共查询到17条相似文献,搜索用时 62 毫秒
1.
作物水分生产函数研究进展 总被引:3,自引:0,他引:3
作物水分生产函数(cropwaterproductionfunctions,CWPF)一般指作物产量(cropyield,Y)与蒸散发(evapotranspiration, ET)之间的函数关系,是作物模型中联系水分和生产力的关键。本文系统地梳理了近半个世纪以来CWPF的相关研究,发现CWPF受多种因素影响,不同地区获得的田间试验结果往往差异较大;常用的CWPF模型多是基于统计信息,缺少坚实的物理基础和可靠的理论支撑,在跨地区、跨物种应用时存在一定缺点。同时基于碳同化过程的机制模型和更为复杂的作物模型也因为参数过多而不易在实际中应用。在以往研究的基础上,从公开发表的41篇文献中筛选出592组田间试验数据,发现小麦产量与ET基本呈线性关系,但数据分布相对离散,而玉米、棉花、水稻因数据量较少其产量与ET关系不明显。利用生长季降水量和累计蒸发皿蒸发数据对不同地区获得的小麦水分生产函数进行了修正,发现改进后的小麦水分生产函数表现出较好的跨地区应用潜力(r2从0.36提高到0.75),并提出了进一步的CWPF修正思路。指出通过改进函数关系虽然能提高统计模型的可移植性,但发展机制模型仍是未来CWPF研究的根本出路。 相似文献
2.
为了准确评估作物水分亏缺程度及其敏感性动态对作物产量的影响,该研究结合基于根系加权土壤水分有效性的植物水分亏缺指数(Plant Water Deficit Index,PWDI)与基于归一化热单元指数的S型累积水分敏感指数,建立了3种不同形式的作物水分生产函数(Crop Water Production Function,CWPF),即Blank加法模型(PWDI-B)、Jensen(PWDI-J)和Rao(PWDI-R)乘法模型。通过2 a冬小麦栽培田间蒸渗仪试验(北京昌平)和1 a冬小麦栽培田间滴灌试验(山东黄河三角洲),优化了土壤水分胁迫修正系数中参数,进而对PWDI估算精度及CWPF产量估算效果进行检验与评价。结果表明:蒸渗仪试验基于根系加权估算的PWDI与实测值吻合良好,决定系数R2为0.78,标准化均方根误差(Normalized Root Mean Squared Error,NRMSE)为0.16;滴灌试验PWDI均值与作物株高(r=?0.95)、生物量及产量(r≤?0.79)均具有较好的相关性,表明根系加权PWDI能较准确地反映不同试验条件下冬小麦的水分亏缺程度及其对作物生长的影响;此外,无论是蒸渗仪试验还是滴灌试验,所建的3个CWPF对冬小麦产量的估算精度均在可接受范围内(R2≥0.78,NRMSE≤0.11),且PWDI-R估算精度依次高于PWDI-J、PWDI-B、以及线性回归模型(即PWDI均值与产量的线性拟合模型)。因此,根系加权PWDI与S型水分敏感指数累积函数融合可用于合理构建冬小麦水分生产函数,其中PWDI-R乘法模型可优先推荐用于研究区冬小麦产量估算和灌溉制度优化,从而为当地冬小麦田间水分管理提供理论依据。 相似文献
3.
4.
5.
冬小麦是甘肃省主要粮食作物,水分是限制该省旱作冬小麦生产最主要的因素,降水时空分布不均造成冬小麦干旱常年发生,因此准确监测甘肃省冬小麦干旱及定量评估灾害损失可为决策部门制定农业防灾减灾措施及保障区域粮食安全提供科学依据。利用甘肃省1981—2014年3个农业气象观测站土壤水分和冬小麦生育状况观测资料,38个冬小麦种植县气象资料、产量资料及干旱灾情资料,考虑冬小麦休闲期土壤储水及生育期水分盈亏量修订了作物水分盈亏指数,修订后作物水分盈亏指数与土壤储水、冬小麦产量要素和产量损失相关性较高,能客观、准确、定量地反映干旱对甘肃冬小麦产量的影响;利用水分盈亏指数分别建立冬小麦产量要素和产量损失评估模型。结果表明:产量要素评估模型均通过0.01水平显著性检验,产量损失评估模型大部分通过0.05水平显著性检验。产量要素评估模型回代结果与冬小麦产量要素实测值间均通过0.01水平的F检验;产量损失评估模型验证结果表明,68.4%种植县通过0.05水平F检验,基本能准确评估全省大部分地方干旱对冬小麦产量造成的损失。修订后作物水分盈亏指数能客观反映甘肃省冬小麦干旱,建立的评估模型能准确评估干旱对冬小麦造成的损失,具有一定的应用价值。 相似文献
6.
养分优化管理条件下作物水分生产函数 总被引:5,自引:0,他引:5
养分优化管理条件下的作物水分生产函数,包括供水型生产函数与耗水型生产函数,由玉米水肥耦合田间试验数据推导出,并以耗水生产弹性系数为指标对其产量-水分利用效率-耗水量-供水量间的关系进行分析,同时对养分优化管理条件下的作物水分生产函数与一般水分生产函数进行了比较与分析,指出不同年型作物水分生产函数不同,仍城作深入研究。 相似文献
7.
模拟不同水分和种植密度条件下的作物产量对于制定合理的灌溉制度和种植模式进而保障中国水和粮食安全具有重要意义。AquaCrop-KR模型采用非线性方程拟合地上生物量和作物蒸腾间的关系,并利用水分生产函数模拟收获指数,从而提高了不同水分条件下的作物产量的模拟精度,但尚未涉及种植密度这一因子。该研究以西北旱区制种玉米为研究对象,于2013-2016年在甘肃武威绿洲农业高效用水国家野外科学观测研究站进行了田间试验,引入密度因子修正了AquaCrop-KR模型中的标准化水分生产力(Normalized Water Productivity, WP*)和收获指数(Harvest Index, HI)。校准结果表明HI与种植密度呈先增加后减小的抛物线关系,并且HI在营养生长期、开花期和生殖生长期的水分敏感指数均随种植密度的增加而增加;WP*随累积标准化作物蒸腾的增加呈先增后减的单峰变化,并且WP*的最大值随种植密度的增加而减小,与之相对应的累积标准化作物蒸腾随种植密度的增加而增大。验证结果表明,改进的AquaCrop-KR模型低估籽粒产量测量值5%,决定系数、相对均方根误差、平均相对误差、模型效率和一致性指数分别为0.87、0.079、0.057、0.750和0.942,表明该模型可以用来模拟制种玉米的籽粒产量。研究为模拟不同水分和种植密度下的作物产量提供了一种理论方法。 相似文献
8.
为了改善时段划分对作物水模型模拟精度的影响,依据山西水利职业技术学院试验基地2006和2008年棉花田间试验资料,将棉花全生育期等间隔地划分为不同时段,用非线性优化方法求得了不同时段数条件下的作物水模型参数,分析研究了模型参数与时段数的关系,据此在作物水模型的水分敏感指数累积函数中引入了时段数,并与现有的作物水模型进行了比较。结果表明,引入时段数的作物水模型模拟产量的相对误差随时段数的增加而减小,当时段数大于11时,相对误差平均值和最大值分别减小到7%和15%以下,与现有的作物水模型比较,模拟精度有所提高,但参数个数未增加。该模型更多地反映了水分胁迫时间对作物产量影响的信息。 相似文献
9.
作物水分敏感系数是指导有效灌溉和优化配水的关键参数,研究其空间分布格局对流域水资源优化配置具有重要作用。该文通过空间统计建模,利用探索性空间数据分析技术,分别基于Moran′I统计量、Moran散点图以及空间关联局域指标(local indicators of spatial association,LISA)对作物水分敏感系数(Ky)进行全局、局部空间自相关分析,探索Ky在流域内的空间分布格局。结果表明,Ky在流域空间上呈现出东部平原地区较大,西部及北部山地较小的趋势,其值在0.749~1.668变化。Ky总体上存在显著的空间正相关关系(Moran′I为0.6009~0.6077,且p<0.0001),而且呈现明显的空间集聚特征;高-高集聚区位于北京、天津等东部平原地区,低-低集聚区位于承德、秦皇岛和大同等北部和西部山地,高-高和低-低集聚类型区占据整个流域的80%,其中约有一半表现显著(p<0.05),而低-高和高-低集聚区仅有少数;Ky空间自相关程度随距离的增加而减弱,在距离为240~280km时自相关系数接近于0。总之,Ky形成以东部平原地区为"高敏感核心区",逐渐向西部及北部山地发散并降低的核心-边缘空间分布格局。研究结果可为该地区节水灌溉和水资源优化配置提供指导。 相似文献
10.
基于作物生育期灾害敏感指数的旱灾粮食减产量研究 总被引:1,自引:0,他引:1
我国是自然灾害频繁发生的国家,自然灾害造成不同程度的粮食减产,是粮食安全的潜在风险源。该文以旱灾为主,将全国各地区作物生育期、不同旱灾强度、发生时间及发生次数进行耦合分析,研究其耦合规律及主要粮食作物在各生育期对灾害的敏感性,并据此计算我国不同地区旱灾减产量并进行风险评价分析。研究表明,冬小麦的返青、乳熟和成熟期,春小麦的分蘖、乳熟和成熟期,玉米的三叶、七叶和成熟期以及水稻的返青、孕穗、乳熟和成熟期均是防灾减灾的关键期,应该加强农田管理,减少灾害损失。旱灾对我国粮食主产区影响较大,粮食减产风险防范关键区主要分布在黄淮海区、长江中下游区。 相似文献
11.
基于蒸散发模型的定量遥感缺水指数 总被引:1,自引:4,他引:1
该文针对西北地区存在着严重的缺水问题,以黑河中游区域范围内的张掖市内的盈科绿洲及荒漠为研究对象,运用ASTER卫星遥感数据,根据地表能量平衡原理,建立作物缺水指数模型。在前人研究基础上,对缺水指数模型涉及的2个参数进行了改进:1)在植被覆盖区,利用半干旱地区基于亚象元的土壤蒸发和植物蒸腾双层模型,剥离土壤的影响,获取缺水指数模型中的植被潜热通量;2)为了更精确地提取地表信息,利用遗传算法对该区进行混合像元分解,获取模型中的地表组分温度参量。通过地表缺水指数估算干旱半干旱区土壤含水率,模拟结果与地表同步实测值土壤水比较,误差精度分布在2.17%~3.58%,表明该方法是可行的。 相似文献
12.
基于作物水分亏缺指数的春玉米季节性干旱时空特征分析 总被引:18,自引:12,他引:18
季节性干旱是影响湖南春玉米生产最突出的气象灾害,分析其时空分布特征和发生的规律,可为湖南春玉米生产的发展和合理布局提供技术支持。该文基于湖南省96个气象站点1961-2007年地面气象观测资料,采用FAO于1998年推荐的Penman-Monteith 方法计算了参考作物蒸散量、玉米的作物需水量。考虑盈余降水对水分亏缺指数的影响,修正了的水分亏缺指数计算方法,并依据玉米的水分亏缺指数,分析了季节性干旱发生频率的时空特征。并选取不同区域典型站点分析了水分亏缺指数年代际变化特征。结果表明,湖南春玉米生长季节内干旱呈现明显的季节性和空间区域分布特征:干旱频率较高的时段主要在玉米抽雄-吐丝阶段及其后的生育阶段,且随生育期后移干旱频率明显增加,以轻旱程度为主。空间分布特征是以湘中南的衡阳及周边一带干旱频率最高,其次为湘东、湘北一带次高,湘西等地春玉米干旱频率低。各年代之间比较,以20世纪80年代干旱较严重,90年代干旱相对较轻。 相似文献
13.
14.
冠层温度(canopy temperature,Tc)是作物水分胁迫计算的基础。准确地剔除热红外图像中的土壤背景,可以提高作物水分的监测精度。该研究以4种水分处理的拔节期夏玉米为研究对象,借助无人机可见光和热红外图像,采用红绿比值指数(red-green ratio index,RGRI)法提取研究区域的面状玉米冠层温度的空间分布信息,并分析每幅热红外图像上冠层温度的累积频率。该并提出了两种改进作物水分胁迫指数(crop water stress index,CWSI)性能的方法,一是使用基于正态分布的不同统计分位数分割冠层温度,并基于不同统计分位数上的平均冠层温度计算CWSI(记为CWSITcF%)。二是基于冠层温度方差(canopy temperature variance,Var),将玉米冠层数据分为4个区间:区间Ⅰ,Tc≤40,Var≤10;区间Ⅱ,Tc≤40,10< Var≤20;区间Ⅲ,35< Tc<45,Var>20;区间Ⅳ,40< Tc<50,0< Var≤20,并在各自区间上选择最敏感的统计分位数计算CWSI(记为CWSIn)。研究结果表明:1)利用2020年和2021年两年数据计算的CWSIn与作物生理指标(气孔导度Gs、净光合速率Pn、蒸腾速率Tr)间的决定系数R2分别为0.72、0.52、0.62 ,nRMSE分别为23.96%、24.06%、25.60%,模型拟合精度高于原始CWSI(R2分别为0.73、0.34、0.46,nRMSE分别为23.69%、28.27%、30.21%),但与CWSITcF%差别不大(R2分别为0.74、0.54、0.61,nRMSE分别为22.87%、23.74%、25.61%);2)虽然CWSITcF%能提高诊断作物水分胁迫的精度,但最敏感的冠层温度区间在年际间相差较大(2020,61.17%;2021,49.38%;两年数据,83.51%),而CWSIn稳定性更高(与生理指标间的nRMSE分别为:2020年16.60%、27.37%、28.49%;2021年21.60%、18.95%、22.64%)。因此,综合来看 CWSIn可以更加精确地监测作物水分胁迫,利用该改进方法可为无人机遥感精准监测作物水分胁迫状况提供参考。 相似文献
15.
作物水分敏感指数降尺度的单调分段三次插值方法 总被引:2,自引:0,他引:2
SHANG Song-Hao 《土壤圈》2013,23(5):662-667
Crop-water production functions quantitatively describe the relationship between crop yield and field evapotranspiration.The crop water sensitivity indexes of crop-water production functions,a key factor for optimizing irrigation scheduling in case of water scarcity,are usually obtained from field experiments or other sources for crop growth stages,while their values in shorter intervals are preferred for practical irrigation scheduling.We proposed a method to downscale the sensitivity index from growth stages to shorter intervals by monotone piecewise cubic interpolation of the cumulative sensitivity index curve.This method was used to estimate sensitivity indexes in irrigation intervals of about 10 d for corn and wheat in central Shanxi Province of China.Results showed that the downscaled sensitivity index could reflect the impact of water stress on crop growth both at diferent growth stages and within each stage.Scenario analysis of water stress at a single growth stage of wheat showed the rationality of downscaling water sensitivity index from growth stages to shorter intervals through interpolation of cumulative sensitivity index,and this proposed downscaling method was superior to the traditional linear downscaling method. 相似文献
16.
作物水分胁迫指数与土壤含水量关系探讨 总被引:5,自引:1,他引:5
基于冠层温度的作物水分胁迫指标CWSI(CropWater StressIndex)广泛用于指导作物灌水时间,利用自动气象站的观测资料分别计算了不同供水处理条件下冬小麦中午12:00的作物水分胁迫指数。并将作物水分胁迫指数和对应的土壤含水量进行相关分析。以探讨用作物水分胁迫指数确定灌水量的可行性。结果表明,二者呈一定相关性,但相关关系不密切,复相关系数为0.54,作物水分胁迫指数随土壤含水量的降低呈明显的增大趋势。作物水分胁迫指数随气象因子的波动表现出明显的波动性,且在作物遭受较严重水分胁迫下波动性更强,这预示着利用作物水分胁迫指数直接定量标识作物土壤水分状况的可靠性不强。 相似文献
17.
基于模块化和面向对象化程序设计思想,根据土壤水分平衡过程和作物生长发育的特点,采用VisualBasic程序设计语言,实现了界面友好的土壤水分平衡与作物生长模拟模型。在土壤、作物和气象参数数据文件的支持下,对红壤性水稻土上的作物生长过程进行了模拟和验证,田间验证结果表明,冬小麦田间0~5,5~15,30~35cm三个土壤深度土壤含水量模拟值与实测值相对误差分别为7.0%、8.1%、4.5%。小麦、早稻、晚稻、玉米产量模拟值与实测值之间的相对误差分别为6.7%、2.4%、5.3%、1.9%。 相似文献