首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

2.
In order to investigate the impact of climate change on egg and larval transport of Japanese anchovy (Engraulis japonicus) off Kyushu Island western Japan, we conducted particle‐tracking simulations on transport success/failure to fishing grounds from 1960 to 2007. The modeled transport success since the mid‐1990s increased and decreased in the offshore and coastal zones, respectively, compared with the 1960s and 1970s. The estimated northward shift of the spawning ground and weakened Tsushima Warm Current contributed to increase in modeled transport success to the offshore zone. Conversely, the weakening trend of the modeled onshore current in the Goto‐Nada Sea combined with the northward shift of the spawning ground resulted in unsuccessful larval transport. These results suggest that fluctuations in juvenile and subadult anchovy catches in this area may be attributable to changes in the physical environment. The present study showed that changes in transport success induced by oceanographic fluctuations related to climate change, have the potential to affect anchovy recruitment off the western coast of Japan.  相似文献   

3.
Numerical particle-tracking experiments were performed to investigate the transport and variability in environmental temperature experienced by eggs and larvae of Pacific stocks of the Japanese anchovy ( Engraulis japonicus ) and Japanese sardine ( Sardinops melanostictus ) using high-resolution outputs of the Ocean General Circulation Model for the Earth Simulator (OFES) and the observed distributions of eggs collected from 1978 to 2004. The modeled anchovy individuals tend to be trapped in coastal waters or transported to the Kuroshio–Oyashio transition region. In contrast, a large proportion of the sardines are transported to the Kuroshio Extension. The egg density-weighted mean environmental temperature until day 30 of the experiment was 20–24°C for the anchovy and 17–20°C for the sardine, which can be explained by spawning areas and seasons, and interannual oceanic variability. Regression analyses revealed that the contribution of environmental temperature to the logarithm of recruitment per spawning (expected to have a negative relationship with the mean mortality coefficient) was significant for both the anchovy and sardine, especially until day 30, which can be regarded as the initial stages of their life cycles. The relationship was quadratic for the anchovy, with an optimal temperature of 21–22°C, and linear for the sardine, with a negative coefficient. Differences in habitat areas and temperature responses between the sardine and anchovy are suggested to be important factors in controlling the dramatic out-of-phase fluctuations of these species.  相似文献   

4.
An individual‐based model (IBM) was used to investigate the effects of physical and biological variables on the transport via a jet current of anchovy (Engraulis capensis) eggs from spawning to the nursery grounds in the southern Benguela ecosystem. As transport of eggs and early larvae is considered to be one of the major factors impacting on anchovy recruitment success, this approach may be useful to understand further the recruitment variability in this economically and ecologically important species. By coupling the IBM to a 3D hydrodynamic model of the region called Plume, and by varying parameters such as the spatial and temporal location of spawning, particle buoyancy, and the depth range over which particles were released, we could assess the influences of these parameters on transport success. A sensitivity analysis using a General Linear Model identified the primary determinants of transport success in the various experimental simulations, and model outputs were examined and compared with patterns observed in field studies. Model outputs compared well with observed patterns of vertical and horizontal egg distribution. Particle buoyancy and area of particle release were the major single determinants of transport success, with an egg density of 1.025 g cm?3 maximizing average particle transport success and the western Agulhas Bank being the most successful spawning area. This IBM may be useful as a generic prototype for other upwelling ecosystems.  相似文献   

5.
Towards the end of the 1980s, when the spawning grounds in the northwestern shelf (NWS) of the Black Sea were lingering with the effects of eutrophication and of an exotic invasive ctenophore, a series of basin‐wide international ichthyoplankton surveys pointed out an increase in the anchovies spawning in the southern half of the Black Sea. Later, with the help of international conservation efforts, several key littoral ecosystem components within the anchovy's historical spawning grounds showed signs of recovery. However, the fate of the spawning stock anchovy in the south remained unanswered. In order to present the current situation in the southern Black Sea after two decades, an ichthyoplankton survey adopting the same methodology as previously used was undertaken during the peak spawning season of the Black Sea anchovy (BSa). The survey showed that the density of eggs was by far greater than for any of the surveys conducted previously. A wider geographical distribution of the eggs indicated an increase in the number of vagrants which had drifted away from the known spawning grounds. In contrast, the increased reproductive activity in the south signifies existence of a growing, non‐migrating southern BS stock. This stock seems to utilize the coastal hydrographic features associated with the rim current facilitating escape (loophole) from gelatinous predators such as Mnemiopsis leidyi and Aurelia aurata.  相似文献   

6.
To anticipate the response of fish populations to climate change, we developed a framework that integrates requirements in all life stages to assess impacts across the entire life cycle. The framework was applied on plaice (Pleuronectes platessa) and Atlantic herring (Clupea harengus) in the North Sea, Atlantic cod (Gadus morhua) in the Norwegian/Barents Seas and European anchovy (Engraulis encrasicolus) in the Bay of Biscay. In each case study, we reviewed habitats required by each life stage, habitat availability, and connectivity between habitats. We then explored how these could be altered by climate change. We documented environmental processes impacting habitat availability and connectivity, providing an integrated view at the population level and in a spatial context of potential climate impacts. A key result was that climate‐driven changes in larval dispersion seem to be the major unknown. Our summary suggested that species with specific habitat requirements for spawning (herring) or nursery grounds (plaice) display bottlenecks in their life cycle. Among the species examined, anchovy could cope best with environmental variability. Plaice was considered to be least resilient to climate‐driven changes due to its strict connectivity between spawning and nursery grounds. For plaice in the North Sea, habitat availability was expected to reduce with climate change. For North Sea herring, Norwegian cod and Biscay anchovy, climate‐driven changes were expected to have contrasting impacts depending on the life stage. Our review highlights the need to integrate physiological and behavioural processes across the life cycle to project the response of specific populations to climate change.  相似文献   

7.
European anchovy egg occurrence and density data from summer surveys (1998–2007) and oceanographic data were examined to study the mechanisms that control the spatial distribution of anchovy spawning habitat in the Strait of Sicily. Quotient analysis indicated habitat preference for temperature (18–19°C), bottom depth (50–100 m), water column stability (13–14 cycle h?1), fluorescence (0.10–0.15 μg m?3 Chl a), salinity (37.5–37.6 PSU), current speed (0.20–0.25 m s?1) and density (26.7–26.8 kg m?3, σt). Canonical discriminant analysis identified temperature, column stability and fluorescence as major drivers of anchovy spawning habitat. Three of the 4 years which had lower egg abundance were warmer years, with low values of primary productivity. A geostrophic current flowing through the Strait (the Atlantic Ionic Stream, AIS) was confirmed as the main source of environmental variability in structuring the anchovy spawning ground by its influence on both the oceanography and distribution of anchovy eggs. This 10‐yr data series demonstrates recurrent but also variable patterns of oceanographic flows and egg distribution. A lack of freshwater flow in this area appears to depress productivity in the region, but certain and variable combinations of environmental conditions can elevate production in some sub‐areas in most years or other sub‐areas in fewer years. These temporal and spatial patterns are consistent with an ocean triad theory postulating that processes of oceanographic enrichment, concentration, and retention may help predict fishery yields.  相似文献   

8.
  1. Single nucleotide polymorphism (SNP) markers in anchovy (Engraulis encrasicolus) egg samples were analysed to detect their origin on a small spatial scale (200 km) by assigning genotypes to adult anchovy stocks. The novelty of this work is the application of a rapid high‐throughput method for genotyping each single anchovy egg, in a single execution, using a set of 96 genome‐wide SNPs in a dynamic array system with microfluidic technology (Fluidigm 96.96).
  2. The existence of two ecotypes in E. encrasicolus had already been identified based on SNP polymorphism in the Atlantic Ocean and in the Mediterranean Sea, showing that habitat type (offshore versus coastal/estuarine) is the most important component of genetic differentiation among populations of anchovy.
  3. In this work, anchovy egg genotypes from areas of the Western Mediterranean were assigned to adult populations. Only two localities in which adult anchovies were sampled represented donor populations for the coastal/estuarine egg genotypes. Although some degree of mixing among the hauls could exist, the assignment of egg groups to adult populations led to distinguishing the contributions of distinct ecotypes to new wild generations. We can conclude that the high rate of egg dispersion caused by marine currents and the different degrees of local retention could explain the genetic heterogeneity observed in the adult populations, where eggs from neighbouring spawning sites tend to mix.
  4. The results highlight that this technique represents a new and useful tool for addressing evolutionary questions, breed recognition, assignment, and connectivity assessment of individual eggs, and anchovy population dynamics, for the management of stocks.
  相似文献   

9.
Identification of the potential habitat of European anchovy (Engraulis encrasicolus) at different life stages in relation to environmental conditions is an interesting subject from both ecological and management points of view. For this purpose, acoustic data from different seasons and different parts of the Mediterranean Sea along with satellite environmental and bathymetry data were modelled using generalized additive models. Similarly, egg distribution data from summer ichthyoplankton surveys were used to model potential spawning habitat. Selected models were used to produce maps presenting the probability of anchovy presence (adults, juveniles and eggs) in the entire Mediterranean basin, as a measure of habitat adequacy. Bottom depth and sea surface chlorophyll concentration were the variables found important in all models. Potential anchovy habitats were located over the continental shelf for all life stages examined. An expansion of the potential habitat from the peak spawning (early summer) to the late spawning season (early autumn) was observed. However, the most suitable areas for the presence of anchovy spawners seem to maintain the same size between seasons. Potential juvenile habitats were associated with highly productive inshore waters, being less extended and closer to coast during winter than late autumn. Potential spawning habitat in June and July based on ichthyoplankton surveys overlapped but were wider in extent compared with adult potential habitat from acoustics in the same season. Similarities and dissimilarities between the anchovy habitats as well as comparisons with sardine habitats in the oligotrophic Mediterranean Sea and other ecosystems with higher productivity are discussed.  相似文献   

10.
环境因子对黄海鳀鱼亲体-补充量关系影响的初步研究   总被引:2,自引:0,他引:2  
郑芳  刘群  王艳君 《南方水产》2008,4(2):15-20
鱼类年际资源量的波动可以归因于年间环境条件的变化和该种鱼类亲体数量的变化。文章根据1990~2001年间黄海中南部鳀鱼声学调查评估结果,以及黄海千里岩海区在此年间的表层水温和营养盐统计数据,以Ricker模型(R=αSe^-βS)为基础对黄海鳀鱼(Engraulis japonicas)亲体-补充量关系进行了初步研究。结果表明,黄海千里岩水域表层水温、磷酸盐浓度等环境条件因素对补充量有重要影响。  相似文献   

11.
Hake recruitment has been examined in relation to environmental variables in two of the main reproductive areas of the central Mediterranean, the northern and central Tyrrhenian Sea. Seventeen years time series data from trawl surveys revealed high fluctuations in recruit abundance that could not be just explained by spawning biomass estimations. Generalized additive models were developed to investigate hake recruitment dynamics in the Tyrrhenian Sea in relation to spawner abundance and selected key oceanographic variables. Environmental data were explored in attempt to explain survival processes that could affect early life history stages of hake and that accounted for high fluctuations in its recruitment.Thermal anomalies in summer, characterised by high peaks in water temperature, revealed a negative effect on the abundance of recruits in autumn, probably due to a reduction in hake egg and larval survival rates. In the northern Tyrrhenian, recruitment was reduced when elevated sea-surface temperatures were coupled with lower levels of water circulation. Enhanced spring primary production, related to late winter low temperatures could affect water mass productivity in the following months, thus influencing spring recruitment. In the central Tyrrhenian a dome-shaped relationship between wind mixing in early spring and recruitment could be interpreted as an “optimal environmental window” in which intermediate water mixing level played a positive role in phytoplankton displacement, larval feeding rate and appropriate larval drift. Results are discussed in relation to the decline in hake stock biomass and within the present climate change and global warming context.  相似文献   

12.
The spatial extent of small pelagic fish spawning habitat is influenced by environmental factors and by the state of the adult population. In return, the configuration of spawning habitat affects recruitment and therefore the future structure of the adult population. Interannual changes in spatial patterns of spawning reflect variations in adult population structures and their environment. The present study describes the historical changes in the spatial distribution of spawning of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the Bay of Biscay during two periods: 1967–72 and 2000–2004. Using data from egg surveys conducted in spring, the spatial distributions of anchovy and sardine eggs are characterized by means of geostatistics. For each survey, a map of probability of egg presence is constructed. The maps are then compared to define (1) recurrent spawning areas, (2) occasional spawning areas and (3) unfavourable spawning areas during each period. Sardine spawning habitat is generally fragmented and appears spatially limited by the presence of cold bottom water. It is confined to coastal or shelf break refuge areas in years of restricted spawning extent. For anchovy, recurrent spawning sites are found in Gironde and Adour estuaries whilst spawning can extend further offshore in years of more intense spawning. For both species, the mean pattern of spawning has changed between 1967–72 and 2000–2004. Noticeably, the spatial distribution of anchovy eggs in spring has expanded northward. This trend possibly results from changes in environmental conditions during the last four decades.  相似文献   

13.
Large amplitude variations in recruitment of small pelagic fish result from interactions between a fluctuating environment and population dynamics processes such as spawning. The spatial extent and location of spawning, which is critical to the fate of eggs and larvae, can vary strongly from year to year, as a result of changing population structure and environmental conditions. Spawning habitat can be divided into ‘potential spawning habitat’, defined as habitat where the hydrographic conditions are suitable for spawning, ‘realized spawning habitat’, defined as habitat where spawning actually occurs, and ‘successful spawning habitat’, defined as habitat from where successful recruitment has resulted. Using biological data collected during the period 2000–2004, as well as hydrographic data, we investigate the role of environmental parameters in controlling the potential spawning habitat of anchovy and sardine in the Bay of Biscay. Anchovy potential spawning habitat appears to be primarily related to bottom temperature followed by surface temperature and mixed‐layer depth, whilst surface and bottom salinity appear to play a lesser role. The possible influence of hydrographic factors on the spawning habitat of sardine seems less clear than for anchovy. Modelled relationships between anchovy and sardine spawning are used to predict potential spawning habitat from hydrodynamical simulations. The results show that the seasonal patterns in spawning are well reproduced by the model, indicating that hydrographic changes may explain a large fraction of spawning spatial dynamics. Such models may prove useful in the context of forecasting potential impacts of future environmental changes on sardine and anchovy reproductive strategy in the north‐east Atlantic.  相似文献   

14.
How climatic variability and anthropogenic pressures interact to influence recruitment is a key factor in achieving sustainable resource management. However, the combined effects of these pressures can make it difficult to detect non‐stationary interactions or shifts in the relationships with recruitment. Here we examine the links between climate and Irish Sea cod recruitment during a period of declining spawning stock biomass (SSB). Specifically, we test for a shift in the relationship between recruitment, SSB and climate by comparing an additive (generalized additive model, GAM) and non‐additive threshold model (TGAM). The relationship between recruitment success, SSB and the climatic driver, sea surface temperature, was best described by the TGAM, with a threshold identified between recruitment and SSB at approximately 7900 t. The analysis suggests a threshold shift in the relationship between recruitment and SSB in Irish Sea cod, with cod recruitment being more sensitive to climatic variability during the recent low SSB regime.  相似文献   

15.
Understanding of density‐dependent effects is key to achieving sustainable management of self‐regulating biological resources such as fish stocks. Traditionally, density‐dependent effects on population abundance in fish have been considered to occur from hatching to recruitment, based on the paradigm of proportionality between spawning stock biomass and total egg production. Here, we demonstrate how the existence of intraspecific and interspecific density dependence in egg production changes the current understanding of density‐dependent processes in the life history of fish, by disentangling density‐dependent effects on egg production and survival from egg to recruitment, using sardine (Sardinops melanostictus, Clupeidae) and anchovy (Engraulis japonicus, Engraulidae) as model species. For sardine, strong intraspecific density‐dependent effects occurred in egg production, but no density‐dependent effects occurred or if any they were weak enough to be masked by environmental factors from hatching to recruitment. In contrast, for anchovy, interspecific density‐dependent effects occurred in egg production. In the survival after hatching, anchovy experienced stronger intraspecific density‐dependent effects than currently recognized. This analysis could overturn the current understanding of density‐dependent effects in the life history, highlighting contrasts between the effects on individual quality and population abundance and between the model species. We propose to reconsider the basis of fisheries management and recruitment studies based on the revised understanding of density‐dependent effects in the life history of the respective species.  相似文献   

16.
Embryonic mortality, egg production and the spawning stock biomass of Pacific anchovy, Engraulis japonicus , off Southern Korea during 1983–1994, and their biological response to oceanographic features in spring and summer, were analysed. The instantaneous mortality rate (IMR) of embryonic stages decreased in spring and increased in summer, with a range of 0.33–1.23 day–1 in spring and 0.78–1.69 day–1 in summer. Egg production in summer was three times that during spring and production was low in the late 1980s. Mean lengths of yolk-sac larvae and adult females were greater in spring than in summer, whereas spawning fraction and spawning stock ratio (spawning biomass:adult biomass) were lower in spring than summer. Estimated mean spawning stock biomass ranged from 141 × 103 to 380 × 103 MT in spring and from 221 × 103 to 557 × 103 MT in summer. Statistically, the seasonal and long-term trends of embryonic mortality, egg production and spawning stock biomass of Pacific anchovy can be explained largely by spring warming, summer cooling and by less abundant zooplankton in the late 1980s.  相似文献   

17.
Environmental and biological sampling and monitoring have been carried out in the southern Benguela since 1988. The overall goal of this research is to investigate environmental factors affecting anchovy recruitment and to develop the ability to forecast anchovy recruitment from year-to-year using field data obtained during the spawning season (August to March). Sampling was conducted at three different temporal and spatial scales: during annual (November) broad-scale hydro-acoustic surveys to determine spawner biomass on the entire spawning ground and in the core transport and recruitment areas; during monthly surveys in the core spawning, transport and recruitment regions over two entire spawning seasons (1993/94 and 1994/95); and during weekly sampling (since 1995) along a single transect downstream from the spawning area. Annual surveys provide the best spatial coverage, but are inadequate for representing environmental conditions and anchovy spawning success over a prolonged season. Weekly sampling provides the best temporal coverage, but logistical constraints restrict information to a limited portion of the spawning area and a reduced number of variables. Monthly surveys provide intermediate coverage in time and space, but are expensive and labour-intensive. Forecasting anchovy recruitment has been based on two different approaches: the establishment of empirical relationships, and the development of rule-based expert systems. Forecasts from deterministic expert systems have compared well with final estimates of recruitment strength, and indicate that environmental and biological variables may be used in a structured way to forecast anchovy recruitment.  相似文献   

18.
The information collected from a European Union funded project on the ‘Distribution Biology and Biomass Estimates of the Sicilian Channel Anchovy (Engraulis encrasicolus)’ was used to analyse the linkage between the general circulation pattern of the Atlantic Ionian Stream (AIS) and the reproductive strategy of the Sicilian Channel anchovy. The main spawning ground is located in the NW region of the southern Sicilian coast. This region is a stable area of low current produced by the impingement towards the coast of the AIS and its bifurcation into two branches. The main branch heads towards the SE end of the Sicilian coast (Cape Passero) acting as a transport mechanism for the anchovy eggs and larvae. Along the AIS trajectory, there is a density front to the left of the current, facing downstream. This front is a consequence of the shoreward sloping of isopycnals that maintains the geostrophic flow, facilitating the mixing of deeper waters with surface layers and fertilization of coastal waters. The front enhances primary production assuring food availability for anchovy larvae during their advection by the AIS. The highest concentrations of larval anchovy were found off the SE Sicilian coast, in the area off Cape Passero. The greater average sizes of larvae found in this region, and their estimated age, support the evidence of advection by the AIS. The hydrographic features observed in this area, such as the existence of a well‐defined cyclonic vortex, implies the existence of upwelling in its centre, providing a suitable environment for sustained enhanced rates of primary production and allowing the larval population to maintain their relative position. This retention area is conceived as favourable for providing the necessary feeding conditions. The data acquired from a survey carried out to evaluate the anchovy recruitment strength confirm that larvae reach the juvenile stage in the south‐eastern coast of Sicily, since most of the young‐of‐the‐year anchovy were located in the Cape Passero region.  相似文献   

19.
The aims of this study were to describe the reproductive cycle of the European anchovy (Engraulis encrasicolus) off the south coast of Sicily and determine whether intra‐ and inter‐annual reproductive trait variations, if any, are adaptive responses which maximize reproductive success under environmental fluctuations. Biological data were collected from purse seine and mid‐water pelagic trawl commercial catches landed in Sciacca (Sicily) over 6 yr (1997–2002) at fortnightly intervals, analysing a total of 84 581 individuals. No inter‐annual changes in length at first reproduction were observed, with a mean pooled value of 11.26 cm for both sexes being found. Spawning intensity, indicated by gonadosomatic index, condition factor and length–weight relationships, seem to be governed by food availability prior to spawning. Anchovy reproductive investment was limited by the area's low primary production. There was a synchrony between reproductive cycle and temperature. Water warming marks the onset of a period of high water stability in the area, and its later cooling marks the onset of a period with low water stability. The relationship between reproductive cycle and temperature is therefore probably a reproductive strategy having evolved to ensure that spawning takes place during the period of the year when water column stability is higher, favouring food concentration and egg and larval retention in the spawning areas.  相似文献   

20.
Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) eggs exhibited different spatial structure on the scale of 0.75–2.5 km in two egg patches sampled in the Southern California Bight in April 2000. Plankton samples were collected at 4‐min intervals with a Continuous Underway Fish Egg Sampler (CUFES) on 5 × 5 km grids centered on surface drifters. Variograms were calculated for sardine and anchovy eggs in Lagrangian coordinates, using abundances of individual developmental stages grouped into daily cohorts. Model variograms for sardine eggs have a low nugget effect, about 10% of the total variance, indicating high autocorrelation between adjacent samples. In contrast, model variograms for anchovy eggs have a high nugget effect of 50–100%, indicating that most of the variance at the scales sampled is spatially unstructured. The difference between observed spatial patterns of sardine and anchovy eggs on this scale may reflect the behavior of the spawning adults: larger, faster, more abundant fish may organize into larger schools with greater structure and mobility that create smoother egg distributions. Size and mobility vary with population size in clupeoids. The current high abundance of sardines and low abundance of anchovy off California agree with the greater autocorrelation of sardine egg samples and the observed tendency for locations of anchovy spawning to be more persistent on the temporal scale of days to weeks. Thus the spatial pattern of eggs and the persistence of spawning areas are suggested to depend on species, population size and age structure, spawning intensity and characteristic physical scales of the spawning habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号