首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
蒙脱土/木材复合材料的结晶性能   总被引:1,自引:2,他引:1  
为了考察蒙脱土/木材复合材料的结晶性能,利用X射线衍射仪检测了以处理木材试样和蒙脱土为原材料、借助酚醛树脂制备的蒙脱土/木材复合材料,并将未处理试材、处理试材及复合材料进行比较后发现,试材经氢氧化钠、微波、氢氧化钠-微波、氢氧化钠-超声波处理后,相对结晶度降低;超声波处理后,相对结晶度增大。除氢氧化钠处理试材外,其他处理试材与蒙脱土形成的复合材料的结晶度均进一步降低。未处理材、处理材及复合材料结晶区晶层间距变化不明显。研究还发现,蒙脱土在复合材料中主要以插层型结构存在。   相似文献   

2.
以酚醛树脂为中间介质,将蒙脱土引入木材,制备蒙脱土/木材复合材料.通过研究该复合材料的应力松弛性能并与木材比较发现,蒙脱土/木材复合材料的抗应力松弛性能比木材明显增强.当蒙脱土含量为酚醛树脂固含量的5%时,所制备的复合材料的抗应力松弛性能最好.复合材料的抗应力松弛能力对温度较敏感.  相似文献   

3.
采用插层复合方法制备了沙柳/蒙脱土纳米复合材料,用FT-IR,XRD,氧指数的方法对纳米复合材料的结构进行了表征、阻燃性能进行了分析。通过研究该复合材料的阻燃性能,并与沙柳材比较发现沙柳/蒙脱土纳米复合材料的阻燃性能性能比沙柳材明显增强。当蒙脱土分散浓度为10%时,所制备的复合材料的阻燃性能明显优于低添加量时。  相似文献   

4.
目的为了探究蒙脱土对木塑复合材料耐光老化性能的影响,及其在老化过程中的作用机理。方法以毛白杨木粉和聚丙烯为原料,选用两种不同类型的蒙脱土钠基蒙脱土(Na-MMT)和有机蒙脱土(OMMT)为添加剂,在不同添加量的条件下(0、0.5%、1.0%和1.5%)制备了5组木粉/聚丙烯复合材料,并进行长达960 h的人工加速紫外老化。在老化过程中,测试试材的表面颜色和弯曲性能,并利用扫描电子显微镜(SEM)和傅里叶变换衰减全反射红外光谱(ATR-FTIR)对复合材料表面的形貌和化学组成变化进行表征。结果老化造成复合材料表面的褪色和开裂现象,老化960 h后,对照组复合材料的静曲强度和弹性模量保持率分别仅为76.4%和61.7%;两种类型的蒙脱土均有效抑制了复合材料光降解,添加蒙脱土的复合材料其弯曲性能保持率均高于对照组;蒙脱土同时具有紫外屏蔽作用和光催化作用,前者在老化初期(老化480 h内)的作用较为明显;相比于Na-MMT,OMMT层间有机改性剂的光降解促进了复合材料体系的光老化进程。结论Na-MMT更有利于延缓复合材料的光老化,且在添加量较低时(0.5%)耐老化效果较好。   相似文献   

5.
蒙脱土改性尿素醛肥料的制备及性能研究   总被引:1,自引:0,他引:1  
[目的]研制氮缓释性能优异且制备工艺简单的缓控释肥料.[方法]采用溶液聚合法将具有纳米层状结构的蒙脱土(MMT)穿插在含有营养元素的聚合物缓释肥料尿素醛(UF)中,制备得到一种具有插层结构的新型生物降解高分子缓控释肥料.采用FTIR、XRD对制备肥料的结构进行表征,通过SEM观察肥料的表面形貌,研究原料配比对肥料加工性...  相似文献   

6.
[目的]获得一种基于黄原胶-蒙脱土的新型复合保水剂材料。[方法]以N,N’-亚甲基双丙烯酰胺为交联剂,采用溶液聚合法使黄原胶与丙烯酸发生接枝共聚反应,将所得聚合物进一步与蒙脱土复合制备出目标材料,采用傅立叶变换红外光谱对其特征基团进行表征,并使用扫描电镜观察材料表面微观结构。[结果]在50℃条件下,单独使用该复合材料8 h后保水率为53.7%,而与沙土混合后的保水率为65.2%。[结论]该保水剂具有显著抑制水分挥发的能力,且在沙土中恒温条件下的保水能力进一步增强。  相似文献   

7.
采用电化学聚合法制备了插层聚苯胺钠基蒙脱土复合材料.探讨了复合材料前躯体插层苯胺-钠基蒙脱土的制备过程,采用X射线衍射(XRD)、扫描电镜(SEM)和电化学方法对复合材料的形貌结构和性能进行了表征.XRD结果表明,经苯胺插层后钠基蒙脱土的层间距明显增大,插层苯胺经电化学聚合后,其层间距仍比纯钠基蒙脱土层间距大,但小于苯胺插层的钠基蒙脱土.SEM照片表明,经电化学聚合后,钠基蒙脱土复合材料的致密程度高于未经电化学聚合的钠基蒙脱土的致密度.由插层聚苯胺-钠基蒙脱土复合材料修饰的电极对甲醇的电化学氧化和铁氰化钾的氧化还原具有优异的电催化性能.  相似文献   

8.
杉木木材/蒙脱土纳米复合材料的结构和表征   总被引:12,自引:1,他引:12  
该文预先合成水溶性酚醛树脂作为中间介质,通过加压浸渍处理制备了杉木木材/蒙脱土纳米复合材料(WMNC),采用XRD、SEM、FTIR、TG-DTA等分析手段对WMNC的结构特性进行了表征.结果表明:①由于部分蒙脱土剥离片层进入了杉木木材细胞壁,WMNC中杉木木材的结晶度降低.②由于蒙脱土改性、树脂分子对蒙脱土的插层以及木材浸渍处理过程等的差异,蒙脱土在WMNC中的大小、形态和分布具多样性.蒙脱土填充的不均匀性,与杉木木材本身的渗透变异性相关.WMNC中的蒙脱土,部分填充于木材细胞腔等大孔隙,部分附着在木材细胞腔内壁,部分进入了细胞壁.③WMNC的缔合羟基增多,醚键大量增多,蒙脱土与杉木木材可能存在氢键或化学键结合.④WMNC的热分解历程改变,热性能提高,起始分解温度降低,高温区的热解失重显著减少,在一定程度上体现了无机复合组分蒙脱土纳米片层的纳米复合效应.   相似文献   

9.
蒙脱土对重金属离子吸附的研究进展   总被引:1,自引:0,他引:1  
简要介绍了目前国内采用蒙脱土吸附处理废水中重金属离子的研究状况,探讨了pH值、温度、吸附时间、溶液初始浓度、有机物质和改性等因素对蒙脱土吸附重金属离子的影响,最后展望了蒙脱土吸附重金属离子的发展趋势和应用前景。  相似文献   

10.
以木质纤维素和蒙脱土为原材料,采用插层复合方式制备木质纤维素/蒙脱土纳米复合材料(LNC/MMT)吸附剂,研究其对Hg(Ⅱ)离子的吸附和解吸性能。结果表明:该吸附剂对Hg(Ⅱ)有较好的吸附能力,在Hg(Ⅱ)溶液初始浓度为0.8mmol·L~(-1),吸附时间为120min,吸附温度为50℃,pH值为4时,吸附量达到最大79.32mg·g-1;在研究的浓度范围内,吸附过程符合伪二级动力学模型,吸附平衡符合Langmuir模型。采用0.3mol·L~(-1)的HNO3作为解吸剂,在解吸时间为30min、解吸温度为30℃时解吸量达到最大66mg·g-1。循环再生试验证明所制备吸附剂的重复使用性能良好。进一步结合SEM、EDX和FTIR分析了该吸附剂对Hg(Ⅱ)的吸附和解吸的机理。  相似文献   

11.
为了提高人工林杨木的力学性能和耐腐性,采用蒙脱土(MMT)-二癸基二甲基氯化铵(DDAC)复合防腐剂(ODP),通过满细胞法处理杨木试材,分析了防腐处理材的增重率、DDAC保持量、有机蒙脱土(OMMT)在木材内部的分布、横纹抗压强度和耐腐性。结果表明:OMMT的引入使试材增重率增加,DDAC保持量下降;OMMT绝大部分以颗粒存在于木材导管腔中,部分尺寸较小的颗粒和剥离片层可以通过纹孔,很难进入细胞壁;ODP处理材的横纹抗压强度比蒸馏水处理材提高了27%;相对于DDAC处理材,ODP处理材的耐腐性比单组分DDAC处理材好。  相似文献   

12.
蒙脱土-稻壳炭复合材料对Pb(Ⅱ)吸附特性研究   总被引:4,自引:1,他引:4  
采用静态吸附实验,研究蒙脱土-稻壳炭复合材料对Pb~(2+)的吸附动力学和热力学特性,并考察吸附剂用量、共存离子及pH等因素对该复合材料吸附Pb~(2+)的影响。结果表明,复合材料对Pb~(2+)的吸附特性符合准二级动力学模型,等温吸附过程能较好地以Freundlich模型进行拟合,且是以物理吸附为主的自发的吸热反应。复合材料对Pb~(2+)的吸附量随吸附时间的延长先快速增加,后缓慢增加最终达到吸附平衡,且随着复合材料投加量的增加,Pb~(2+)的去除率增大。复合材料对水溶液中Pb~(2+)的吸附性能在pH为5时较好,吸附量达52.79 mg·g~(-1);不同浓度Ca~(2+)、Mg~(2+)均会对Pb~(2+)的吸附反应产生抑制作用,且Mg~(2+)的抑制作用更强。  相似文献   

13.
有机蒙脱土热分解动力学   总被引:1,自引:0,他引:1  
用十八烷基三甲基溴化铵(STAB)和蒙脱土(MMT)制备有机蒙脱土(OMMT),采用热重-差热(TG-DTA)法研究OMMT热分解动力学。结果表明:OMMT的热分解发生在170~510℃之间,其数据通过Agrawal积分方程线性拟合,以线性相关系数(r)为判据,得到OMMT热分解反应的机理函数为G(a)=[-ln(1-a)]4、活化能E=36.16 kJ.mol-1、频率因子A=88 014.17min-1、动力学补偿效应方程为lnA=0.431 4E-4.463 2;根据热分解动力学求得的DTA曲线形状因子Ф表明OMMT的DTA曲线对称性好,这与其TG-DTG-DTA中DTA曲线吻合。  相似文献   

14.
以离子液体液化沙柳所得产物与有机蒙脱土(OMMT)等为原料制备PU/OMMT纳米复合材料。通过红外(FT-IR)、X线衍射(XRD)、热重(TG)和扫描电镜(SEM)对PU/OMMT纳米复合材料进行结构表征,加入有机蒙脱土使聚氨酯的结构发生了变化;同时添加6%(质量百分数)OMMT的复合材料的压缩性能和抗压性能分别提高了31.2 kPa和62.0 kPa。  相似文献   

15.
赵焱  周宏  高超颖  刘瑛 《北京农业》2013,(18):69-70
使用不同来源的蒙脱土进行有机改性,选取改性效果最优的蒙脱土。并且研究改性剂对于蒙脱土层间距的影响,实验显示季铵盐类的阳离子改性剂效果最好,此外在反应体系PH值为7时,反应温度为60℃时,蒙脱土层间距打开的最大。  相似文献   

16.
【目的】木材化学改性是提高人工林速生材力学性能,延长其使用寿命,扩大其应用范围的有效途径。使用有机蒙脱土(OMMT)对木材进行改性处理具有较好的前景。但由于有机蒙脱土在水中不易分散,且粒径较大,难以进入到木材细胞壁中而限制了其应用。因此,提高OMMT在水中的分散性,增大其层间距可为其进入木材细胞壁内创造条件,是改性增强木材的有效手段。【方法】本研究采用一种水性的聚乙二醇/超支化聚丙烯酸酯乳液(PEG/HBPA)作为载体使OMMT在水中稳定分散。将改性剂通过浸渍处理改性木材,测试了改性材的力学性能,并探讨了不同层间离子的OMMT对改性效果的影响。【结果】4种OMMT均能够稳定分散进入到PEG/HBPA中,经过24 h静置后无明显的分层和沉淀,乳液粒径和黏度无明显变化。木材经过PEG/HBPA处理后,除端面硬度外,力学性能有所提高,加入OMMT后力学性能进一步提高,并增加了改性材的端面硬度。OMMT层间离子中含有氨基、羟基、羧基等官能团,能使OMMT更好地进入到木材细胞壁中,其中层间离子含有氨基的OMMT改性效果较好,改性后木材顺纹抗压强度为82.2 MPa,抗弯强度为98.2 MPa,端...  相似文献   

17.
唐伟  张晨夕  王伟宏  郭丽敏 《安徽农业科学》2014,(27):9509-9512,9618
我国的麻类资源非常丰富,将麻纤维用于复合材料的制备能扩大麻纤维的应用范围,有效提高麻纤维的使用价值.将苘麻纤维(AF)作为增强材料,通过热压工艺制备了苘麻/聚乙烯(PE)复合材,并探讨了该复合材的各项性能.通过热重分析确定了苘麻纤维的加工温度为180℃,对比分析AF/PE复合材的力学性能,确定制备复合材时AF含量控制在60%范围内能得到性能优异的复合材,AF与PE的最佳质量比为55∶45.苘麻纤维经硅烷偶联剂处理后,AF/PE复合材的弯曲性能和拉伸性能都有明显提高,吸水厚度膨胀率明显降低.由红外光谱分析发现,硅烷偶联剂与苘麻纤维表面的羟基发生化学反应生成了硅-氧-碳共价键,硅烷偶联剂使麻纤维表层与PE基质层之间产生分子结合,因此提高了PE基质与苘麻纤维的结合强度.  相似文献   

18.
有机蒙脱土的差热分析曲线形状因子解析   总被引:1,自引:0,他引:1  
用十八烷基三甲基溴化铵(STAB)、双-十八烷基二甲基溴化铵(DOAB)、三-十八烷基甲基溴化铵(TOAB)和蒙脱土(MMT)制备有机蒙脱土(OMMT),在采用热质量-差热(TG-DTA)研究OMMT热分解动力学基础上,计算差热分析(DTA)曲线形状因子(Ф)。结果表明:OMMT插层改性效果好,MMT/STAB,MMT/DOAB和MMT/TOAB热分解动力学机理函数的差异源于STAB,DOAB和TOAB在OMMT晶体片层中采取的排列方式不同,且MMT/STAB的差热分析曲线对称性较好,MMT/DOAB和MMT/TOAB的差热分析曲线对称性较差,Ф值与其TG-DTG-DTA中差热分析曲线吻合。  相似文献   

19.
将蒙脱土经不同方法进行改性处理,并以此为催化剂,催化丙烯酸与正丁醇反应生成丙烯酸正丁酯。考察了以微波处理的柱撑酸化蒙脱土为催化剂催化合成丙烯酸正丁酯的反应条件。结果表明,以微波处理的柱撑酸化蒙脱土催化效果最好,适宜的反应条件为:丙烯酸为0.1 mol,醇酸的摩尔比为1.2:1,阻聚剂为对苯二酚,其用量为0.3 g,约为丙烯酸质量的4%,催化剂的用量1.7g,约为丙烯酸质量的20%,反应的时间为7 h,在回流状态下,其酯化率为84.1%。催化剂可以重复使用。  相似文献   

20.
研究利用玉米秸秆粉体作为增强材料与聚乙烯(PE)通过挤出成型制备玉米秸秆粉体/PE复合材料的可行性,并考查了玉米秸秆粉体添加量及其尺寸对复合材料力学性能的影响。结果表明:随玉米秸秆粉体添加量的增加,玉米秸秆粉体/PE复合材料的拉伸强度、拉伸模量呈先升后降趋势,弯曲模量逐渐增大,冲击强度则逐渐减小;当玉米秸秆粉体添加量为50%时,复合材料的综合力学性能最佳。此外,玉米秸秆粉体/PE复合材料的力学性能随玉米秸秆粉体长径比的增大而增强;在考查范围内,添加40目h(粒径)≤60目玉米秸秆粉体复合材料的力学性能最好。电镜结果显示添加20目h≤40目玉米秸秆粉体/PE复合材料粉体在基体中分布不均,断面形貌最差,而添加40目h≤60目玉米秸秆粉体复合材料的断面形貌最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号