首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydroclimatic variability is one of the main factors that drives inter‐annual changes in fish migration patterns. This study analyses the relationship between climate‐oceanographic factors and migration of the Atlantic pomfret (Brama brama) in NE Atlantic waters. Geo‐referenced catch data from logbooks of longliners operating in European Atlantic waters from 2002 to 2013 were linked to environmental indices at different temporal and spatial scales. Our results point to a strong influence of temperature at 200 m depth as the key factor along with the upwelling in the Galician (NW Iberian) waters. However, sea surface temperature (SST) indirectly affects the geographical display of Atlantic pomfret migration, and large migrations are observed in scenarios of high SSTs in the migratory area (c. above 14.7°C). Migrations are constrained during years when temperatures are below this threshold. A longer time‐series of annual landings (1950–2013) supports this evidence and highlights the significant influence of temperature at 200‐m depth along with the landings of the previous year. Length frequency distributions suggest an increase in size between consecutive seasons supporting the hypothesis that migration is a feeding strategy and a return to tropical waters of origin for spawning. Our study shows that the temperature of intermediate waters is a key variable in determining the northward migration of the Atlantic pomfret whereas density‐dependence and surface climatic conditions trigger secondary effects on the migration pattern of this species.  相似文献   

2.
The objective of this study was to assess the effect of environmental variations on the abundance of Sardinella aurita and Sardinella maderensis in Senegalese waters in the upwelling system. Monthly data indicating the abundance of sardinella were first estimated from commercial statistics, using Generalized Linear Model from 1966 to 2011. Abundance indices (AIs) were then compared with environmental indices, at the local scale, a Coastal Upwelling Index (CUI) and a coastal Sea Surface Temperature (SST) index, and on a large scale, the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO) and the Multivariate El Niño Southern Oscillation Index (MEI), using correlations and times series analyses. The results showed that the abundance of sardinella is determined by a strong seasonal pattern and inter‐annual fluctuations. The abundance of S. aurita peaked in spring and in autumn, whereas that of S. maderensis peaked in the warm season (July–September). The trend of the sardinella abundance was significantly correlated with the CUI, especially in autumn and spring. Interannual fluctuations of S. maderensis and S. aurita abundance are, respectively, driven by the precocity and the duration of the upwelling season that is attributed to distinct migration patterns. Both sardinella species also respond with a delay of around 4 years to the winter NAO index and the autumn CUI, and the AMO index, respectively, both related to migration patterns. The wide variations in sardinella biomass are caused by variations in environmental conditions, which should be considered in the implementation of an ecosystem‐based approach in sardinella stocks management.  相似文献   

3.
Early ocean survival of Chinook salmon, Oncorhynchus tshawytscha, varies greatly inter‐annually and may be the period during which later spawning abundance and fishery recruitment are set. Therefore, identifying environmental drivers related to early survival may inform better models for management and sustainability of salmon in a variable environment. With this in mind, our main objectives were to (a) identify regions of high temporal variability in growth potential over a 23‐year time series, (b) determine whether the spatial distribution of growth potential was correlated with observed oceanographic conditions, and (c) determine whether these spatial patterns in growth potential could be used to estimate juvenile salmon survival. We applied this method to the fall run of the Central Valley Chinook salmon population, focusing on the spring and summer period after emigration into central California coastal waters. For the period from 1988 to 2010, juvenile salmon growth potential on the central California continental shelf was described by three spatial patterns. These three patterns were most correlated with upwelling, detrended sea level anomalies, and the strength of onshore/offshore currents, respectively. Using the annual strength of these three patterns, as well as the overall growth potential throughout central California coastal waters, in a generalized linear model we explained 82% of the variation in juvenile salmon survival estimates. We attributed the relationship between growth potential and survival to variability in environmental conditions experienced by juvenile salmon during their first year at sea, as well as potential shifts in predation pressure following out‐migration into coastal waters.  相似文献   

4.
European sardine (Sardina pilchardus) and round sardinella (Sardinella aurita) comprise two‐thirds of total landings of small pelagic fishes in the Canary Current Eastern Boundary Ecosystem (CCEBE). Their spawning habitat is the continental shelf where upwelling is responsible for high productivity. While upwelling intensity is predicted to change through ocean warming, the effects of upwelling intensity on larval fish habitat expansion is not well understood. Larval habitat characteristics of both species were investigated during different upwelling intensity regimes. Three surveys were carried out to sample fish larvae during cold (permanent upwelling) and warm (low upwelling) seasons along the southern coastal upwelling area of the CCEBE (13°–22.5°N). Sardina pilchardus larvae were observed in areas of strong upwelling during both seasons. Larval habitat expansion was restricted from 22.5°N to 17.5°N during cold seasons and to 22.5°N during the warm season. Sardinella aurita larvae were observed from 13°N to 15°N during cold seasons and 16–21°N in the warm season under low upwelling conditions. Generalized additive models predicted upwelling intensity driven larval fish abundance patterns. Observations and modeling revealed species‐specific spawning times and locations, that resulted in a niche partitioning allowing species' co‐existence. Alterations in upwelling intensity may have drastic effects on the spawning behavior, larval survival, and probably recruitment success of a species. The results enable insights into the spawning behavior of major small pelagic fish species in the CCEBE. Understanding biological responses to physical variability are essential in managing marine resources under changing climate conditions.  相似文献   

5.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

6.
Drift of propagules occurs within many populations inhabiting flow fields. This affects the number of propagules that rejoin their source population (recruitment) and plays a role in adaptive spatial redistribution. We focus on the cause and consequence of interannual variation in geographic distribution of population density among five cohorts of young‐of‐the‐year (age‐0) juvenile walleye pollock Gadus chalcogrammus in the western Gulf of Alaska (GOA). The coastal GOA is a wind‐driven advective system. Walleye pollock spawn during spring and their eggs and larvae drift southwestward; by late summer, age‐0 juveniles are variously distributed over the shelf. We found that high population densities of age‐0 juveniles (ca. 6 months old) near the southwestward exit of the Alaska Coastal Current from the GOA corresponded with high abundance of larvae from the major spawning area upstream, but did not translate into high abundance at older ages. Further, offshore and upwelling‐favorable winds were associated with the high downstream abundance and presumed export. In contrast, downwelling‐favorable (northeasterly) wind during and shortly after spawning (April–May) was associated with high recruitment at age 1. Finally, we found that recruitment also increased with apparent retention of age‐0 juveniles in favorable habitat upstream near the main spawning area. We hypothesize that wind‐related retention in superior upstream habitat favors recruitment. Our results argue for including wind‐driven transport in future walleye pollock recruitment models. We encourage more work on the juvenile stage of marine fishes aimed at understanding how transport and species‐specific habitat suitability interact to affect population response to large‐scale forcing.  相似文献   

7.
The ocean survival of coho salmon (Oncorhynchus kisutch) off the Pacific Northwest coast has been related to oceanographic conditions regulating lower trophic level production during their first year at sea. Coastal upwelling is recognized as the primary driver of seasonal plankton production but as a single index upwelling intensity has been an inconsistent predictor of coho salmon survival. Our goal was to develop a model of upwelling‐driven meso‐zooplankton production for the Oregon shelf ecosystem that was more immediately linked to the feeding conditions experienced by juvenile salmon than a purely physical index. The model consisted of a medium‐complexity plankton model linked to a simple one‐dimensional, cross‐shelf upwelling model. The plankton model described the dynamics of nitrate, ammonium, small and large phytoplankton, meso‐zooplankton (copepods), and detritus. The model was run from 1996 to 2007 and evaluated on an interannual scale against time‐series observations of copepod biomass. The model’s ability to capture observed interannual variability improved substantially when the copepod community size distribution was taken into account each season. The meso‐zooplankton production index was significantly correlated with the ocean survival of hatchery coho salmon from the Oregon production area, although the coastal upwelling index that drove the model was not itself correlated with survival. Meso‐zooplankton production within the summer quarter (July–September) was more strongly correlated with coho survival than was meso‐zooplankton production in the spring quarter (April–June).  相似文献   

8.
Time series of European sardine (Sardina pilchardus) landings from 1962 and environmental variables from 1978 in the northern Alboran Sea are analysed. European sardine spawns in the northern Alboran Sea from mid‐autumn to late winter at a temperature range slightly higher than the one observed in the nearby Eastern North Atlantic and the North Western Mediterranean. Individuals hatched during autumn and winter are incorporated to the fishery during the following summer and autumn producing the maximum annual landings. These landings show both a decreasing long‐term trend and a strong inter‐annual variability. Although further research is needed, the warming trend of sea surface temperature and the decrease in upwelling intensity inferred from empirical orthogonal function (EOF) analyses could have some influence on the negative trends of sardine landings. The inter‐annual variability of sardine abundance seems to be related to the wind intensity at a local scale, the second principal component of the chlorophyll concentration and the sardine abundance during the preceding year. If the inter‐annual variability is considered, a linear model including these three variables with a one‐year time lag allows to explain 79% of the sardine landings variance. If the negative linear trend is also considered, the model explains 86% of the variance. These results indicate that the body condition of spawners, linked to the food availability during the preceding year, is the main factor controlling the recruitment success. The possibility of predicting sardine landings 1 year in advance could have important implications for fishery management.  相似文献   

9.
Sardine fisheries in the Iberian Atlantic shelf (36°N–44.5°N) show decadal‐scale cycles. In the late 1990s, a positive phase in sardine stock was expected; on the contrary, catches have declined until now. Regime shifts in climatic and oceanographic variables on different scales (as forcing factor) and shifts in sardine stock (as result) have been used with the aim of identifying the physical variables that explain most of the sardine population variance in the region. Circa 1998, when last sardine regime shift was detected, the main patterns of large‐scale atmospheric circulation in the Northern Hemisphere with influence in the study area namely Northern Atlantic Oscillation (NAO) and East Atlantic (EA) pattern changed and coupled in a combination that led to a rise in sea surface temperature and a decline in the coastal upwelling intensity. Several years with a downwelling situation in average in the main spawning and feeding Iberian sardine areas would have affected the stock abundance, averting the return to the projected positive regime. The sardine negative regime shift was detected first in the regions of the study located further north. The regional variable latent heat flux that groups a set of environmental processes related to the ocean–atmosphere heat exchanges and so with the turbulence manages to explain the 72% of sardine recruitment.  相似文献   

10.
Mesoscale eddies (100–200 km in diameter) propagating along the shelf‐break in the Gulf of Alaska are ubiquitous and have been shown to influence the ecosystem, but their influence on ichthyoplankton species composition and diversity has not been described. Evidence for larval fish entrainment in these eddies was examined using data from a cruise in 2005 that sampled three eastern Gulf of Alaska mesoscale eddies, and sampling that compared shelf to slope ichthyoplankton assemblages in the northern Gulf of Alaska (2002–2004). Hierarchical cluster analysis of oceanographic data showed that stations grouped according to location within an eddy. Species hierarchical cluster analysis revealed a latitudinal turnover in species composition, and an abundant species group. Species richness was correlated with distance from eddy center (P = 0.00025), and assemblages within eddies were significantly different (P < 0.05) from those in surrounding basin and shelf waters. These results suggest that mesoscale eddies propagating along the continental shelf‐break influence larval fish assemblages over the shelf and slope, which has implications for the timing and extent of larval fish distribution in the Gulf of Alaska.  相似文献   

11.
We have developed a set of tools that operate within an aquatic geographic information system to improve the accessibility, and usability of remote‐sensed satellite and computer‐modeled oceanographic data for marine science and ecosystem‐based management. The tools form the Pelagic Habitat Analysis Module (PHAM), which can be applied as a modeling platform, an investigative aid in scientific research, or utilized as a decision support system for marine ecological management. Applications include fisheries, marine biology, physical and biological oceanography, and marine spatial management. The GIS provides a home for diverse data types and automated tools for downloading remote sensed and global circulation model data. Within the GIS environment, PHAM provides a framework for seamless interactive four‐dimensional visualization, for matching between disparate data types, for flexible statistic or mechanistic model development, and for dynamic application of user developed models for habitat, density, and probability predictions. Here we describe PHAM in the context of ecosystem‐based fisheries management, and present results from case study projects which guided development. In the first, an analysis of the purse seine fishery for tropical tuna in the eastern Pacific Ocean revealed oceanographic drivers of the catch distribution and the influence of climate‐driven circulation patterns on the location of fishing grounds. To support management of the Common Thresher Shark (Alopias vulpinus) in the California Current Ecosystem, a simple empirical habitat utilization model was developed and used to dynamically predict the seasonal range expansion of common thresher shark based on oceanographic conditions.  相似文献   

12.
Skipjack tuna (Katsuwonus pelamis) ranks third among marine resources that sustain global fisheries. This study delimits the spatiotemporal habitat of the species in the south‐western Atlantic Ocean, based on operational oceanography. We used generalized additive models (GAMs) and catch data from six pole‐and‐line fishing vessels operating during 2014 and 2015 fishing seasons to assess the effect of environmental variables on catch. We also analysed Modis sensor images of sea surface temperature (SST) and surface chlorophyll‐α concentration (SCC) to describe fishing ground characteristics in time and space. Catch was positively related to thermocline depth (24–45 m), SST (22–24.5°C), SCC (0.08–0.14 mg/m³) and salinity (34.9–35.8). Through SST images, we identified that thermal fronts were the main surface feature associated with a higher probability to find skipjack. Also, we state that skipjack fishery is tightly related to shelf break because bottom topography drives the position of fronts in this area. Ocean colour fronts and plankton enrichment were important proxies, accessible through SCC, used to delineate skipjack fishing grounds. Catch per unit effort (CPUE) was higher towards summer (median 14 t/fishing day) due to the oceanographic characteristics of the southern region. High productivity in this sector of the Brazilian coast defines the main skipjack feeding areas and, as a consequence, the greatest abundance and availability for fishing.  相似文献   

13.
Mangalore coast is well known for its multi‐species and multi‐gear fisheries and the fishery and oceanographic features of this region is a true representation of the Malabar upwelling system. Ten years of study (1995–2004) of oceanographic parameters has been carried out from the inshore waters off Mangalore to understand their seasonal and interannual variations and influences on the pelagic fishery of the region. Attempt has been also made to understand the influence of local and global environmental conditions on the alternating patterns of abundance between the Indian mackerel and oil sardine from the area. Field‐ and satellite‐derived oceanographic data have shown that coastal upwelling occurs during July–September with a peak in August resulting in high nutrient concentrations and biological productivity along the coast. Nearly 70% of the pelagic fish catch, dominated by oil sardine and mackerel, was obtained during September–December, during or immediately after the upwelling season. Catches of scombroid fishes were significantly related to cold Sea Surface Temperature, while such relationships were not observed for sardines and anchovies. Significant positive correlations were observed between the ENSO events (MEI) and seawater temperature from the study area. The extreme oceanographic events associated with the cold La Niña, which preceded the exceptional 1997–98 El Niño event, were responsible for the collapse of the pelagic fishery, especially the mackerel fishery along the southwest coast of India (Malabar upwelling system). Coinciding with the collapse of the mackerel fishery, oil sardine populations revived during 1999–2000 all along the southwest coast of India. Tolerance of oil sardine to El Niño / La Niña events and the low predatory pressure experienced by their eggs and larvae due to the collapse of mackerel population might have resulted in its population revival.  相似文献   

14.
The coastal shelf of the Gulf of Oman experiences periodic upwelling events during the summer months that are driven by the southwest monsoon. It is unclear what role these events play in the spatial and temporal distribution of the region’s fish assemblage. We carried out trials on two different video techniques to characterize the habitat and fish assemblage along the continental shelf margin near Muscat, Oman. Exploratory surveys with a drift stereo‐video revealed three main habitat types: Sand, Reef and Megabenthos. Three areas were chosen for additional sampling using stereo‐BRUVS (‘baited’ remote underwater‐video systems). On two separate occasions (November 2005 and March 2006) replicate stereo‐BRUVS were deployed in each area stratified by the main habitat types. For each teleost and elasmobranch species encountered on the video, an estimate of total body length and the relative abundance (MaxNi) was made. The stereo‐BRUVS recorded a wide range of demersal and pelagic teleosts including species of conservation interest such as sharks, rays and groupers. The drift stereo‐video recorded significantly fewer species than the stereo‐BRUVS (N = 15 versus N = 43). Species diversity from the stereo‐BRUVS increased by 96% in March 2006 (N = 41) compared to November 2005 (N = 23), a pattern consistent at all three areas. The structure of the overall fish assemblage (using canonical analysis of principal coordinates analysis) was highly variable both in time and space. There was ample evidence of strong habitat associations, particularly with depth and seasonal shifts in abundance and diversity. We argue the upward migration of oxygen‐depleted water into the shallow depths during the late monsoon displaces the demersal fish community along this coast.  相似文献   

15.
From 1998 to 2011, the effects of environmental conditions on the spatial and temporal trends of sardine and sardinella catch rates in the Mauritanian waters were investigated using generalized additive models. Two models were used: a global model and an oceanographic model. The global models explained more of the variability in catch rates (60.4% for sardine and 40% for sardinella) than the oceanographic models (42% for sardine and 32.4% for sardinella). Both species showed clear and inverse seasonal variations in abundances corresponding to their main spawning activities and the hydrologic seasons off the Mauritanian waters. Sardine prefer colder waters and seem to occupy the ‘gap’ in the northern part of the Mauritanian waters as soon as sardinella has left the area because of to lower water temperatures. Unlike sardinella, sardine showed a gradual southward extension between 2002 and 2009. The oceanographic model revealed that a high proportion of catch variability for the two species could be explained by environmental variables. The main environmental parameters explaining the variability are sea surface temperature (SST) and the upwelling index for sardinella, and the chlorophyll‐a (Chl‐a) concentration, the upwelling index and SST for sardine. The sardinella spatio‐temporal variations off Mauritania seem to be more controlled by thermal than productivity gradients, probably linked to the species physiological constraints (thermal tolerance) whereas sardine seems to be more controlled by an ‘optimal upwelling and temperature’ windows. The results presented herein may be useful for understanding the movement of these species along the Mauritanian coast and hence their management under a changing climate.  相似文献   

16.
Trawling is a major concern worldwide and there is considerable debate about its impact on marine ecosystems. The Patagonian Shelf Large Marine Ecosystem (PSLME) is an important fishing area in the Southwest Atlantic where bottom trawling is the dominant fishing method. We investigated the distribution of bottom trawl fishing within this region, defining the areas of highest trawling intensity (hotspots) and evaluating their relationship with marine fronts. We focused on the three main oceanographic fronts, the shelf‐break front, the southern Patagonia front and the mid‐shelf front. To estimate fishing effort and trawled areas, we used VMS data from 2006 to 2012. Despite being almost a fully trawlable shelf, we found that the spatial distribution of trawling activity is patchy and trawling hotspots were small, comprising annually <5% of the shelf extension or <7% of the total trawlable area. Contrary to what is believed worldwide, our findings suggest that over the PSLME the magnitude of habitat effects as a result of bottom trawling is relatively small. Regarding the three frontal systems studied, only the shelf‐break front showed a positive relationship with trawl fishing activity. Although trawling hotspots did not overlap with marine fronts, the shelf‐break front receives more trawling effort than expected. We hypothesize that this pattern is due to aggregation of species near or at the front taking advantage of the opportunities provided by this area.  相似文献   

17.
Species catchability is an important parameter used to help optimise stock assessment modelling and the economic efficiency of commercial fishing operations. Previous studies have shown several physical oceanographic parameters, including ambient temperature, waves and currents, affect the catchability of spanner crabs (Ranina ranina) throughout the Indo‐Pacific. Most notably in the Australian fishery, where oceanographic processes vary over space and time, a positive relationship between bottom boundary layer temperature (BBLT) and catch rates was observed. Here, we aimed to better understand how localised oceanographic processes affected this relationship in the southernmost South‐East Queensland (SEQ) sector of the Australian fishery at seasonal and short temporal scales. Our results show cooler BBLT, upwelling‐favourable alongshore wind stress and increased catch rates occurred during mating season in austral spring. At the end of austral summer, BBLT began warming, downwelling‐favourable winds were dominant, and catch rates declined around the post‐moult period. Outputs from the generalised linear models (GLMs) that separated these effects in each season show that, at shorter temporal scales, daily catch rates also increased with episodic BBLT cooling and upwelling‐favourable alongshore wind stress, but only during austral autumn and winter. These new findings suggest that region‐specific, short‐term and seasonal variability of oceanographic processes responsible for changes in BBLT play an important role in influencing the catchability of spanner crabs. We suggest that the effects of region‐specific physical oceanographic processes must be considered in future work when investigating the catchability of commercially important fisheries species fished over large spatial domains.  相似文献   

18.
Loliginid squids constitute marine resources of increasing importance in shelf ecosystems off the coast of South Brazil. However, the existing information and knowledge about the occurrence of early‐life stages and causes of distributional patterns are insufficient. Here, we have revisited Brazilian historical plankton samples obtained from 11 oceanographic surveys to identify paralarvae and their abundances over time. The study area and time period cover the region between Cabo de São Tomé (22°S) and Cananéia (25°S) at depths down to 200 m from 1991 to 2005. Of the 246 paralarvae quantified, ~50% were identified to the genus or species level, including Doryteuthis spp. (D. sanpaulensis and D. plei), Lolliguncula brevis and a single specimen of Pickfordiateuthis pulchella. Paralarval occurrence and abundance peaked in different areas and were associated with distinct oceanographic conditions: D. sanpaulensis occurred in the northern region associated with cold waters and upwelling events, D. plei occurred primarily in the southern region of the study area and in warmer waters, and L. brevis was found in shallow and low salinity waters in the estuarine region off the coast of Santos. Overall, the highest abundance of paralarvae occurred in the nearshore, northernmost areas during summer, and this can be associated with the observed retention mechanisms caused by local circulation, seasonal upwelling, the intrusion of nutrient‐rich waters, and spawning peaks. The present study provides new information and evidence for loliginid patterns in the area that may potentially be useful for better understanding the recruitment patterns and fishery assessments of squid populations.  相似文献   

19.
We conducted a statistical analysis to characterize the influence of large‐scale and local environmental factors on presence‐absence, concentration, and assemblage structure of larval fish within the northern California Current (NCC) ecosystem, based on samples collected at two nearshore stations along the Newport Hydrographic line off the central Oregon coast. Data from 1996 to 2005 were compared with historical data from the 1970s and 1980s to evaluate pseudo‐decadal, annual, and seasonal variability. Our results indicate that the most abundant taxa from 1996 to 2005 differ from those of earlier decades. Concentrations of the dominant taxa and total larvae were generally greater in the winter/spring than summer/fall season. Using generalized additive modeling, variations in presence‐absence and concentration of taxa were compared to climate indices such as the Pacific Decadal Oscillation, Northern Oscillation Index, and the multivariate ENSO index and local environmental factors, such as upwelling, Ekman transport, and wind stress curl. Significant relationships were found for various combinations of environmental variables with lag periods ranging from 0 to 7 months. We found that the large‐scale climate indices explained more of the variance in larval fish concentration and diversity than did the more local factors. Our results indicate that readily available oceanographic and climate indices can explain variations in the dominant ichthyoplankton taxa in the NCC. However, variation in response among taxa to the environmental metrics suggests additional unknown factors not included in the analysis likely contributed to the observed distribution patterns and larval fish community structure in the NCC.  相似文献   

20.
The spatial distribution of Antarctic minke whales in the Ross Sea with relation to spatial distributions of their prey – krill – was investigated in this study using generalized additive models (GAMs). Spatial distributions of two species of krill (ice and Antarctic krill) were estimated by GAMs. Three abiotic factors – distance from the continental shelf break (800 m isobaths), the mean temperature and salinity from the surface to 200 m (MTEM‐200 and MSAL‐200), and latitude and longitude – were used as covariates for models of krill. Estimated spatial distributions of krill were then used with other covariates to model the spatial distribution of Antarctic minke whales. In the selected model of Antarctic minke whales, Antarctic krill were more influential than ice krill. The number of Antarctic minke whales increased as the density of Antarctic krill increased to around 1.5 g m?2. Beyond that, the number of Antarctic minke whales decreased as the density of Antarctic krill increased. High densities of the Antarctic minke whales were estimated along the sea ice edge in the eastern part of the Ross Sea. Specifically, the densities were high in the north of the continental shelf break where low MTEM‐200 and MSAL‐200 and intermediate densities of Antarctic krill were observed. Further data collection is needed to investigate interannual variations and trends in their relationship. The results show that the spatial distribution of Antarctic minke whales is a function of longitude, distance from the shelf break, oceanographic condition (temperature and salinity), and densities of ice and Antarctic krill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号