on October 3, 1995. After the fire, the ground surface was covered with up to 2 cm of ash, which overlaid a 5–20 cm thick hydrophobic (water repellent) soil layer. We used nine recording tensiometers to monitor soil-water potentials during infiltration and runoff. Surface-runoff rates were determined by diverting the flow into a collection tank. The subsurface flow through the upper 6 cm of soil was collected and measured in a second tank. The surface runoff was diverted to a tank in order to record its rate. The initial intense rainfall infiltrated into the base of the ash-bed; here, the hydrophobicity limited deeper penetration and led to both subsurface and shallow saturation overland flow. The preferential flow paths through the ash layer contributed to deeper water penetration. As the ash was eroded and consolidated with successive rainstorms, the preferential flow paths clogged, the infiltration capacity reduced, thus preventing the storage of shallow permeable soil; therefore, the runoff generation changed to Hortonian overland flow. Correspondingly, the runoff ratio increased from approximately 0.2 during the early storms to 0.8 during intense rain bursts. These results suggest that runoff mechanisms evolve simultaneously with the eroding soil surface.  相似文献   

17.
针对南方红壤区坡耕地水土流失严重与表层结构退化的现状,采用室内模拟降雨的方法,分析表层土壤结构和雨强对降雨再分配、坡面产流及产沙过程的影响。结果表明:(1)表层土壤结构显著改变降雨的再分配过程,深耕作层可以降低地表径流比例,增加壤中流比例,60和90 mm·h-1雨强下,随耕作层深度增加,地表径流平均比例依次为70.5%,62.9% 和 56.8%,壤中流平均比例依次提升为7.1%,12.3%和18.1%;(2)土壤流失率随雨强增加而增大,90 mm·h-1雨强下土壤流失率是60 mm·h-1雨强下的4.4倍,土壤流失率随耕作层深度增加而显著减小,依次为36.8、21.1和13.1 g·m-2 min-1;(3)雨强和表层土壤结构显著影响坡面侵蚀形态的演变,随耕作深度增加坡面侵蚀由细沟侵蚀逐渐转变为面蚀。表层土壤结构显著改变坡耕地降雨-径流关系和侵蚀过程,合理增加耕作层深度,对降低地表侵蚀、促进土壤水分的深层下渗、增加土壤深层持水量具有积极作用。  相似文献   

18.
Abstract. Over a 10-year period, runoff and soil erosion on the plots of the Woburn Erosion Reference Experiment were concentrated in periods with sparse vegetation cover: in winter after the late planting of cereals; in spring after the planting of beets; or when soils were bare after harvest. The mean event runoff of 1.32 mm from plots cultivated up-and-downslope was significantly greater ( P <0.05) than that from plots cultivated across-slope (0.82 mm). However, mean event soil loss was not significantly different between the two cultivation directions. No significant differences were found between minimal and standard cultivations. Mean event runoff from the across-slope/minimal tillage treatment combination (0.58 mm) was significantly less ( P <0.01) than from the up-and-downslope/minimal tillage (1.41 mm), up-and-downslope/standard tillage (1.24 mm), and across-slope/standard tillage (1.07 mm) treatment combinations. Runoff from the across-slope/standard treatment combination was significantly ( P <0.05) less than from the up-and-downslope/minimal tillage treatment. The across-slope/minimal tillage treatment combination had a significantly smaller ( P <0.05) event soil loss (67 kg ha−1) than the up-and-downslope/standard tillage (278 kg ha−1) and up-and-downslope/minimal tillage (245 kg ha−1) combinations. Crop yields were significantly ( P <0.05) higher on across-slope plots in 1988, 1996 and 1997 than on up-and-downslope plots, and were also higher (but not significantly) on the across-slope plots in 7 of the 8 remaining years. Minimal cultivation decreased yield compared with standard cultivation in one year only. We recommend that across-slope cultivation combined with minimal tillage be investigated at field scale to assess its suitability for incorporation into UK farming systems.  相似文献   

19.
Surface runoff, soil loss, suspended sediment concentration (SSC), texture of eroded soils and suspended sediment were determined on slightly eroded chernozems (mouldboard fall-ploughed) during years with different amounts of snow in three areas of southern West Siberia (Predsalairye, Priobye and Kuznetsk hollow). These areas have different geomorphological and climatic characteristics and soils. Observations were made from 1969 to 2007. The soil loss during very low-snow and low-snow years did not exceed 2 t ha− 1. After winters with normal amounts of snow, the runoff led to slight soil loss (2–5 t ha− 1). Soil losses in high-snow and very high-snow years varied from slight to severe (4.8–15.8 t ha− 1) depending on studied area. The main sediment exported during intensive snowmelt and the 1 mm of runoff transported from 35 to 150 kg ha− 1 of soil material. The removal of soil particles < 0.01 mm (especially clay) prevailed during the initial and final stages of snowmelt. Clay removal by meltwater from the ploughed layer in high-snow and very high-snow years varied from 3300 to 4200 kg ha− 1 and, in the initial and final stages of snowmelt clay removal, accounted for 1260–1,500 kg ha− 1. Among the three studied regions, Predsalairye had decreased soil erosion resistance and was the area with the greatest danger of erosion.  相似文献   

20.
In Belgium, growing silage maize in a monoculture often results in increased soil compaction. The aim of our research was to quantify the effects of this soil compaction on the dry matter (DM) yields and the nitrogen use of silage maize (Zea mays L.). On a sandy loam soil of the experimental site of Ghent University (Belgium), silage maize was grown on plots with traditional soil tillage (T), on artificially compacted plots (C) and on subsoiled plots (S). The artificial compaction, induced by multiple wheel-to-wheel passages with a tractor, increased the soil penetration resistance up to more than 1.5 MPa in the zone of 0–35 cm of soil depth. Subsoiling broke an existing plough pan (at 35–45 cm of soil depth). During the growing season, the release of soil mineral nitrogen by mineralisation was substantially lower on the C plots than on the T and S plots. Silage maize plants on the compacted soil were smaller and flowering was delayed. The induced soil compaction caused a DM yield loss of 2.37 Mg ha−1 (−13.2%) and decreased N uptake by 46.2 kg ha−1 (−23.2%) compared to the T plots. Maize plants on compacted soil had a lower, suboptimal nitrogen content. Compared with the traditional soil tillage that avoided heavy compaction, subsoiling offered no significant benefits for the silage maize crop. It was concluded that avoiding heavy soil compaction in silage maize is a major strategy for maintaining crop yields and for enhancing N use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号