首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

2.
BACKGROUND: Cosyntropin (adrenocorticotropic hormone [ACTH]) stimulation tests are used to evaluate adrenal function. Low-dose ACTH stimulation tests are the most accurate method for diagnosing relative adrenal insufficiency in critically ill humans but have not been evaluated in foals. HYPOTHESIS: Peak serum cortisol concentrations in healthy foals will not be significantly different after intravenous administration of 1, 10, 100, and 250 microg of cosyntropin. ANIMALS: 14 healthy neonatal foals, 3-4 days of age. METHODS: A randomized cross-over model was used in which cosyntropin (1, 10, 100, or 250 microg) was administered intravenously on days 3 and 4 of life. Blood samples were collected before and 30, 60, 90, 120, and 150 minutes after administration of cosyntropin for determination of serum cortisol concentration. RESULTS: Serum cortisol concentrations did not significantly increase after administration of 1 microg of cosyntropin. Cortisol concentration peaked 30 minutes after administration of 10 microg of cosyntropin and 90 minutes after 100 and 250 microg of cosyntropin. There was no relationship between cosyntropin dose and serum cortisol concentration at 30 minutes. Compared with the 10-microg dose, 100 and 250 microg of cosyntropin induced significantly greater cortisol concentrations at 90 minutes, at which point the 10-microg cosyntropin-dose cortisol values were indistinguishable from baseline. There was no significant difference in the area under the cortisol concentration curve between the 100- and 250-microg doses. No effect of day of testing or foal weight on peak cortisol concentration was detected. CONCLUSIONS AND CLINICAL IMPORTANCE: The results of this study suggest that 10- and 100-microg doses of cosyntropin would be appropriate for evaluating adrenal function in neonatal foals.  相似文献   

3.
OBJECTIVE: To determine the lowest of 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, or 0.01 microg/kg) administered IV that stimulates maximal cortisol secretion in clinically normal dogs. ANIMALS: 10 clinically normal dogs. PROCEDURES: 5 dose-response experiments were performed in each of the dogs. Each dog received 5 doses of cosyntropin (1.0, 0.5, 0.1, 0.05, and 0.01 microg/kg) IV in random order (2-week interval between each dose). Serum samples for determination of cortisol concentrations were obtained before (baseline) and at 10, 20, 30, 40, 50, 60, 120, and 240 minutes after cosyntropin administration. RESULTS: Compared with baseline values, mean serum cortisol concentration in the study dogs increased significantly after administration of each of the 5 cosyntropin doses. Mean peak serum cortisol concentration was significantly lower after administration of 0.01, 0.05, and 0.1 microg of cosyntropin/kg, compared with findings after administration of 0.5 and 1.0 microg of cosyntropin/kg. After administration of 0.5 and 1.0 microg of cosyntropin/kg, mean peak serum cortisol concentration did not differ significantly; higher doses of cosyntropin resulted in more sustained increases in serum cortisol concentration, and peak response developed after a longer interval. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of cosyntropin IV at a dose of 0.5 microg/kg induced maximal cortisol secretion in healthy dogs. Serum cortisol concentration was reliably increased in all dogs after the administration of each of the 5 doses of cosyntropin. These data should be useful in subsequent studies to evaluate the hypothalamic-pituitary-adrenal axis in healthy and critically ill dogs.  相似文献   

4.
BACKGROUND: Although definitive diagnosis of hypoadrenocorticism usually is made by an adrenocorticotrophic hormone (ACTH) stimulation test using 250 microg/dog of synthetic ACTH (cosyntropin/tetracosactrin), increased costs have prompted a search for less-expensive diagnostic methods. HYPOTHESIS: A low-dose ACTH stimulation test (5 microg/kg) will distinguish between dogs with nonadrenal illness and hypoadrenocorticism. Additionally, administration of cosyntropin will not affect the results of another ACTH stimulation test performed 24 hours later. ANIMALS: Eight healthy adult dogs and 29 hospitalized dogs with suspected hypoadrenocorticism. METHODS: In this prospective study, each healthy dog received 4 ACTH stimulation tests. Dogs received either 5 microg/kg or 250 microg/dog of cosyntropin on day 1 and the alternate dose on day 2. The opposite dosing sequence was used after a 2-week washout period (days 15 and 16). Dogs with suspected Addison's disease received 2 ACTH stimulation tests, 24 hours apart, using either a dose of 5 microg/kg cosyntropin or 250 microg/dog on the 1st day and the alternate dose on the 2nd day. RESULTS: In healthy dogs, poststimulation cortisol concentrations on days 2 and 16 and days 1 and 15 were equivalent (90% confidence interval [CI]: 86.7-101.2%). In dogs with suspected Addison's disease, mean (+/-SD) cortisol responses to ACTH in the 5 microg/kg dose (16.2+/-7.7 microg/dL) and 250 microg/dog dose (15.9+/-6.3 microg/dL) were statistically equivalent (90% CI: 91.2-105.4%). CONCLUSIONS AND CLINICAL IMPORTANCE: Low-dose ACTH stimulation testing distinguishes between dogs with nonadrenal illness and hypoadrenocorticism. Additionally, the administration of 2 ACTH stimulation tests on consecutive days does not affect results of the second test.  相似文献   

5.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

6.
Plasma cortisol and immunoreactive (IR)-ACTH responses to 125 micrograms of synthetic ACTH (cosyntropin) administered IV or IM were compared in 10 clinically normal cats. After IM administration of cosyntropin, mean plasma cortisol concentration increased significantly (P less than 0.05) within 15 minutes, reached maximal concentration at 45 minutes, and decreased to values not significantly different from baseline concentration by 2 hours. After IV administration of cosyntropin, mean plasma cortisol concentration also increased significantly (P less than 0.05) at 15 minutes, but in contrast to IM administration, the maximal cortisol response took longer (75 minutes) and cortisol concentration remained significantly (P less than 0.05) higher than baseline cortisol concentration for 4 hours. Mean peak cortisol concentration (298 nmol/L) after IV administration of cosyntropin was significantly (P less than 0.05) higher than the peak value (248 nmol/L) after IM administration. All individual peak plasma cortisol concentrations and areas under the plasma cortisol response curve were significantly (P less than 0.05) higher after IV administration of cosyntropin than after IM administration. Mean plasma IR-ACTH concentration returned to values not statistically different from baseline by 60 minutes after IM administration of cosyntropin, whereas IR-ACTH concentration still was higher than baseline concentration 6 hours after IV administration. Peak plasma IR-ACTH concentration and area under the plasma IR-ACTH response curve also were significantly (P less than 0.05) higher after IV administration of cosyntropin. Results of the study confirmed that IV administration of cosyntropin induces significantly (P less than 0.05) greater and more prolonged adrenocortical stimulation than does IM administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
BACKGROUND: A syndrome of relative adrenal insufficiency has been identified in septic humans, and is associated with hypotension and death. Relative adrenal insufficiency is generally associated with basal serum cortisol concentration within or above the reference range and a blunted cortisol response to adrenocorticotropic hormone administration. It is unknown whether relative adrenal insufficiency occurs in septic dogs. HYPOTHESIS: That relative adrenal insufficiency occurs in septic dogs, and that relative adrenal insufficiency is associated with hypotension and mortality. ANIMALS: Thirty-three septic dogs admitted to a small animal intensive care unit. METHODS: Dogs were included in the study if they had a known or suspected infectious disease and had systemic inflammatory response syndrome. Dogs were excluded if they had disease or medication history expected to affect the hypothalamic-pituitary-adrenal axis. Serum cortisol and endogenous plasma adrenocorticotropic hormone concentrations were measured before, and serum cortisol concentration measured 1 hour after, intramuscular administration of 250 microg of cosyntropin/dog. The change in cortisol concentration (delta-cortisol) before and after cosyntropin administration was determined in each dog. RESULTS: Hypotension was associated with lower delta-cortisol values (OR 1.3; CI 1.0-1.9; P = .029). delta-Cortisol cutoff of 3.0 microg/dL was most accurate for predicting hypotension, survival to discharge, and 28-day survival. The rate of death in dogs with delta-cortisol < or = 3 microg/dL was 4.1 times that of dogs with delta-cortisol > 3 microg/dL (RR 4.1; CI 1.5-12.3; P = .01). CONCLUSIONS AND CLINICAL RELEVANCE: Delta-cortisol < or = 3 microg/dL after adrenocorticotropic hormone administration is associated with systemic hypotension and decreased survival in septic dogs.  相似文献   

8.
Plasma cortisol and immunoreactive (IR)-ACTH responses to 125 micrograms of tetracosactrin and cosyntropin--the formulation of synthetic ACTH available in Europe and the United States, respectively--were compared in 10 clinically normal cats. After administration of tetracosactrin or cosyntropin, mean plasma cortisol concentration reached a peak and plateaued between 60 and 120 minutes, then gradually decreased to values not significantly different from baseline concentration by 5 hours. Mean plasma IR-ACTH concentration reached a maximal value at 15 minutes after administration of tetracosactrin or cosyntropin and was still higher than baseline concentration at 6 hours. Difference between mean plasma cortisol and IR-ACTH concentrations for the tetracosactrin or cosyntropin trials was not significant at any of the sample collection times. Individual cats had some variation in the time of peak cortisol response after administration of either ACTH preparation. About half the cats had peak cortisol concentration at 60 to 90 minutes, whereas the remainder had the peak response at 2 to 4 hours. In general, however, peak cortisol concentration in the cats with delayed response was not much higher than the cortisol concentration at 60 to 90 minutes. Overall, these results indicate that tetracosactrin or cosyntropin induce a comparable, if not identical, pattern of adrenocortical responses when administered to healthy cats.  相似文献   

9.
Effects of etomidate on adrenocortical function in canine surgical patients   总被引:1,自引:0,他引:1  
Adrenocortical function in canine surgical patients given etomidate at 1 of 2 dosages (1.5 mg/kg of body weight or 3 mg/kg, IV) was evaluated and compared with that of dogs given thiopental (12 mg/kg, IV). The adrenocortical function was evaluated by use of adrenocorticotropic hormone (ACTH) stimulation tests and determination of plasma cortisol concentrations at 0 minute (base line) and 60 minutes after ACTH administration. At 24 hours before administration of either drug (ie, induction of anesthesia), each dog had an increase in plasma cortisol concentration when given ACTH. The ACTH stimulation tests were repeated 2 hours after induction of anesthesia. Dogs given thiopental had base-line plasma cortisol concentrations greater than preinduction base-line values, but did not increase plasma cortisol in response to ACTH stimulation. Postinduction ACTH stimulation tests in dogs given etomidate at either dose indicated base-line and 60-minute plasma cortisol concentrations that were not different from preinduction base-line values. Therefore, adrenocortical function was suppressed 2 and 3 hours after the administration of etomidate in canine surgical patients.  相似文献   

10.
The serum cortisol responses of 10 normal cats to natural adrenocorticotrophic hormone (ACTH) gel and synthetic ACTH (cosyntropin) were evaluated and compared. Following administration of either ACTH gel or cosyntropin, mean serum cortisol concentrations increased significantly (P less than 0.05) within 30 minutes and reached a maximal response (2.5 to 10 times basal values) at 90 minutes. The time to reach peak serum cortisol concentrations was variable, however, and occurred sooner after cosyntropin (30 to 60 minutes) than after ACTH gel administration (90 to 180 minutes). While ACTH gel tended to produce a prolonged cortisol response, the effects of cosyntropin were more transient, with serum cortisol concentrations returning to normal range within three hours after injection. Results of this study indicate that the administration of either ACTH gel or cosyntropin consistently produces an adequate adrenocortical response in the cat. Based on the time response studies, post ACTH cortisol samples should be collected 60 to 90 minutes after cosyntropin or 90 to 120 minutes after ACTH gel injection to ensure detection of peak adrenocortical response with either ACTH preparation.  相似文献   

11.
Plasma aldosterone concentrations were measured in response to adrenocorticotropic hormone (ACTH) gel administration in clinically normal dogs, in dogs with hypoadrenocorticism, and in dogs (with electrolyte abnormalities) that did not have hypoadrenocorticism. Baseline plasma aldosterone concentrations were determined from specimens obtained every 10 minutes for 3 hours from 2 dogs and every 30 minutes for 7.5 hours from 2 other dogs. During the evaluation period, plasma aldosterone concentrations varied by at least 50% in each dog. A randomized crossover design was used to compare changes in plasma aldosterone concentrations after administration of ACTH gel and physiologic NaCl solution. Dogs had significantly (P = 0.002) higher plasma aldosterone concentrations after administration of ACTH gel than after administration of NaCl solution. Plasma cortisol concentrations increased as expected after ACTH gel administration. Analysis of cortisol and aldosterone concentrations in the same specimens obtained at 7 sample collection times did not reveal significant linear correlation, and scatterplots did not indicate a nonlinear association. In addition, plasma aldosterone concentrations were determined in response to ACTH administration alone and to ACTH combined with a high dose of dexamethasone (0.1 mg/kg, IV). The plasma aldosterone response to ACTH alone was not significantly different from the response to ACTH combined with dexamethasone. For both tests, plasma aldosterone concentrations at 60 and 120 minutes after ACTH administration were significantly (P less than 0.0005 and P = 0.0001, respectively, increased, compared with base-line values. Six dogs with adrenocortical hypofunction, as determined by plasma cortisol concentrations before and after ACTH administration, had plasma aldosterone concentrations that were diminished or did not increase after ACTH administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this study was to investigate total baseline plasma cortisol and adrenocorticotropic hormone (ACTH) concentrations, and ACTH-stimulated cortisol concentrations in foals from birth to 12 wk of age. Plasma (baseline) cortisol and ACTH concentrations were measured in 13 healthy foals at birth and at 1, 2, 3, 4, 5, 7, 10, 14, 21, 28, 42, 56, and 84 d of age. Each foal received cosyntropin (0.1 μg/kg) intravenously. Plasma cortisol concentrations were measured before (baseline), and 30, and 60 min after cosyntropin administration at birth and at 3, 5, 7, 10, 14, 21, 28, 42, 56, and 84 d of age. Compared with baseline, cortisol concentration increased significantly 30 min after administration of cosyntropin on all days. Cortisol concentration was highest at birth, measured at 30 and 60 min after cosyntropin administration, compared with all other days. With the exception of birth measurements, cortisol concentration was significantly higher on day 84, measured at 30 and 60 min after cosyntropin administration, when compared with all other days. Baseline plasma ACTH was lowest at birth when compared with concentrations on days 2, 3, 4, 5, 7, 10, 14, 42, 56, and 84. Administration of 0.1 μg/kg of cosyntropin, IV, reliably induces cortisol secretion in healthy foals. Differences in the magnitude of response to cosyntropin are observed depending on the age of the foal. These data should serve as a reference for the ACTH stimulation test in foals and should be useful in subsequent studies to evaluate the hypothalamic-pituitary-adrenal axis in healthy and critically ill foals.  相似文献   

13.
A prospective study was undertaken to compare intravenous tetracosactrin at doses of 5 microg/kg and 250 microg for diagnosing hyperadrenocorticism in dogs. Both healthy dogs and dogs with pituitary-dependent hyperadrenocorticism were evaluated with the two doses of the drug, and serum cortisol concentrations were compared at 60 minutes post-stimulation. Some of the dogs had additional samples taken at 90 and 120 minutes. For four dogs with hyperadrenocorticism, timed samples were also obtained at 150, 180 and 240 minutes post-injection. Cortisol concentrations 60 minutes after stimulation with either 5 microg/kg or 250 microg intravenous tetracosactrin were similar for both healthy dogs and dogs with hyperadrenocorticism. The lower dose can therefore be used for diagnosing hyperadrenocorticism in dogs.  相似文献   

14.
Plasma cortisol responses of 19 healthy cats to synthetic ACTH and dexamethasone sodium phosphate (DSP) were evaluated. After administration of 0.125 mg (n = 5) or 0.25 mg (n = 6) of synthetic ACTH, IM, mean plasma cortisol concentrations increased significantly (P less than 0.05) at 15 minutes, reached a peak at 30 minutes, and decreased progressively to base-line values by 120 minutes. There was no significant difference (P greater than 0.05) between responses resulting from the 2 dosage rates. After administration of 1 mg of DSP/kg of body weight, IV (n = 7), mean plasma cortisol concentrations decreased at postadministration hour (PAH) 1, and were significantly lower than control cortisol concentrations at PAH 4, 6, 8, 10, and 12 (P less than 0.01). Administration of 0.1 mg of DSP/kg, IV (n = 8) or 0.01 mg of DSP/kg, IV (n = 14) induced results that were similar, but less consistent than those after the 1 mg of DSP/kg dosage. Mean plasma cortisol concentrations returned to base-line values by PAH 24. There was not a significant difference between the 3 doses (P greater than 0.05) at most times. Measurement of endogenous ACTH in 16 healthy cats revealed plasma ACTH of less than 20 to 61 pg/ml. Seemingly, administration of synthetic ACTH consistently induced a significant (P less than 0.05) adrenocortical response in healthy cats. On the basis of time-response studies, post-ACTH stimulation cortisol samples should be collected at 30 minutes after ACTH administration to ensure detection of peak adrenocortical response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The present study was designed to compare basal and stimulated concentrations of 3,5,3'-triiodothyronine (T3), thyroxine (T4), and cortisol in serum of dogs fasted 12 or 18 hours (to represent overnight fasting) or 24 or 36 hours (to represent prolonged inappetence) with those of dogs that were not fasted. Twenty-five adult Beagle bitches were allotted to 5 experimental fasting groups (0, 12, 18, 24, and 36 hours). Blood samples for hormonal analyses were obtained 4, 3, 2, and 1 hour before food was removed; at the time of food removal; 1 hour after food was removed; and every 2 hours during experimental fasting until 0800 hours on the day fasting ended. Dogs were injected with 5 IU of thyrotropin, IV, and 2.2 IU of adrenocorticotropin/kg, IM, to evaluate thyroidal and adrenocortical endocrine reserves. Additional blood samples were collected 0.5, 1, 2, 3, and 4 hours after injections were given. Serum concentrations of T3, T4, and cortisol were determined by validated radioimmunoassays. Body weights and ages of the dogs and food consumption during a 2-hour preliminary feeding period before dogs were fasted did not differ among fasting groups. Length of fasting did not affect serum concentrations of T3 or T4 in dogs at 12, 18, 24, or 36 hours after food was removed. Mean serum concentrations of cortisol in dogs fasted 12 or 24 hours were lower than those in dogs that were not fasted. Serum concentrations of the hormones after thyrotropin and adrenocorticotropin were injected were not affected by fasting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
OBJECTIVE: To determine whether a high dose of levomedetomidine had any pharmacologic activity or would antagonize the sedative and analgesic effects of dexmedetomidine in dogs. ANIMALS: 6 healthy Beagles. PROCEDURE: Each dog received the following treatments on separate days: a low dose of levomedetomidine (10 microg/kg), IV, as a bolus, followed by continuous infusion at a dose of 25 microg/kg/h; a high dose of levomedetomidine (80 microg/kg), IV, as a bolus, followed by continuous infusion at a dose of 200 microg/kg/h; and a dose of isotonic saline (0.9% NaCl) solution, IV, as a bolus, followed by continuous infusion (control). For all 3 treatments, the infusion was continued for 120 minutes. After 60 minutes, a single dose of dexmedetomidine (10 microg/kg) was administered IV. Sedation and analgesia were scored subjectively, and heart rate, blood pressure, respiratory rate, arterial blood gas partial pressures, and rectal temperatures were monitored. RESULTS: Administration of levomedetomidine did not cause any behavioral changes. However, administration of the higher dose of levomedetomidine enhanced the bradycardia and reduced the sedative and analgesic effects associated with administration of dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of dexmedetomidine alone may have some cardiovascular benefits over administration of medetomidine, which contains both dexmedetomidine and levomedetomidine. Further studies are needed to confirm the clinical importance of the effects of levomedetomidine in dogs.  相似文献   

17.
OBJECTIVE: To evaluate the effects of medetomidine and its antagonism with atipamezole in goats. STUDY DESIGN: Prospective randomized crossover study with 1 week between treatments. ANIMALS: Six healthy 3-year-old neutered goats (three male and three female) weighing 39.1-90.9 kg (60.0 +/- 18 kg, mean +/- SD). METHODS: Goats were given medetomidine (20 microg kg(-1), IV) followed, 25 minutes later, by either atipamezole (100 microg kg(-1), IV) or saline. Heart and respiratory rate, rectal temperature, indirect blood pressure, and mechanical threshold were measured, and sedation and posture were scored and blood samples obtained to measure epinephrine, norepinephrine, free fatty acids, glucose, and cortisol concentrations at baseline (immediately before medetomidine), 5 and 25 minutes after medetomidine administration, and at 5, 30, 60, and 120 minutes after the administration of antagonist or saline. Parametric and nonparametric tests were used to evaluate data; p < 0.05 was considered significant. RESULTS: Medetomidine decreased body temperature, heart rate, and respiratory rate and increased mean arterial blood pressure, cortisol, and glucose. Recumbency occurred 89 +/- 50 seconds after medetomidine administration. All goats were standing 86 +/- 24 seconds after atipamezole administration whereas all goats administered saline were sedate and recumbent at 2 hours. Tolerance to compression of the withers and metacarpus increased with medetomidine. From 5 to 120 minutes after saline or atipamezole administration, there were differences in body temperature, glucose, and cortisol but none in heart rate or blood pressure. Three of the six goats receiving saline developed bloat; five of six urinated. After atipamezole, four of six goats developed piloerection and all goats were agitated and vocalized. CONCLUSION: At the doses used, atipamezole antagonized the effects of medetomidine on recumbency, sedation, mechanical threshold, and the increase in glucose. Atipamezole increased the rate of return of cortisol toward baseline, and prevented further decline in rectal body temperature. CLINICAL RELEVANCE: Atipamezole may be used to antagonize some, but not all effects of medetomidine.  相似文献   

18.
The utility of a low dose (1 microgram/kg) synthetic ACTH challenge test in detecting moderate reductions in adrenocortical sensitivity in dogs was examined. First, the adrenocortical responses to an intravenous bolus of either 1 microgram/kg or 0.25 mg per dog of synthetic ACTH were compared in two groups of normal dogs. While plasma cortisol concentrations were similar in both groups 60 minutes after ACTH injection, dogs given 0.25 mg ACTH showed continued elevations in plasma cortisol concentrations at 90 and 120 minutes after ACTH injection. Later, the dogs previously tested with the 1 microgram/kg ACTH challenge were given a single intramuscular dose of prednisone (2.2 mg/kg) and retested with 1 microgram/kg of ACTH one week later. Plasma cortisol levels were significantly reduced after ACTH injection in dogs previously given prednisone demonstrating that a single intramuscular prednisone dose causes detectable adrenocortical suppression one week after administration. The 1 microgram/kg synthetic ACTH challenge test provides a sensitive means for evaluating adrenocortical suppression in dogs.  相似文献   

19.
Serum cortisol concentrations were measured in five healthy dogs in response to five adrenocorticotropic hormone (ACTH) preparations. Cortisol concentrations were similar at time 0 (pre-ACTH) and at 30 and 60 minutes after injection of all forms of ACTH. However, at 90 and 120 minutes post-ACTH, serum cortisol concentrations were significantly lower following injection of two compounded forms of ACTH. The data showed that injection of four compounded forms of ACTH caused elevations in serum cortisol concentrations of a similar magnitude as cosyntropin in samples collected 60 minutes after administration; but concentrations at later times varied, depending on the type of ACTH used.  相似文献   

20.
OBJECTIVE: To describe the pharmacokinetics of phenylbutazone and oxyphenbutazone after IV administration in miniature donkeys. ANIMALS: 6 clinically normal miniature donkeys. PROCEDURE: Blood samples were collected before and 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 300, 360, and 480 minutes after IV administration of phenylbutazone (4.4 mg/kg of body weight). Serum was analyzed in triplicate by use of high-performance liquid chromatography for determination of phenylbutazone and oxyphenbutazone concentrations. The serum concentration-time curve for each donkey was analyzed separately to estimate model-independent pharmacokinetic variables. RESULTS: Serum concentrations decreased rapidly after IV administration of phenylbutazone, and they reached undetectable concentrations within 4 hours. Values for mean residence time ranged from 0.5 to 3.0 hours (median, 1.1 hour), whereas total body clearance ranged from 4.2 to 7.5 ml/kg/min (mean, 5.8 ml/kg/min). Oxyphenbutazone appeared rapidly in the serum; time to peak concentration ranged from 13 to 41 minutes (mean, 26.4 minutes), and peak concentration in serum ranged from 2.8 to 4.0 mg/ml (mean, 3.5 microg/ml). CONCLUSION AND CLINICAL RELEVANCE: Clearance of phenylbutazone in miniature donkeys after injection of a single dose (4.4 mg/kg, IV) is rapid. Compared with horses, miniature donkeys may require more frequent administration of phenylbutazone to achieve therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号