首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canopy‐forming macroalgae can construct extensive meadow habitats in tropical seascapes occupied by fishes that span a diversity of taxa, life‐history stages and ecological roles. Our synthesis assessed whether these tropical macroalgal habitats have unique fish assemblages, provide fish nurseries and support local fisheries. We also applied a meta‐analysis of independent surveys across 23 tropical reef locations in 11 countries to examine how macroalgal canopy condition is related to the abundance of macroalgal‐associated fishes. Over 627 fish species were documented in tropical macroalgal meadows, with 218 of these taxa exhibiting higher local abundance within this habitat (cf. nearby coral reef) during at least one life‐history stage. Major overlap (40%–43%) in local fish species richness among macroalgal and seagrass or coral reef habitats suggest macroalgal meadows may provide an important habitat refuge. Moreover, the prominence of juvenile fishes suggests macroalgal meadows facilitate the triphasic life cycle of many fishes occupying diverse tropical seascapes. Correlations between macroalgal canopy structure and juvenile abundance suggests macroalgal habitat condition can influence levels of replenishment in tropical fish populations, including the majority of macroalgal‐associated fishes that are targeted by commercial, subsistence or recreational fisheries. While many macroalgal‐associated fishery species are of minor commercial value, their local importance for food and livelihood security can be substantial (e.g. up to 60% of landings in Kenyan reef fisheries). Given that macroalgal canopy condition can vary substantially with sea temperature, there is a high likelihood that climate change will impact macroalgal‐associated fish and fisheries.  相似文献   

2.
3.
At the crux of the debate over the global sustainability of fisheries is what society must do to prevent over‐exploitation and aid recovery of fisheries that have historically been over‐exploited. The focus of debates has been on controlling fishing pressure, and assessments have not considered that stock production may be affected by changes in fish habitat. Fish habitats are being modified by climate change, built infrastructure, destructive fishing practices and pollution. We conceptualize how the classification of stock status can be biased by habitat change. Habitat loss and degradation can result in either overly optimistic or overly conservative assessment of stock status. The classification of stock status depends on how habitat affects fish demography and what reference points management uses to assess status. Nearly half of the 418 stocks in a global stock assessment database use seagrass, mangroves, coral reefs and macroalgae habitats that have well‐documented trends. There is also considerable circumstantial evidence that habitat change has contributed to over‐exploitation or enhanced production of data‐poor fisheries, like inland and subsistence fisheries. Globally many habitats are in decline, so the role of habitat should be considered when assessing the global status of fisheries. New methods and global databases of habitat trends and use of habitats by fishery species are required to properly attribute causes of decline in fisheries and are likely to raise the profile of habitat protection as an important complementary aim for fisheries management.  相似文献   

4.
Fishing impacts and the degradation or loss of habitat structure   总被引:9,自引:0,他引:9  
The wider effects of fishing on marine ecosystems have become the focus of growing concern among scientists, fisheries managers and the fishing industry. The present review examines the role of habitat structure and habitat heterogeneity in marine ecosystems, and the effects of fishing (i.e. trawling and dredging) on these two components of habitat complexity. Three examples from New Zealand and Australia are considered, where available evidence suggests that fishing has been associated with the degradation or loss of habitat structure through the removal of large epibenthic organisms, with concomitant effects on fish species which occupy these habitats. With ever-increasing demands on fish-stocks and the need for sustainable use of fisheries resources, new approaches to fisheries management are needed. Fisheries management needs to address the sustainability of fish-stocks while minimizing the direct and indirect impacts of fishing on other components of the ecosystem. Two long-term management tools for mitigating degradation or loss of habitat structure while maintaining healthy sustainable fisheries which are increasingly considered by fisheries scientists and managers are: (1) protective habitat management, which involves the designation of protected marine and coastal areas which are afforded some level of protection from fishing; and (2) habitat restoration, whereby important habitat and ecological functions are restored following the loss of habitat and/or resources. Nevertheless, the protection of marine and coastal areas, and habitat restoration should not be seen as solutions replacing conventional management approaches, but need to be components of an integrated programme of coastal zone and fisheries management. A number of recent international fisheries agreements have specifically identified the need to provide for habitat protection and restoration to ensure long-term sustainability of fisheries. The protection and restoration of habitat are also common components of fisheries management programs under national fisheries law and policy.  相似文献   

5.
  1. Tetraodontiformes fishes play a critical role in benthic and demersal communities and are facing threats due to anthropogenic impacts and climate change. However, they are poorly studied worldwide. To improve knowledge on the socio‐ecological significance and conservation of Tetraodontiformes a review of literature addressing the diversity, ecology, use and trade, conservation, and main threats of Tetraodontiformes combined with a comprehensive in situ dataset from two broad‐range multidisciplinary oceanographic surveys performed along the Tropical Brazilian Continental Shelf was undertaken.
  2. Twenty‐nine species were identified, being primarily found on coral reefs and algal ecosystems. At these habitats, tetraodontids present highly diversified trophic categories and might play an important role by balancing the marine food web
  3. Coral reef ecosystems, especially those near to the shelf break, seem to be the most important areas of Tetraodontiformes fishes, concentrating the highest values of species richness, relative abundance and the uncommon and Near Threatened species.
  4. Ninety per cent of species are commonly caught as bycatch, being also used in the ornamental trade (69%) and as food (52%), serving as an important source of income for artisanal local fisheries.
  5. Tetraodontiformes are threatened by unregulated fisheries, overexploitation, bycatch, and habitat loss due to coral reef degradation and the potential effects of climate change. These factors are more broadly impacting global biodiversity, food security, and other related ecosystem functions upon which humans and many other organisms rely.
  6. We recommend the following steps that could improve the conservation of Tetraodontiformes along the tropical Brazilian Continental shelf and elsewhere: (i) data collection of the commercial, incidental, ornamental and recreational catches; (ii) improvement of the current legislation directed at the marine ornamental harvesting; (iii) increase efforts focused on the education and conservation awareness in coastal tourism and communities; and, most important, (iv) creation of marine reserves networks in priority areas of conservation, protecting either the species and key habitats for its survival.
  相似文献   

6.
Fishing affects the seabed habitat worldwide on the continental shelf. These impacts are patchily distributed according to the spatial and temporal variation in fishing effort that results from fishers' behaviour. As a consequence, the frequency and intensity of fishing disturbance varies among different habitat types. Different fishing methodologies vary in the degree to which they affect the seabed. Structurally complex habitats (e.g. seagrass meadows, biogenic reefs) and those that are relatively undisturbed by natural perturbations (e.g. deep‐water mud substrata) are more adversely affected by fishing than unconsolidated sediment habitats that occur in shallow coastal waters. These habitats also have the longest recovery trajectories in terms of the recolonization of the habitat by the associated fauna. Comparative studies of areas of the seabed that have experienced different levels of fishing activity demonstrate that chronic fishing disturbance leads to the removal of high‐biomass species that are composed mostly of emergent seabed organisms. Contrary to the belief of fishers that fishing enhances seabed production and generates food for target fish species, productivity is actually lowered as fishing intensity increases and high‐biomass species are removed from the benthic habitat. These organisms also increase the topographic complexity of the seabed which has been shown to provide shelter for juvenile fishes, reducing their vulnerability to predation. Conversely, scavengers and small‐bodied organisms, such as polychaete worms, dominate heavily fished areas. Major changes in habitat can lead to changes in the composition of the resident fish fauna. Fishing has indirect effects on habitat through the removal of predators that control bio‐engineering organisms such as algal‐grazing urchins. Fishing gear resuspend the upper layers of sedimentary seabed habitats and hence remobilize contaminants and fine particulate matter into the water column. The ecological significance of these fishing effects has not yet been determined but could have implications for eutrophication and biogeochemical cycling. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators. In contrast, high levels of trawling disturbance cause sediment systems to become unstable due to large carbon fluxes between oxic and anoxic carbon compartments. In low energy habitats, intensive trawling disturbance may destabilize benthic system chemical fluxes, which has the potential to propagate more widely through the marine ecosystem. Management regimes that aim to incorporate both fisheries and habitat conservation objectives can be achieved through the appropriate use of a number of approaches, including total and partial exclusion of towed bottom fishing gears, and seasonal and rotational closure techniques. However, the inappropriate use of closed areas may displace fishing activities into habitats that are more vulnerable to disturbance than those currently trawled by fishers. In many cases, the behaviour of fishers constrains the extent of the impact of their fishing activities. Management actions that force them to redistribute their effort may be more damaging in the longer term.  相似文献   

7.
Fishery collapses cause substantial economic and ecological harm, but common management actions often fail to prevent overfishing. Minimum length limits are perhaps the most common fishing regulation used in both commercial and recreational fisheries, but their conservation benefits can be influenced by discard mortality of fish caught and released below the legal length. We constructed a computer model to evaluate how discard mortality could influence the conservation utility of minimum length regulations. We evaluated policy performance across two disparate fish life‐history types: short‐lived high‐productivity (SLHP) and long‐lived low‐productivity (LLLP) species. For the life‐history types, fishing mortality rates and minimum length limits that we examined, length limits alone generally failed to achieve sustainability when discard mortality rate exceeded about 0.2 for SLHP species and 0.05 for LLLP species. At these levels of discard mortality, reductions in overall fishing mortality (e.g. lower fishing effort) were required to prevent recruitment overfishing if fishing mortality was high. Similarly, relatively low discard mortality rates (>0.05) rendered maximum yield unobtainable and caused a substantial shift in the shape of the yield response surfaces. An analysis of fishery efficiency showed that length limits caused the simulated fisheries to be much less efficient, potentially exposing the target species and ecosystem to increased negative effects of the fishing process. Our findings suggest that for overexploited fisheries with moderate‐to‐high discard mortality rates, reductions in fishing mortality will be required to meet management goals. Resource managers should carefully consider impacts of cryptic mortality sources (e.g. discard mortality) on fishery sustainability, especially in recreational fisheries where release rates are high and effort is increasing in many areas of the world.  相似文献   

8.
Coastal marine and estuarine ecosystems are highly productive and serve a nursery function for important fisheries species. They also suffer some of the highest rates of degradation from human impacts of any ecosystems. Identifying and valuing nursery habitats is a critical part of their conservation, but current assessment practices typically take a static approach by considering habitats as individual and homogeneous entities. Here, we review current definitions of nursery habitat and propose a novel approach for assigning nursery areas for mobile fauna that incorporates critical ecological habitat linkages. We introduce the term ‘seascape nurseries’, which conceptualizes a nursery as a spatially explicit seascape consisting of multiple mosaics of habitat patches that are functionally connected. Hotspots of animal abundances/productivity identify the core area of a habitat mosaic, which is spatially constrained by the home ranges of its occupants. Migration pathways connecting such hotspots at larger spatial and temporal scales, through ontogenetic habitat shifts or inshore–offshore migrations, should be identified and incorporated. The proposed approach provides a realistic step forward in the identification and management of critical coastal areas, especially in situations where large habitat units or entire water bodies cannot be protected as a whole due to socio‐economic, practical or other considerations.  相似文献   

9.
Intense fishing pressure has led to changes in species composition, demography and the over‐exploitation of many coastal fishes. To restore populations, artificial reefs (ARs) are used with the assumption that new habitat will increase fish productivity. Kelp bass (Paralabrax clathratus), barred sand bass (P. nebulifer) and California sheephead (Semicossyphus pulcher) are three important recreational gamefish species in southern California. Home ranging behaviour, space use and spawning‐related activity of these three species were quantified on a large AR. Kelp bass used the largest amount of area, but space use was similar among species. While no spawning behaviour could be determined for sheephead, kelp bass exhibited two different activity patterns during spawning months and barred sand bass migrated (indicative of spawning). Results of this study indicate that this large AR is providing suitable habitat for these species, and spawning‐related activity could be a sign that this AR is meeting essential life history demands.  相似文献   

10.
This paper reviews the life history of brown trout and factors influencing decisions to migrate. Decisions that maximize fitness appear dependent on size at age. In partly anadromous populations, individuals that attain maturity at the parr stage typically become freshwater resident. For individual fish, the life history is not genetically fixed and can be modified by the previous growth history and energetic state in early life. This phenotypic plasticity may be influenced by epigenetic modifications of the genome. Thus, factors influencing survival and growth determine life‐history decisions. These are intra‐ and interspecific competition, feeding and shelter opportunities in freshwater and salt water, temperature in alternative habitats and flow conditions in running water. Male trout exhibit alternative mating strategies and can spawn as a subordinate sneaker or a dominant competitor. Females do not exhibit alternative mating behaviour. The relationship between growth, size and reproductive success differs between sexes in that females exhibit a higher tendency to migrate than males. Southern populations are sensitive to global warming. In addition, fisheries, aquaculture with increased spreading of salmon lice, introduction of new species, weirs and river regulation, poor water quality and coastal developments all threaten trout populations. The paper summarizes life‐history data from six populations across Europe and ends by presenting new research questions and directions for future research.  相似文献   

11.
Marine ecology seeks to understand the factors that shape biological communities. Progress towards this goal has been hampered by habitat‐centric approaches that ignore the influence of the wider seascape. Coral reef fishes may use non‐reef habitats (e.g. mangrove and seagrass) extensively, yet most studies have focused on within‐reef attributes or connectivity between reefs to explain trends in their distribution and abundance. We systematically review the evidence for multihabitat use by coral reef fishes across life stages, feeding guilds and conservation status. At least 670 species of “coral reef fish” have been observed in non‐reef habitats, with almost half (293 species) being recorded in two or more non‐reef habitats. Of the 170 fish species for which both adult and juvenile data were available, almost 76% were recorded in non‐reef habitats in both life stages. Importantly, over half of the coral reef fish species recorded in non‐reef habitats (397 spp.) were potential fisheries targets. The use of non‐reef habitats by “coral reef” fishes appears to be widespread, suggesting in turn that attempts to manage anthropogenic impacts on fisheries and coral reefs may need to consider broader scales and different forms of connectivity than traditional approaches recommend. Faced with the deteriorating condition of many coastal habitats, there is a pressing need to better understand how the wider seascape can influence reef fish populations, community dynamics, food‐webs and other key ecological processes on reefs.  相似文献   

12.
  • 1. Despite the extensive literature on the ecology, systematics and culture of oysters worldwide, an assessment of their diversity, distribution and conservation status for the Atlantic and Caribbean coasts (i.e. depth <50 m) of South America is lacking. Such information is crucial because of the increasing coastal development that threatens most nearshore habitats throughout the region.
  • 2. The available information on oysters on Atlantic and Caribbean coasts is reviewed with a focus on identifying regional conservation priorities based on ecological and socio‐economic importance, as well as the magnitude of current or potential threats faced by oyster populations. The current status of α‐ taxonomy within the Ostreidae was also examined.
  • 3. Ten species of native Ostreidae (plus three introduced species) inhabit the coastal waters of the Atlantic and Caribbean coasts of South America.
  • 4. Oyster species were ranked according to their biological/ecological and socio‐economic value and conservation status within 10 distinct ecoregions. Crassostrea gasar in the Eastern Brazil ecoregion, C. rhizophorae in the Central Caribbean ecoregion and Ostrea puelchana in the North Patagonian Gulfs ecoregion should receive the highest priority for immediate conservation action due to extensive loss of mangrove habitat in the two former regions and evidence of decline of one of the most important populations for the latter. The need for a standardized methodology to assess the status of oyster populations throughout the ecoregions is identified.
  • 5. On a local scale, the allocation of territorial use rights for fisheries under a collaborative/voluntary community framework is strongly advocated to fulfil management, conservation and poverty alleviation goals in these developing countries.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
14.
  1. Humanity is facing a biodiversity crisis, with freshwater-associated biodiversity in a particularly dire state. Novel ecosystems created through human use of mineral resources, such as gravel pit lakes, can provide substitute habitats for the conservation of freshwater and riparian biodiversity. Many of these artificial ecosystems are subject to a high intensity of recreational use, however, which may limit their biodiversity potential.
  2. The species richness of several taxa (plants, amphibians, dragonflies, damselflies, waterfowl, and songbirds) was assessed and a range of taxonomic biodiversity metrics were compared between gravel pit lakes managed for recreational fisheries (n = 16) and unmanaged reference lakes (n = 10), controlling for non-fishing-related environmental variation.
  3. The average species richness of all the taxa examined was similar among lakes in both lake types and no substantial differences in species composition were found when examining the pooled species inventory. Similarly, there were no differences between lake types in the presence of rare species and in the Simpson diversity index across all of the taxa assessed.
  4. Variation in species richness among lakes was correlated with woody habitat, lake morphology (surface area and steepness), and land use, but was not correlated with the presence of recreational fisheries. Thus, non-fishing-related environmental variables had stronger effects on local species presence than recreational fisheries management or the presence of recreational anglers.
  5. Collectively, no evidence was found that anglers and recreational fisheries management constrain the development of aquatic and riparian biodiversity in gravel pit lakes in the study region; however, the conservation of species diversity in gravel pit lakes could benefit from an increasing reliance on habitat enhancement activities.
  相似文献   

15.
Sharks fisheries have declined globally due to over‐ and unregulated fishing. As with many collapsed and unmonitored coastal fisheries, information is difficult to obtain, yet it is important to understand the historical changes determining population trends and evaluate the current status of sharks in order to conserve these vulnerable species. Here, we document for the first time the history and general condition of the shark fisheries of Southern China, specifically Hong Kong, and Guangdong, Fujian and Hainan Provinces. This study shows, through the use of historical literature and anecdotal accounts, including fisher interviews, that all known shark fisheries in the region collapsed between the 1970s and the 1990s. Of the 109 species present historically in the South China Sea, only 18 species were recorded in current market surveys, of which all were landed as bycatch and 65% were below the size of sexual maturity. Markets are dominated by smaller species, including the spadenose shark (Scoliodon laticaudus) and the whitespotted bambooshark (Chiloscyllium plagiosum). Marketed large shark species are almost all below the size of sexual maturation, evidence of growth overfishing and a factor in recruitment overfishing. Some species, like the whale (Rhincodon typus) and basking sharks (Cetorhinus maximus), are clearly vulnerable to local extinction without intervention. Given the inherent vulnerability of sharks and the overfished states of many sharks, there is clearly an urgent need to formulate impacting conservation and management plans for these rapidly declining species in a region that has the highest demand for shark products globally.  相似文献   

16.
17.
Understanding the impacts of recreational fishing on commercially fished stocks is becoming increasingly relevant for fisheries managers. However, data from recreational fisheries are not commonly included in stock assessments of commercially fished stocks. Simulation models of two assessment methods employed in Australia's Commonwealth fisheries were used to explore how recreational fishery data can be included, and the likely consequences for management. In a data‐poor management strategy for blue eye trevalla, Hyperoglyphe antarctica (Carmichael), temporal trends in recreational catch most affected management outcomes. In a data‐rich age‐structured stock assessment for striped marlin, Kajikia audax (Philippi), estimates of stock status were biased when recreational catches were large or when the recreational fishery targeted different size classes than the commercial fishery and these data were not integrated into the assessment. Including data from recreational fishing can change perceptions of stock status and impact recommendations for harvest strategies and management action. An understanding of recreational fishery dynamics should be prioritised for some species.  相似文献   

18.
19.
Seamounts are common topographic features in the Mid‐Atlantic Ridge (MAR) including the Azores. However, the knowledge on the ecology of seamounts in this region remains scarce despite needs for assessment and management of seamount resources such as the developing fisheries for deep‐water crabs. We described here for the first time the biological characteristics of an unexploited virgin deep‐water red crab Chaceon affinis population on seamount areas of the MAR to test the hypothesis that its general life history characteristics are similar in different ecosystem types (coastal areas and seamounts) across Macaronesia. We used a randomly stratified design to prospect a layer between 600 and 900 m depth around the summit of two isolated seamounts off the Azores. Results were consistent with the literature information in relation to the patterns of depth distribution, size and sex structure, and reproductive aspects. On the other hand, seamounts showed higher abundances when compared to previously studied coastal areas. Abundance may be also different between seamount areas as a function of the suitable bottom type available and presence of hydrothermal vents. We recommend that the essential habitat of the species should be better mapped identifying vulnerable areas before the development of any fishery.  相似文献   

20.
Seagrass meadows support fisheries through provision of nursery areas and trophic subsidies to adjacent habitats. As shallow coastal habitats, they also provide key fishing grounds; however, the nature and extent of such exploitation are poorly understood. These productive meadows are being degraded globally at rapid rates. For degradation to cease, there needs to be better appreciation for the value of these habitats in supporting global fisheries. Here, we provide the first global scale study demonstrating the extent, importance and nature of fisheries exploitation of seagrass meadows. Due to a paucity of available data, the study used a global expert survey to demonstrate the widespread significance of seagrass‐based fishing activity. Our study finds that seagrass‐based fisheries are globally important and present virtually wherever seagrass exists, supporting subsistence, commercial and recreational activity. A wide range of fishing methods and gear is used reflecting the spatial distribution patterns of seagrass meadows, and their depth ranges from intertidal (accessible by foot) to relatively deep water (where commercial trawls can operate). Seagrass meadows are multispecies fishing grounds targeted by fishers for any fish or invertebrate species that can be eaten, sold or used as bait. In the coastal communities of developing countries, the importance of the nearshore seagrass fishery for livelihoods and well‐being is irrefutable. In developed countries, the seagrass fishery is often recreational and/or more target species specific. Regardless of location, this study is the first to highlight collectively the indiscriminate nature and global scale of seagrass fisheries and the diversity of exploitative methods employed to extract seagrass‐associated resources. Evidence presented emphasizes the need for targeted management to support continued viability of seagrass meadows as a global ecosystem service provider.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号