首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Age‐0 gizzard shad Dorosoma cepedianum are the main prey fish for white crappies Pomoxis annularis in many US reservoirs. However, these prey fish commonly outgrow their vulnerability to white crappie predation in some, but not all, northern Missouri reservoirs. Potential variables that could influence abundance, growth and mortality of age‐0 gizzard shad were examined in three reservoirs that differed with respect to age‐0 gizzard shad growth rates. Because of thermal effluent from a power plant, gizzard shad spawned earlier in Thomas Hill Lake and initial densities of larvae were greater than in the other reservoirs. Larval and juvenile gizzard shad grew slowest in Thomas Hill Lake, followed by Mark Twain Lake and Long Branch Lake. Growth rate of larvae increased with increasing water temperature and food abundance, but decreased with increasing conspecific density. Similar relationships were found for juvenile growth, except that growth declined with increasing temperature. The slower growth of larvae and juveniles in Thomas Hill Lake was probably a consequence of their greater densities relative to their food abundance and higher water temperatures during the juvenile stage. Conversely, both larvae and juvenile gizzard shad grew more rapidly and juveniles attained large sizes in Long Branch Lake owing to their lower densities relative to their available food. Mortality of larvae and juveniles was mostly similar among the reservoirs. Because of their greater abundance and slower growth, gizzard shad were available as prey for white crappies for a longer period in Thomas Hill Lake than in the other reservoirs.  相似文献   

2.
Abstract Predation is an important force structuring aquatic communities, but predator–prey interactions are complex and regulated by multiple factors. Invasive fishes may interact with native fishes to alter predator–prey preferences and community dynamics. For example, common carp, Cyprinus carpio L., is an invasive species that can become abundant and negatively affect aquatic ecosystems. Juvenile common carp are occasionally found in predator diets, but predator preferences for common carp compared with alternative prey remains unknown. Prey selection and feeding behaviour of five piscivores (flathead catfish, Pylodictis olivaris (Rafinesque); largemouth bass, Micropterus salmoides (Lacepède); smallmouth bass, M. dolomieu Lacepède; walleye, Sander vitreus (Mitchill); and northern pike, Esox lucius L.) foraging on juvenile common carp and two alternative prey (fathead minnow, Pimephales promelas Rafinesque, and yellow perch, Perca flavescens Mitchill) at variable densities and habitats were evaluated. Common carp and fathead minnow were generally selected for or neutrally selected across predator species, habitat types and prey assemblages. By contrast, yellow perch was generally selected against. Common carp were easily captured but difficult to manipulate and ingest compared with other prey. These results reveal that common carp are vulnerable to a variety of predators, suggesting control of this detrimental invader may be possible through biomanipulation.  相似文献   

3.
Predator‐prey interactions can be influenced by the behaviour of individual species as well as environmental factors. We conducted laboratory experiments to test for the influences of two abiotic factors (light intensity and habitat complexity) on predator–prey interactions between walleye Sander vitreus and two prey species, bluegill Lepomis macrochirus and golden shiner Notemigonus crysoleucas. Three light intensities were simulated (day, twilight and night) in the presence or absence of simulated vegetation. Observations of predator behaviour indicated that walleye increased activity and foraging success with decreasing light levels and had most success capturing dispersed, closer prey. While schooling could not be maintained as light levels diminished, prey decreased predation vulnerability by moving into vegetation or higher in the water column. Throughout all treatments, bluegill were more evasive to capture as the number of strikes was similar on both prey but capture rates were higher for golden shiner. Although light intensity and simulated habitat complexity affected predator and prey behaviour, these factors did not interact to influence foraging success of walleye. To fully understand predator and prey behaviours in fishes, an understanding of species‐specific responses to abiotic and biotic factors is necessary.  相似文献   

4.
Predation can play an important role in population, community and ecosystem processes. When predator guilds are diverse, fluctuations in individual predator populations may have small influences on the guild at large, suggesting that predator diversity stabilizes the amount of predation prey experience. The strength of this phenomenon depends on how synchronously populations within predator assemblages vary and whether all predators are equally important consumers. We utilized a database of biomasses of fish species across ten temperate marine ecosystems paired with diet composition and feeding rate information from mass‐balance food web models to develop a predation index that weights the importance of predators on a prey based on predator feeding habits. Using the index, we asked how diverse sources of predation in these ecosystems are and how much diversity stabilizes variability in predation. Predator assemblages displayed a wide range of diversity; in one‐third of assemblages, a single predator group accounted for over half of all predation. Abundances of predator populations within assemblages generally varied independently of one another (neither synchronously nor asynchronously), implying an intermediate stabilization on predation intensity by predator diversity. Accounting for interaction strength (versus mere presence) is critical for interpreting the predator landscape; doing so led to a wider range in predator assemblage diversity and less synchronous assemblages. This work challenges conventional notions that marine food webs are diverse and therefore less susceptible to predator control. Future work should consider the temporal variability of the predator assemblages and account for differences in mortality induced by each predator population.  相似文献   

5.
We investigated the effect of feeding habits on the fatness (length–weight relationship (LW)) and otolith growth of age‐0 Pacific bluefin tuna (PBF) (fork length (FL) of 15.0–29.9 cm) collected off the southwestern Pacific coast of Japan from July to August during 2010–2015. The feeding rate on Clupeiformes (FRc) was substantially influenced by the path of the Kuroshio Current during early summer. We suggest that the following patterns occurred in the feeding habits of PBF. In 2012 and 2014, the short distance from the coast to the Kuroshio provided high overlap between PBF and Clupeiformes and increased the opportunity for feeding, and this pattern likely caused the observed diet shift from Crustacea to Clupeiformes by smaller PBF in the studied years than those in other years. In 2011 and 2015, the encounter probability for Clupeiformes might have been low due to the long distance to the Kuroshio Current, which led PBF to actively consume non‐Clupeiformes Teleostei. In contrast, in August 2010 and 2015, PBF did not encounter Clupeiformes or other Teleostei and may have been forced to feed on a large number of Crustacea; this effect was likely due to high water temperatures. Despite the interannual fluctuation in the timing of the diet shift and the feeding intensity (FI), these factors did not contribute to growth in length; rather, they contributed to fatness. Considering size‐dependent mortality in the larval stage, these results suggest that only fast‐growing individuals survive, even if the feeding conditions drastically change.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号