首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cross-protective properties of infectious bursal disease viruses (IBDVs) were studied. Viruses represented different subtypes of serotype 1, including recently isolated viruses (variants), and a serotype 2 virus. Chickens were vaccinated at 3 weeks of age with inactivated vaccines containing 10(5), 10(6), 10(7), or 10(8) mean tissue-culture infectious dose of a given virus and challenged 2 weeks later using either 10(2) or 10(3.5) mean embryo infectious dose (EID50) of either a standard virus or a variant serotype 1 virus. Protection was evaluated at 5 and 10 days post-challenge, based on gross and microscopic lesions, body weight, and bursa/body-weight ratios. The serotype 2 virus did not confer protection on birds challenged with the serotype 1 viruses. Vaccines made of variant viruses at the low doses protected chickens challenged with the high or low doses of either the standard or the variant viruses. Vaccines made of the standard or variant strains at low doses protected against high or low challenge doses of the standard strain. Vaccines made of the high dose of any of the standard strains protected chickens against the variant virus when the low challenge dose (10(2) EID50) was used, but not when the high challenge dose (10(3.5) EID50) was used. The lowest dose of the standard viruses vaccines required to confer protection against the variant virus varied depending on the strain. Results indicated that protection depended on the strain and dose of both the vaccine and challenge viruses and that the variant strains and standard strains share a common protective antigen(s).  相似文献   

2.
R L Witter 《Avian diseases》1987,31(4):752-765
Attempts were made, through selection of optimum viral strains, to develop improved vaccines against Marek's disease (MD). Seven attenuated serotype 1 strains and 22 avirulent serotype 2 strains, both alone and in combination with the FC126 strain of serotype 3, were screened for protective efficacy against challenge with virulent and very virulent MD viral strains. The three viruses selected as most promising were evaluated alone and in various combinations and compared with commercially available vaccines, including FC126, bivalent (FC126 + SB-1), and CV1988/C, in 12 separate assays. Two of these new viruses--301B/1 (serotype 2) and Md11/75C/R2 (serotype 1)--were exceptionally protective compared with prototype vaccine strains. Four new monovalent and polyvalent vaccines based on these two isolates protected chickens better than FC126 alone or CV1988/C alone. Three of these new vaccines provided better protection than the bivalent (FC126 + SB-1) vaccine. Protective synergism was noted commonly between viruses of serotypes 2 and 3 but only sporadically between serotypes 1 and 2 or between serotypes 1 and 3. Strain CVI988/C was protective but was no better than FC126 alone, and it was less effective than bivalent (FC126 + SB-1) vaccine, even when used as a bivalent vaccine with FC126 or SB-1.  相似文献   

3.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

4.
Chickens were protected against fowl cholera by ribosomal vaccines prepared from noncapsulated Pasteurella multocida. Passive hemagglutination (PHA) titers to lipopolysaccharide (LPS) and the degree of protection conferred by ribosomal vaccines were diminished or abolished when ribosomes were chromatographed on an immunoadsorbent column. Addition of subimmunogenic amounts of serotype 1 (homologous) LPS to highly purified ribosomes resulted in vaccines that protected against challenge exposure and produced PHA titers to homologous LPS. Addition of serotype 5 LPS to highly purified ribosomes did not protect chickens against challenge exposure with serotype 1 P multocida, but produced PHA titers to serotype 5 LPS. Combinations of serotype 1 ribosomal RNA and serotype 1 (homologous) LPS did not protect chickens or produce PHA titers to LPS. Purified ribosomes from Brucella abortus, Aspergillus fumigatus, and chicken liver were combined with LPS from P multocida and were evaluated as vaccines. Brucella abortus and A fumigatus ribosomes combined with LPS protected chickens as well as did bacterin made from whole cells of P multocida. Chicken liver ribosomes combined with LPS did not provide protection. To determine whether a protein carrier would substitute for ribosomes, methylated bovine albumin (MBA) was combined with LPS and evaluated as a vaccine. A serologic response to LPS was induced by MBA-LPS vaccine, but the vaccine offered no better protection than when LPS was used alone as vaccine. Ribosome-LPS vaccines produced serologic responses to LPS that were at least 5-fold greater than those produced by MBA-LPS vaccine.  相似文献   

5.
Of 13 field isolates of Pasteurella from chickens and ducks in Indonesia, 10 were confirmed as P. multocida subspecies multocida, one as P. multocida subspecies gallicida and one as P. multocida subspecies septica. Nine were capsular Type A four were Serotype 1, one was Serotype 4, one was Serotype 11, one was Serotypes 4,12, and the remaining six were untypable. Five isolates were pathogenic for mice and two were pathogenic for chickens. Both a trivalent vaccine which included local field isolates and an imported commercial vaccine, were efficacious in layer chickens against challenge with virulent reference and local field strains. Though not statistically significant, the protection provided by the trivalent vaccine against virulent field isolate challenge was slightly better and could provide an improvement over the currently used imported vaccine although further field trials are required. A bacterin vaccine produced from a Serotype 1 field isolate grown in the allantoic sac of embryonated chicken eggs provided chickens with good cross protection against heterologous serotype challenge.  相似文献   

6.
The object in this investigation was to determine the relationship between protective activity and antigenic structure of Haemophilus paragallinarum, serotypes 1 and 2. A close relationship exists in both serotypes between protective activity and colonial phenotypic form (iridescent and noniridescent). Protective activities of both serotypes were related to a heat-labile, trypsin-sensitive (L) antigen of iridescent form that produced serotype-specific agglutinin to chickens. The chickens having the agglutinins were protected against challenge exposure with homologous strain, but not with heterologous strain. The chickens injected with unencapsulated organisms of noniridescent form that were derived from encapsulated organisms of iridescent form failed to produce both serotype-specific agglutinins and protection against challenge exposure with homologous strain. Most of the chickens injected with serotype 1 strain produced both hemagglutination-inhibition antibody and serotype 1-specific agglutinin, whereas those injected with serotype 2 produced serotype 2-specific agglutinin and protected against homologous challenge exposure. The protective activity was found in saline extract derived from encapsulated organisms of serotype 1, but was absent in those of serotype 2.  相似文献   

7.
Due to serotype variations among different avian infectious bronchitis viruses isolated in Tunisia since 2000, protection of chicks, especially broiler flocks, with Mass H120 vaccine often fails. Therefore, association of CR88 (793B type) with H120 vaccines was used for better response. Challenge experiments were then conducted to evaluate tracheal and renal cross-protection in chickens immunized via nasal and eye drops. Conferred protection was measured by clinical signs and macroscopic lesions observed, based on scores attributed according to their severities. The results showed a low protection conferred by H120 alone, as vaccination did not reduce tracheal and kidney lesions (70% scored as 3) after TN20/00 virus challenge, which also led to 10% mortality. Conversely, the challenge results indicated that the combination of the 2 strains (H120/CR88) allow high protection. Based on the results of the challenge experiments, a vaccination protocol coupling CR88 to H120 was applied for industrial broiler flocks. Clinical observations and serological results confirmed that association of heterologous serotypes (H120 and CR88 vaccines) increased the levels of protection against infectious bronchitis viruses compared with the H120 vaccine given alone.  相似文献   

8.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

9.
A highly purified pilus vaccine prepared from cells of Bacteroides nodosus strain 198 provided a high level of protection against homologous challenge and small, not statistically significant, levels of protection against challenge with 4 other strains each from different serogroups. In a second experiment, a partially purified pilus vaccine from strain 198 induced significant immunity to 1 of 4 heterologous strains which were different from those used in the first experiment. In a third experiment a strain 198 whole cell vaccine produced significant immunity against 3 of 6 heterologous strains used in the first 2 experiments. There was no obvious relationship between the colony type, degree of piliation and level of cross-protection obtained against a particular strain. The results provide further evidence that immunogens associated with, but distinct from, the pilus are involved in cross-protection and that cross-protective antigens are common to some, but not all, strains.  相似文献   

10.
The protective efficacy of a live and killed non-encapsulated isogenic mutant of Streptococcus suis serotype 2 was determined in pigs, and compared with the efficacy of the capsulated wild-type strain. SPF pigs were vaccinated twice intramuscularly at 4 and 7 weeks of age with a dose of 1 x 10(9) formalin-killed CFU of the wild-type (WT-BAC), formalin-killed non-encapsulated mutant (CM-BAC) or live non-encapsulated mutant (CM-LIVE) strain. After 2 weeks, vaccinated pigs and non-vaccinated controls were challenged intravenously with 1 x 10(7) CFU of the homologous, wild-type S. suis serotype 2 strain. Protection was evaluated by clinical, bacteriological, serological and post-mortem examinations. All pigs vaccinated with WT-BAC were completely protected against challenge with the homologous serotype. Pigs vaccinated with CM-BAC were partially protected. Although all pigs vaccinated with CM-BAC survived the challenge, four out of five pigs developed clinical signs of disease for several days. Compared to the WT-BAC and CM-BAC, the CM-LIVE vaccine was less protective. Two out of five pigs vaccinated with CM-LIVE died in the course of the experiment and all of them developed specific clinical signs of disease for several days. The protective efficacy of the vaccines could be associated with serum antibody titers. Antibody titers against cells of wild-type and non-encapsulated mutant strains as well as against muramidase-released proteins (MRP) were high in pigs vaccinated with WT-BAC and CM-BAC. Pigs vaccinated with CM-LIVE showed lower antibody titers. Antibody titers against purified capsular polysaccharides (CPS) of S. suis serotype 2 were only found in pigs vaccinated with WT-BAC. These findings indicate that CPS and other bacterial components of WT-BAC are probably essential for full protection against homologous challenge.  相似文献   

11.
【目的】根据鸭疫里氏杆菌(Riemerella anatipestifer,RA)血清1型、2型贵州流行株制备二价灭活疫苗,为鸭疫里氏杆菌病的防控及疫苗研制提供研究资料。【方法】以血清1型RA(RA-G06株)、血清2型RA(RA-HS01株)地方流行株为菌种,通过涂板法测定菌株生长曲线,利用改良寇氏法计算菌株对鸭的半数致死量(median lethal dose, LD50),将2株菌培养至终浓度为1×1010 CFU/mL后等比例混合,以卡波姆为佐剂制备二价灭活疫苗,经疫苗质量检验后进行雏鸭免疫试验;通过检测免疫鸭血清中特异性抗体水平和攻毒保护试验评价疫苗的保护率,对攻毒试验鸭心脏、肝脏、脾脏和脑组织进行组织病理学观察。【结果】RA-G06株和RA-HS01株均在培养12 h时到达峰值,活菌数分别为2.1×1011和3.3×1011 CFU/mL,LD50分别为1.44×1010和2.63×108 CFU/mL;制备的疫苗安全性良...  相似文献   

12.
The hypothesis that an effective protection of progeny chickens against inclusion body hepatitis/hydropericardium syndrome (IBH/HP) can be achieved by dual vaccination of breeders with fowl adenovirus (FAV) serotype 4 and chicken anemia virus (CAV) was tested. Thus, 17-wk-old brown leghorn pullet groups were vaccinated by different schemes including single FAV (inactivated), single CAV (attenuated), FAV and CAV dually, or were not vaccinated (controls). Subsequent progenies of these breeders were challenged with the virulent strains FAV-341 and CAV-10343 following three strategies: 1) FAV-341 intramuscularly (i.m.) at day 10 of age (only FAV-vaccinated and control progenies); 2) FAV + CAV i.m. simultaneously at day 10 of age (all progenies); 3) CAV i.m. at day 1 and FAV orally at day 10 of age (all progenies). The induction of IBH/HP in these progenies was evaluated throughout a 10-day period. Both breeder groups vaccinated against FAV and those vaccinated against CAV increased virus neutralizing specific antibodies. Challenge strategy 1 showed 26.6% mortality in control progeny chickens and 13.3% in the progeny of FAV-vaccinated breeders. Presence of lesions in the liver of these groups showed no significant differences (P > 0.05), suggesting a discreet protective effect of the vaccine. Challenge strategy 2 showed 29.4% mortality in controls and 94% of chickens showed hepatic inclusion bodies (HIB). Single CAV vaccination of breeders did not demonstrate a beneficial effect, with both mortality and liver lesions resembling the nonvaccinated controls. FAV vaccination of breeders significantly reduced both mortality (7.4%) and liver lesions (26% HIB) (P < 0.05), providing protection against this challenge strategy. Dual vaccination of breeders with FAV and CAV proved to be necessary to achieve maximum protection of the progeny (no mortality and 7% HIB). Challenge strategy 3 produced no mortality but consistent liver damage in controls (96% HIB). In this case, both CAV and FAV + CAV-vaccinated breeders showed best protection results in terms of liver histopathology (8% and 0% HIB, respectively). FAV vaccination alone produced 24% HIB, similar to challenge strategy 2, demonstrating a lower protective effect.  相似文献   

13.
Avian pathogenic Escherichia coli strains are associated with a variety of extraintestinal poultry diseases, including airsacculitis, colisepticemia, and cellulitis. A number of E. coli serotypes are associated with these diseases, although the most prevalent serotype is O78. Fimbrial proteins expressed by these strains appear to be important virulence factors, including type 1 fimbriae, P fimbriae, and curli. We have been working to develop an effective vaccine to protect chickens against these diseases. We have previously shown that an attenuated Salmonella typhimurium strain expressing O78 lipopolysaccharide provides protection against challenge with an O78 avian pathogenic E. coli strain. In this work, we have constructed an attenuated S. typhimurium that expresses both the O78 lipopolysaccharide and E. coli-derived type 1 fimbriae. In these studies, chickens were vaccinated at day of hatch and again at 2 wk of age. Birds were challenged at 4 wk of age. We found that the vaccine candidate provided significant protection against airsacculitis as compared to untreated controls or birds vaccinated with an attenuated S. typhimurium that did not express any E. coli antigens. In a separate experiment, challenged vaccinates showed significant weight gain compared to challenged nonvaccinates. We were not able to demonstrate protection against E. coli O1 or O2 serotype challenge, nor against challenge with wild-type S. typhimurium.  相似文献   

14.
Vaccination of pigs with a killed culture of A. pleuropneumoniae serotype 5, strain K17 (subtype a) afforded a high degree of protection against challenge with strains L20 and T928 (subtype b). The reverse experiment showed that strain L20 gave good protection against challenge with strain K17 whereas strain T928 did not afford an acceptable protection against challenge with this strain.The considerable cross immunity shown to exist between strains K17 and L20 indicates a high degree of homogeneity of the antigenic determinants of the two strains involved in induction of protective immunity and suggest that antibodies to capsular subtype specific determinants may not play a significant role in the specific defence against A. pleuropneumoniae strains belonging to serotype 5. The finding that a vaccine prepared from strain T928 did not afford an acceptable protection against challenge with strain K17 indicates a variable expression among serotype 5 strains of the antigenic determinants which induce protective immunity against A. pleuropneumoniae infection.  相似文献   

15.
OBJECTIVE: To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody. STUDY DESIGN: Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carded out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel. RESULTS: The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multivalent vaccines, although protection achieved with the monovalent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus. CONCLUSION: The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

16.
Objective To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody.
Study design Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carried out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel.
Results The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multi-valent vaccines, although protection achieved with the mono-valent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus.
Conclusion The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

17.
In South Africa the incidence of NAD-independent Haemnophilus paragallinarum isolation from clinical cases is increasing. This study was carried out to test whether a commercially available coryza vaccine (Nobilis Coryza, Intervet International BV) could protect chickens against challenge with recent NAD-independent isolates. SPF chickens were vaccinated twice at 3 and 7 weeks of age and were challenged at 9 weeks of age with 5 different NAD-independent isolates of serotype A or C-3. The results after challenge show that the coryza vaccine induces good protection against challenge with the different South African NAD-independent isolates of H. paragallinarum, including serotype C-3.  相似文献   

18.
为了监测鸡新城疫、传染性支气管炎、禽流感(H9亚型)三联灭活疫苗(LaSota株+M41株+SS/94株)对H9亚型禽流感病毒流行毒株的免疫保护效果,采用H9亚型禽流感病毒SS/94株及2009—2010年现地分离的3株H9亚型禽流感病毒对已免疫上述三联灭活苗的SPF鸡进行攻毒试验。结果显示,试验鸡以0.3 mL/只的剂量免疫三联灭活苗后21 d,其H9亚型禽流感病毒的HI抗体效价可达8~11log2,此抗体水平可抵抗2×106EID50的H9亚型禽流感病毒SS/94株、BLCN09株、WDZ09株、YT10株的攻击,攻毒保护率均达90%(9/10)以上。可见,以SS/94株作为禽流感疫苗抗原制备的三联灭活苗具有良好的免疫原性,能使免疫鸡抵抗2009—2010年期间现地分离的多株H9亚型禽流感病毒的攻击。  相似文献   

19.
Avian pathogenic Escherichia coli (APEC) cause colibacillosis, a disease which is responsible for significant losses in poultry. Control of colibacillosis is problematic due to the restricted availability of relevant antimicrobial agents and to the frequent failure of vaccines to protect against the diverse range of APEC serogroups causing disease in birds. Previously, we reported that the increased serum survival gene (iss) is strongly associated with APEC strains, but not with fecal commensal E. coli in birds, making iss and the outer membrane protein it encodes (Iss) candidate targets for colibacillosis control procedures. Preliminary studies in birds showed that their immunization with Iss fusion proteins protected against challenge with two of the more-commonly occurring APEC serogroups (O2 and O78). Here, the potential of an Iss-based vaccine was further examined by assessing its effectiveness against an additional and widely occurring APEC serogroup (O1) and its ability to evoke both a serum and mucosal antibody response in immunized birds. In addition, tissues of selected birds were subjected to histopathologic examination in an effort to better characterize the protective response afforded by immunization with this vaccine. Iss fusion proteins were administered intramuscularly to four groups of 2-wk-old broiler chickens. At 2 wk postimmunization, chickens were challenged with APEC strains of the O1, O2, or O78 serogroups. One week after challenge, chickens were euthanatized, necropsied, any lesions consistent with colibacillosis were scored, and tissues from these birds were taken aseptically. Sera were collected pre-immunization, postimmunization, and post-challenge, and antibody titers to Iss were determined by enzyme-linked immunosorbent assay (ELISA). Also, air sac washings were collected to determine the mucosal antibody response to Iss by ELISA. During the observation period following challenge, 3/12 nonimmunized chickens, 1/12 chickens immunized with 10 microg of GST-Iss, and 1/12 chickens immunized with 50 microg of GST-Iss died when challenged with the O78 strain. No other deaths occurred. Immunized chickens produced a serum and mucosal antibody response to Iss and had significantly lower lesion scores than nonimmunized chickens following challenge, regardless of the challenge strain. This study expands on our previous report of the value of Iss as an immunoprotective antigen and demonstrates that immunization with Iss can provide significant protection of chickens against challenge with three different E. coli strains.  相似文献   

20.
R L Witter 《Avian diseases》1991,35(4):877-891
In earlier studies, a revertant serotype 1 Marek's disease virus (MDV), clone Md11/75C/R2, was found to be a highly protective vaccine virus but was mildly pathogenic for susceptible chickens. The term "revertant" indicates that the virus, after attenuation, gained virulence following backpassage in chickens. The present study is an attempt to develop a more attenuated but still protective vaccine virus from Md11/75C/R2. Forty-two derivative viruses or clones from Md11/75C/R2 were evaluated. Two of these, designated clones R2/23 and R2/29, induced viremia but little or no pathology in preliminary trials and were selected for further study. In a series of nine trials, both clones provided protection against challenge with very virulent MDV strains that was superior to that induced by turkey herpesvirus (HVT) and was not significantly different (P greater than 0.05) from that induced by a bivalent (HVT + SB-1) vaccine. Both clones appeared fully attenuated based on pathogenicity tests in susceptible antibody-negative chickens. Both clones gained virulence on backpassage in chickens, but this seemed of little concern because neither virus spread by contact to other chickens. Although the two clones were very similar, clone R2/23 appeared to have a slightly lower pathogenic potential following backpassage and thus best meets the combined criteria of safety and efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号