首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Fisheries management based on catch shares – divisions of annual fleet‐wide quotas among individuals or groups – has been strongly supported for their economic benefits, but biological consequences have not been rigorously quantified. We used a global meta‐analysis of 345 stocks to assess whether fisheries under catch shares were more likely to track management targets set for sustainable harvest than fisheries managed only by fleet‐wide quota caps or effort controls. We examined three ratios: catch‐to‐quota, current exploitation rate to target exploitation rate and current biomass to target biomass. For each, we calculated the mean response, variation around the target and the frequency of undesirable outcomes with respect to these targets. Regional effects were stronger than any other explanatory variable we examined. After accounting for region, we found the effects of catch shares primarily on catch‐to‐quota ratios: these ratios were less variable over time than in other fisheries. Over‐exploitation occurred in only 9% of stocks under catch shares compared to 13% of stocks under fleet‐wide quota caps. Additionally, over‐exploitation occurred in 41% of stocks under effort controls, suggesting a substantial benefit of quota caps alone. In contrast, there was no evidence for a response in the biomass of exploited populations because of either fleet‐wide quota caps or individual catch shares. Thus, for many fisheries, management controls improve under catch shares in terms of reduced variation in catch around quota targets, but ecological benefits in terms of increased biomass may not be realized by catch shares alone.  相似文献   

2.
Total allowable catch restrictions (hereafter referred to as catch quotas) play an important role in maintaining healthy fish stocks. While studies have identified a positive relationship between catch quota implementation and improved stock status, these methods are subject to selection bias as catch quotas are typically applied to stocks that are depleted. We address this challenge using the synthetic control method, which estimates the causal effect of catch quotas on fishing mortality and biomass by predicting a synthetic counterfactual outcome. We focus on high seas stocks (tunas, billfishes, and sharks) managed by tuna Regional Fisheries Management Organizations (tRFMOs), first providing an overview of stock status and current management measures in place. We find that implementation of catch quotas by tRFMOs has more than doubled over the past decade. Second, we predict the hypothetical fishing mortality and biomass trajectory for seven high seas quota-managed stocks in absence of a catch quota. These “synthetic non-quota stocks” are predicted using a weighted selection of high seas non-quota stocks. Credibility of the synthetic non-quota stocks is evaluated through diagnostic checks, and robustness tests assess sensitivity to study design. Five credible fishing mortality synthetic controls are predicted: three add support to the hypothesis that catch quotas successfully reduce fishing mortality, while two find that catch quotas increase fishing mortality. While our analysis is limited in scope, given that all seven quota-managed stocks are managed under a single tRFMO, we highlight the potential for the synthetic control method in fisheries management evaluation.  相似文献   

3.
Abstract Based on performance, management of the New Zealand and Nova Scotia lobster fisheries can be considered successful, but management can be improved by clearer statements of objectives, more efficient mechanics of governance and quicker response to changes in stocks or fisheries. Principal tactics for lobster fishery management are individual transferable quotas and input controls in New Zealand and Nova Scotia respectively. Decision rules were considered important in both approaches and examples are provided of underperforming fisheries in the absence of decision rules. In Nova Scotia, strong fishers’ organisations and fishery scientists were effective agents for change, whereas fisher advisory committees operating by consensus were not. In New Zealand, the quota management system provided strong incentives for fishers to become involved in responsible management, to take longer‐term views of their resource and to take major management action on their own.  相似文献   

4.
Individual quota (IQ) management systems in commercial marine fisheries are highly diverse, differing in the security, durability and exclusivity of the harvesting privilege and the transferability of quota units. This diversity in the degree of harvest rights may influence the effectiveness of IQ fisheries to meet management objectives. We conducted a global meta‐analysis of 167 stocks managed under IQs to test whether the strength of harvest rights impacts the conservation status of stocks in terms of catch, exploitation rate and biomass relative to management targets. We used non‐parametric methods to assess non‐linear relationships and linear regression models to explicitly consider interactions among predictors. Most IQ fisheries consistently met fleet‐wide quota limits (94% of stocks had recent catches below or within 10% of quotas), but only 2/3 of IQ fisheries adhered to sustainable management targets for biomass and exploitation rate (68% of stocks had exploitation rates below or within 10% of targets and 63% of stocks had biomass above or within 10% of biomass targets). Strikingly, when exclusivity of the harvesting privilege was low, exploitation rates depended on whether IQ implementation was industry‐driven (exploitation below targets) or government‐mandated (exploitation above targets). At high levels of exclusivity, exploitation rates converged to just below management targets. Transferability of quota units was associated with stock biomass closer to and slightly above target levels than stocks with non‐transferable quota. However, regional differences had the strongest effect on biomass, suggesting that other management or biological attributes of regional fishery systems have greater influence on marine populations.  相似文献   

5.
Many commercial fish stocks are beginning to recover under more sustainable exploitation regimes. In this study, we document the temporal and spatial changes in one remarkable example of stock recovery: northern European hake (Merluccius merluccius). Analysing data from several scientific surveys, we document a dramatic increase in estimates of biomass between 2004 and 2011 throughout the larger area now occupied by the stock. The largest increase occurred in the North Sea, where hake have been largely absent for over 50 years. Spatio‐temporally resolved commercial landings show that high densities occur in the North Sea only between April and September, suggesting a density‐dependent seasonal habitat expansion to suitable temperature and depth conditions. These changes have implications for the management of the stock which are discussed. Notably, if discards are banned as part of management revisions, the relatively low quota for hake in the North Sea will be a limiting factor (the so‐called ‘choke’ species) which may result in a premature closure of the entire demersal mixed fishery in the North Sea, jeopardizing many commercial fisheries in the region. This example of the unforeseen consequences of improved stewardship highlight the need for a more holistic, regional and responsive approach to managing our marine ecosystems.  相似文献   

6.
The rise and fall of Japan’s marine fisheries have been well documented and are clearly evident in official landings statistics. However, the extent of illegal, unreported and unregulated fisheries, including recreational fisheries, and the discarding of unwanted catch in Japanese waters, both of which may have significant implications on the success of management regimes, have yet to be closely examined. This study reassessed the impact of fisheries on the marine ecosystems of Japan’s Exclusive Economic Zones (EEZ) by estimating the total marine biomass removed through the use of an established catch reconstruction approach. Since 1950, 368 million t of marine biomass have been extracted from the Japanese EEZ as commercial catch, recreational catch, illegal catch and discards. Commercial catch accounted for 87 % of the total, while discards accounted for an additional 8 %. The disparity between the estimated biomass removals and the reported commercial catch is 48 million t, or 15 % of the reported catch. The difference is not as large as observed in similar studies of other regions. Nonetheless, the reconstructed biomass removals represent a better baseline for the management of fisheries in the Japanese EEZ, particularly if Japan is to move forward with implementation of output control management.  相似文献   

7.
The use of fish aggregating devices (FADs) by purse seine fisheries has come under increasing criticism for its potential deleterious impacts on tuna stocks, for high levels of by‐catch and threats to the biodiversity of tropical pelagic ecosystems. Here, we review the current state of scientific knowledge of this fishing technique and current management strategies. Our intent is to encourage objective discussion of the topic and highlight areas worthy of future research. We show that catching juvenile tuna around FADs does not necessarily result in overfishing of stocks, although more selective fishing techniques would likely help obtain higher yield. Levels of non‐tuna by‐catch are comparable to or less than in other commercial tuna fisheries and are primarily comprised of species that are not considered threatened. Accordingly, to minimize impacts on ecosystem balance, there is merit in considering that all species captured in purse seine fisheries (excluding vulnerable species such as turtles and sharks) should be retained, but the consequences of such a measure should be carefully examined before implementation. The take of vulnerable species could be further reduced by introduction of additional mitigation measures, but their potential benefits would be limited without parallel efforts with other gears. Finally, there is no unequivocal empirical evidence that FADs represent an ‘ecological trap’ that inherently disrupts tuna biology although further research should focus on this issue. We encourage RFMOs to expand and improve their FAD management plans. Under appropriate management regimes, FAD fishing could be an ecologically and economically sensible fishing method.  相似文献   

8.
Wasted fishery resources: discarded by-catch in the USA   总被引:1,自引:0,他引:1  
Fishery by‐catch, especially discarded by‐catch, is a serious problem in the world's oceans. Not only are the stocks of discarded species affected, but entire trophic webs and habitats may be disrupted at the ecosystem level. This paper reviews discarding in the marine fisheries of the USA; however, the type, diversity and regulatory mechanisms of the fisheries are similar to developed fisheries and management programmes throughout the world. We have compiled current estimates of discarded by‐catch for each major marine fishery in the USA using estimates from existing literature, both published and unpublished. We did not re‐estimate discards or discard rates from raw data, nor did we include data on protected species (turtles, mammals and birds) and so this study covers discarded by‐catch of finfish and fishable invertebrates. For some fisheries, additional calculations were required to transform number data into weight data, and typically length and weight composition data were used. Specific data for each fishery are referenced in Harrington et al. (Wasted Resources: Bycatch and discards in US Fisheries, Oceana, Washington, DC, 2005). Overall, our compiled estimates are that 1.06 million tonnes of fish were discarded and 3.7 million tonnes of fish were landed in USA marine fisheries in 2002. This amounts to a nationwide discard to landings ratio of 0.28, amongst the highest in the world. Regionally, the southeast had the largest discard to landings ratio (0.59), followed closely by the highly migratory species fisheries (0.52) and the northeast fisheries (0.49). The Alaskan and west coast fisheries had the lowest ratios (0.12 and 0.15 respectively). Shrimp fisheries in the southeast were the major contributors to the high discard rate in that region, with discard ratios of 4.56 (Gulf of Mexico) and 2.95 (South Atlantic). By‐catch and discarding is a major component of the impact of fisheries on marine ecosystems. There have been substantial efforts to reduce by‐catch in some fisheries, but broadly based programmes covering all fisheries are needed within the USA and around the world. In response to international agreements to improve fishery management, by‐catch and discard reduction must become a regular part of fishery management planning.  相似文献   

9.
Following implementation in a range of other resource sectors, a number of credit‐like systems have been proposed for fisheries. But confusion exists over what constitutes these nascent ‘fisheries credit’ systems and how they operate. Based on a review of credit systems in other sectors, this study fills this gap by defining how credit systems function and what credits add to prevailing fisheries management. In doing so, we distinguish ‘mitigation’ and ‘behavioural’ fishery credits. Mitigation credits require resource users to compensate for unsustainable catches of target species, by‐catch species or damaging practices on the marine environment by investing in conservation in a biologically equivalent habitat or resource. Behavioural credit systems incentivize fishers to gradually change their fishing behaviour to more sustainable fishing methods by rewarding them with, for instance, extra fishing effort to compensate for less efficient but more sustainable fishing methods. The choice of credit system largely depends on the characteristics of specific fisheries and the management goals agreed upon by managers, scientists and the fishing industry. The study concludes that fisheries credit systems are different but complimentary to other forms of management by focusing on ‘catchability’ or gear efficiency in addition to effort or catch quota, affecting overall economic efficiency by setting specific goals as to how fish are caught. Credit systems therefore incentivize specific management interventions that can directly improve stock sustainability, conserve habitat and endangered species, or decrease by‐catch.  相似文献   

10.
Time/area closures have been widely used in fisheries management to prevent overfishing and the destruction of marine biodiversity. To a lesser degree, such spatio‐temporal management measures have been used to reduce by‐catch of finfish or protected species. However, as ecosystem‐based management approaches are employed and more fisheries are managed through multispecies, multiobjective models, the management of by‐catch will likely become increasingly important. The elimination of by‐catch has become a primary goal of the fishing policies of many countries. It is particularly relevant in the United States, as the deadline for setting annual catch limits (ACLs) in all fisheries passes in 2011. This will result in a dramatic expansion of the number of catch and by‐catch quotas. Such catch measures may result in the early closure of otherwise sustainable fisheries when by‐catch quotas are exceeded. To prevent such closures and the consequent economic hardship to fishers and the economy, it is imperative that managers be given the tools necessary to reduce by‐catch and improve fishing selectivity. Targeted spatio‐temporal fishery closures are one solution open to managers. Here, we examine how the spatio‐temporal and oceanographic characteristics of by‐catch may be used by managers to design fishery closures, and place these methods within a decision tree to assist managers to identify appropriate management measures. We argue that the current movement towards marine spatial planning (MSP) presents an important impetus to examine how we manage fisheries spatially, and we offer a first step towards the objective participation of fisheries in the MSP process.  相似文献   

11.
Climate change is altering the productivity of marine fisheries and challenging the effectiveness of historical fisheries management. Harvest control rules, which describe the process for determining catch limits in fisheries, represent one pathway for promoting climate resilience. In the USA, flexibility in how regional management councils specify harvest control rules has spawned diverse approaches for reducing catch limits to precautionarily buffer against scientific and management uncertainty, some of which may be more or less resilient to climate change. Here, we synthesize the control rules used to manage all 507 US federally managed fish stocks and stock complexes. We classified these rules into seven typologies: (1) catch-based; (2) constant catch; (3) constant escapement; (4) constant F; (5) stepped F; (6) ramped F and (7) both stepped and ramped F. We also recorded whether the control rules included a biomass limit (‘cut-off’) value or were environmentally linked as well as the type and size of the buffers used to protect against scientific and/or management uncertainty. Finally, we review the advantages and disadvantages of each typology for managing fisheries under climate change and provide seven recommendations for updating harvest control rules to improve the resilience of US federally managed fisheries to climate change.  相似文献   

12.
Strategic long‐term sampling programmes that deliver recreational catch, effort and species demographic data are required for the effective assessment and management of recreational fisheries and harvested organisms. This study used a spatially and temporally stratified observer programme to examine variation in the rates, quantities and lengths of retained and discarded catches of key species in a recreational charter fishery. Geographic region, but not season, significantly influenced catch rates of key demersal species, being driven by temporally persistent latitudinal clines in environmental conditions influencing species distributions. There was considerable trip‐to‐trip variation in catch rates that were attributed to localised differences in fishing operations, locations, environmental conditions and client preferences. Broad trends in retained and discarded catch rates were nevertheless, similar across different fishing effort standardisations (per‐trip, per‐hour, per‐client, per‐client/fished hour), demonstrating that the coarsest unit of effort could be used in fishery assessments. Discard rates of organisms were variable and driven by a combination of mandated legal lengths, individual client and operator preferences for particular species and sizes of organisms, and not due to attainment of catch quotas or high‐grading. This study has identified important fishery attributes that require consideration in assessing charter fisheries and stocks of recreational fish species.  相似文献   

13.
Marine protected areas (MPAs) are often promoted as tools for biodiversity conservation as well as for fisheries management. Despite increasing evidence of their usefulness, questions remain regarding the optimal design of MPAs, in particular concerning their function as fisheries management tools, for which empirical studies are still lacking. Using 28 data sets from seven MPAs in Southern Europe, we developed a meta‐analytical approach to investigate the effects of protection on adjacent fisheries and asking how these effects are influenced by MPA size and age. Southern European MPAs showed clear effects on the surrounding fisheries, on the ‘catch per unit effort’ (CPUE) of target species, but especially on the CPUE of the marketable catch. These effects depended on the time of protection and on the size of the no‐take area. CPUE of both target species and the marketable catch increased gradually by 2–4% per year over a long time period (at least 30 years). The influence of the size of the no‐take area appeared to be more complex. The catch rates of the entire fishery in and around the MPA were higher when the no‐take areas were smaller. Conversely, catch rates of selected fisheries that were expected to benefit most from protection increased when the no‐take area was larger. Our results emphasize the importance of MPA size on its export functions and suggest that an adequate, often extended, time frame be used for the management and the evaluation of effectiveness of MPAs.  相似文献   

14.
Obtaining reliable estimates of important parameters from recreational fisheries is problematic but critical for stock assessment and effective resource management. Sampling methodologies based on traditional design‐based sampling theory, is inadequate in obtaining representative catch and effort data, social or demographical characterization, or fisher behaviour from small hard‐to‐reach components within recreational fisheries (e.g. specialized sport fisheries) that may account for the majority of the catch for some species. A model‐based approach to sampling is necessary. Researchers in other disciplines including epidemiology and social sciences routinely survey rare or ‘hidden’ populations within the general community by penetration of social networks rather than by interception of individuals. We encourage fisheries researchers to rethink survey designs and consider the social elements of recreational fishing. Employing chain‐referral methods, such as respondent‐driven sampling (RDS), may be a statistically robust and cost‐effective option for sampling elusive sub‐elements within recreational fisheries. Chain‐referral sampling methodology is outlined and an example of a complemented ‘RDS‐recapture’ survey design is introduced as a cost‐effective application to estimating total catch in recreational fisheries.  相似文献   

15.
Fisheries provide nutrition and livelihoods for coastal populations, but many fisheries are fully or over‐exploited and we lack an approach for analysing which factors affect management tool performance. We conducted a literature review of 390 studies to assess how fisheries characteristics affected management tool performance across both small‐scale and large‐scale fisheries. We defined success as increased or maintained abundance or biomass, reductions in fishing mortality or improvements in population status. Because the literature only covered a narrow set of biological factors, we also conducted an expert elicitation to create a typology of broader fishery characteristics, enabling conditions and design considerations that affect performance. The literature suggested that the most commonly used management tool in a region was often the most successful, although the scale of success varied. Management tools were more often deemed successful when used in combination, particularly pairings of tools that controlled fishing mortality or effort with spatial management. Examples of successful combinations were the use of catch limits with quotas and limited entry, and marine protected areas with effort restrictions. The most common factors associated with inadequate biological performance were ‘structural’ issues, including poor design or implementation. The expert‐derived typologies revealed strong local leadership, high community involvement and governance capacity as common factors of success across management tool categories (i.e. input, output and technical measures), but the degree of importance varied. Our results are designed to inform selection of appropriate management tools based on empirical data and experience to increase the likelihood of successful fisheries management.  相似文献   

16.
Guidelines for the assessment and management of developing swordfish fisheries are derived through an examination of five swordfish fisheries. As they develop, swordfish fisheries may be inclined to local depletion around underwater features, such as seamounts and banks. Few nations have applied the precautionary approach in managing their developing swordfish fisheries. Without controls, swordfish fisheries expand geographically and fishing effort increases, often overshooting optimum levels. However, it is difficult to distinguish clear evidence of fishery collapse; modern longliners harvest widely distributed tuna and swordfish and they are able to relocate to distant areas or switch between target species in response to fluctuations in species abundance and price. Furthermore, the wide distribution of swordfish combined with year‐round spawning and high growth rates amongst juveniles probably contribute to the apparent resilience of swordfish stocks to intensive harvesting. Over half the world’s swordfish catch is taken as an incidental catch of longliners fishing for tuna. In several areas, such as the North Atlantic, catch quotas have sometimes caused tuna longline fishers to discard swordfish. Minimum size limits have also resulted in discarding of swordfish in tuna fisheries and in dedicated swordfish fisheries. In addition to weakening the effectiveness of those management measures, bycatch and discarding add to the complexities of managing swordfish fisheries and to uncertainties in assessing the stocks. Longliners that target swordfish often fish at high latitudes where interactions with marine wildlife, such as seabird, are generally more frequent than at low latitudes. Concern over incidental catches of marine wildlife and other species is becoming a driving force in the management of several swordfish fisheries. Fishery management organisations will need to implement management measures to protect non‐target species and gather reliable data and information on the situation by placing observers on boats fishing for swordfish.  相似文献   

17.
Successful individual transferable quota (ITQ) management requires a binding (constraining) total allowable catch (TAC). A non‐binding TAC may result in a shift back towards open access conditions, where fishers increasingly compete (‘race’) to catch their share of the total harvest. This process was examined by comparing fishing fleet behaviour and profitability in the Tasmanian southern rock lobster (Jasus edwardsii) fishery (TSRLF), Australia. Between 2008 and 2010, the TSRLF had a non‐binding TAC and effectively reverted to a regulated, limited‐entry fishery. Fishers' uncertainty about future profitability and their ability to take their allocated catch weakened the security characteristic of the ITQ allocation. The low quota lease price contributed to an increase in fleet capacity, while the more limited reduction in quota asset value proved an investment barrier, hindering the autonomous adjustment of quota towards the most efficient fishers. In the TSRLF, catch rates vary more than beach price and are therefore more important for determining daily revenue (i.e., price x catch rate) than market price. Consequently, fishers concentrated effort during times of higher catch rates rather than high market demand. This increased rent dissipation as fishers engaged in competitive race to fish to be the first to exploit the stock and obtain higher catch rates. The history of this fishery emphasizes the need for a constraining TAC in all ITQ fisheries, not only for stock management, but also to manage the security of the ITQ allocation and prevent unanticipated and undesirable changes in fisher behaviour and fishery profitability.  相似文献   

18.
This paper provides an update on an earlier review [Fish & Fisheries 8 (2007) 31] of mitigation methods used to reduce seabird by‐catch in trawl fisheries. Interactions of seabirds with trawl vessels fall into two broad categories: those focused on the trawl warps and those focused around trawl nets. For reducing seabird strikes on trawl warps, the use of bird‐scaring lines has been proved to be the most effective mitigation device in the trawl fisheries in which comparative studies have been undertaken. However, the retention or strategic management of fish waste (offal and discards) is recommended as the most effective primary measure for by‐catch reduction, and as such should be viewed as the best long‐term solution to reducing seabird by‐catch in trawl fisheries. Coincident with effective fish waste management, measures such as cleaning the net prior to shooting and reducing the time the net is on the surface should be viewed as best practice measures and incorporated into normal fishing activities. While a number of methods have been trialled to reduce the incidence of warp strikes, there continues to be the need for more work on effective measures for reducing interactions of seabirds with the trawl net.  相似文献   

19.
Impact assessments of fishing on a stock require parameterization of vital rates: growth, mortality and recruitment. For ‘data‐poor’ stocks, vital rates may be estimated from empirical size‐based relationships or from life‐history invariants. However, a theoretical framework to synthesize these empirical relations is lacking. Here, we combine life‐history invariants, metabolic scaling and size‐spectrum theory to develop a general size‐ and trait‐based theory for demography and recruitment of exploited fish stocks. Important concepts are physiological or metabolic scaled mortalities and flux of individuals or their biomass to size. The theory is based on classic metabolic relations at the individual level and uses asymptotic size W as a trait. The theory predicts fundamental similarities and differences between small and large species in vital rates and response to fishing. The central result is that larger species have a higher egg production per recruit than small species. This means that density dependence is stronger for large than for small species and has the consequence that fisheries reference points that incorporate recruitment do not obey metabolic scaling rules. This result implies that even though small species have a higher productivity than large species their resilience towards fishing is lower than expected from metabolic scaling rules. Further, we show that the fishing mortality leading to maximum yield per recruit is an ill‐suited reference point. The theory can be used to generalize the impact of fishing across species and for making demographic and evolutionary impact assessments of fishing, particularly in data‐poor situations.  相似文献   

20.
Understanding the mechanisms driving fisheries production is essential if we are to accurately predict changes under climate change and exploit fish stocks in a sustainable manner. Traditionally, studies have sought to distinguish between the two most prominent drivers, ‘bottom‐up’ (resource driven) and ‘top‐down’ (consumer driven); however, this dichotomy is increasingly proving to be artificial as the relative importance of each mechanism has been shown to vary through space and time. Nevertheless, the reason why one predominates over another within a region remains largely unknown. To address this gap in understanding, we identified the dominant driver of commercial landings within 47 ecosystems, encompassing a wide range of biogeochemical conditions and fishing practices to elucidate general patterns. We show that bottom‐up and top‐down effects vary consistently with past fishing pressure and oceanographic conditions; bottom‐up control predominates within productive, overfished regions and top‐down in relatively unproductive and under‐exploited areas. We attribute these findings to differences in the species composition and oceanographic properties of regions, together with variation in fishing practices and (indicative) management effectiveness. Collectively, our analyses suggest that despite the complexity of ecological systems, it is possible to elucidate a number of generalities. Such knowledge could be used to increase the parsimony of ecosystem models and to move a step forward in predicting how the global ocean, particularly fisheries productivity, will respond to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号