首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactivity of the excited spin-orbit state of Cl with H2 to yield ground-state HCl products is forbidden by the Born-Oppenheimer (BO) approximation. We used new ab initio potential energy surfaces and exact quantum scattering calculations to explore the extent of electronic nonadiabaticity in this reaction. In direct contrast to recent experiments, we predict that the BO-allowed reaction of the ground spin-orbit state will be much more efficient than the BO-forbidden reaction of the excited spin-orbit state. Also, Coriolis coupling opens up an electronically nonadiabatic inelastic channel, which competes substantially with reaction.  相似文献   

2.
The van der Waals forces in the entrance valley of the Cl + HD reaction are shown here to play a decisive role in the reaction's dynamics. Exact quantum mechanical calculations of reactive scattering on a potential energy surface without Cl-HD van der Waals forces predict that the HCl and DCl products will be produced almost equally, whereas the same calculations on a new ab initio potential energy surface with van der Waals forces show a strong preference for the production of DCl. This preference is also seen in crossed molecular beam experiments on the reaction. The study of chemical reaction dynamics has now advanced to the stage where even comparatively weak van der Waals interactions can no longer be neglected in calculations of the potential energy surfaces of chemical reactions.  相似文献   

3.
果园土壤低硼条件下,于龙眼假种皮发育期间,树冠分别喷施1?Cl2、0.2%H3BO3、1?-Cl2 0.2%H3BO3溶液及清水3次,探讨Ca、B营养对龙眼果实品质及采后耐贮性的影响。结果表明,0.2%H3BO3、1?Cl2 0.2%H3BO3处理显著提高了果实组织B含量,对增大龙眼果型、提高单果重、增加果实的可食率和果肉糖含量有明显效应,但0.2%H3BO3处理的效果优于1?Cl2 0.2%H3BO3处理,两处理均降低了贮藏期间果实失重率、提高好果率,减缓了果肉营养成分的变化;1?Cl2处理显著提高了果实组织Ca含量,也提高了龙眼果实的耐贮藏性,但对果实品质的影响不明显。  相似文献   

4.
The degree of electronic and nuclear coupling in the Cl + H2 reaction has become a vexing problem in chemical dynamics. We report slow electron velocity-map imaging (SEVI) spectra of ClH2- and ClD2-. These spectra probe the reactant valley of the neutral reaction potential energy surface, where nonadiabatic transitions responsible for reactivity of the Cl excited spin-orbit state with H2 would occur. The SEVI spectra reveal progressions in low-frequency Cl.H2 bending and stretching modes, and are compared to simulations with and without nonadiabatic couplings between the Cl spin-orbit states. Although nonadiabatic effects are small, their inclusion improves agreement with experiment. This comparison validates the theoretical treatment, especially of the nonadiabatic effects, in this critical region of the Cl + H2 reaction, and suggests strongly that these effects are minor.  相似文献   

5.
喷施钙硼对龙眼叶片和果实矿质营养状况的影响   总被引:3,自引:0,他引:3  
果园土壤低硼条件下,于龙眼假种皮发育期间,树冠分别喷施1?C l2、0.2%H3BO3、1?C l2 0.2%H3BO3溶液及清水3次,探讨Ca、B营养对龙眼叶片、果实组织矿质营养状况的影响。结果表明,喷施1?C l2明显提高叶片和果实组织Ca水平,降低叶片、果皮和果肉的B水平,但对叶片N、P、K、Mg的影响不明显;喷施0.2%H3BO3显著提高了叶片和果实组织B水平,促进了叶片和果实对N、P、K、Mg的积累,明显降低了果皮的Ca含量,但对叶片Ca含量无明显影响;喷施1?C l2 0.2%H3BO3明显提高了叶片和果实组织Ca、B水平,促进了叶片和果实组织对N、K、P、Mg的积累,但Ca、B增加的幅度分别低于单独喷施1?C l2、0.2%H3BO3的;此外,在叶片和果皮组织中,Ca与B易产生拮抗作用。  相似文献   

6.
The reaction of the chlorine atom with methane has been the focus of numerous studies that aim to test, extend, and/or modify our understanding of mode-selective reactivity in polyatomic systems. To this point, theory has largely been unable to provide accurate results in comparison with experiments. Here, we report an accurate global potential energy surface for this reaction. Quasi-classical trajectory calculations using this surface achieve excellent agreement with experiment on the rotational distributions of the hydrogen chloride (HCl) product. For the Cl + CHD(3) → HCl + CD(3) reaction at low collision energies, we confirm the unexpected experimental finding that CH-stretch excitation is no more effective in activating this late-barrier reaction than is the translational energy, which is in contradiction to expectations based on results for many atom-diatom reactions.  相似文献   

7.
Flynn GW 《Science (New York, N.Y.)》1989,246(4933):1009-1015
Very high resolution lasers allow spectroscopic pictures to be taken following a collision between two molecular reactants. The features of these "pictures" are the electronic, vibrational, rotational, and translational motions of the atomic particles, which relate the quantum states of the reactants to the quantum states of the products. Such state-to-state kinetic information can be used to test the shape and nature of the interaction potential that controls the collision process. The potential itself is akin to a map of the terrain through mountains and valleys where elevation is a measure of energy instead of height. Accurate mapping of this potential surface leads to an understanding of the forces which control rates and mechanisms of chemical reactions. The application of four different advanced laser techniques to the study of collisions between "hot" hydrogen(H) atoms and carbon dioxide(CO(2)) molecules has provided a wealth of information about both reactive and nonreactive collisions for this system. The availability of data for rotationally, vibrationally, and translationally inelastic excitation of CO(2) by H atoms, when compared with data for reactive events producing OH + CO, provides insights into the dynamics of collisions between H and CO(2), and illustrates the future promise of these powerful techniques for elucidating features of potential energy surfaces.  相似文献   

8.
A remarkable number of reactions between neutral free radicals and neutral molecules have been shown to remain rapid down to temperatures as low as 20 kelvin. The rate coefficients generally increase as the temperature is lowered. We examined the reasons for this temperature dependence through a combined experimental and theoretical study of the reactions of O(3P) atoms with a range of alkenes. The factors that control the rate coefficients were shown to be rather subtle, but excellent agreement was obtained between the experimental results and microcanonical transition state theory calculations based on ab initio representations of the potential energy surfaces describing the interaction between the reactants.  相似文献   

9.
The dynamics of chemisorbed species as they swing to-and-fro on their adsorption sites may be directly observed with electron-stimulated desorption. The observation of the thermal disorder in adsorbate chemical bond directions, through studies of the thermal excitation of librational modes, allows one to visualize the potential energy surfaces controlling the structure and dynamics of adsorbates on single crystal metal and semiconductor surfaces. This information may be useful in understanding surface diffusion as well as the spatial aspects of surface chemical reactions.  相似文献   

10.
11.
Lasers are used in increasingly sophisticated ways to carry out reactions between molecules in selected vibrational, rotational, and electronic states and to probe the product states of chemical reactions. Such investigations are providing unprecedented insights into chemical reaction dynamics, the study of the detailed motions that molecules undergo in simple chemical reactions. In many cases it is possible to describe the influence that specific types of molecular excitation have on reactive events. Experiments are also being carried out to leam about chemical reactivity as a function of the alignment of reagents. There is increasing excitement concerning the potential of laser methods to interrogate the transition states of molecular reactions.  相似文献   

12.
Computational studies of basic chemical processes not only provide numbers for comparison with experiment or for use in modeling complex chemical phenomena such as combustion, but also provide insight into the fundamental factors that govern molecular structure and change which cannot be obtained from experiment alone. We summarize the results of three case studies, on HCO, OH + H(2), and O + C(2)H(2), which illustrate the range of problems that can be addressed by using modern theoretical techniques. In all cases, the potential energy surfaces were characterized by using ab initio electronic structure methods. Collisions between molecules leading to reaction or energy transer were described with quantum dynamical methods (HCO), classical trajectory techniques (HCO and OH + H(2)), and statistical methods (HCO, OH + H(2), and O + C(2)H(2)). We can anticipate dramatic increases in the scope of this work as new generations of computers are introduced and as new chemistry software is developed to exploit these computers.  相似文献   

13.
The intermediate structures formed through radiationless transitions are termed "dark" because their existence is inferred indirectly from radiative transitions. We used ultrafast electron diffraction to directly determine these transient structures on both ground-state and excited-state potential energy surfaces of several aromatic molecules. The resolution in space and time (0.01 angstrom and 1 picosecond) enables differentiation between competing nonradiative pathways of bond breaking, vibronic coupling, and spin transition. For the systems reported here, the results reveal unexpected dynamical behavior. The observed ring opening of the structure depends on molecular substituents. This, together with the parallel bifurcation into physical and chemical channels, redefines structural dynamics of the energy landscape in radiationless processes.  相似文献   

14.
Monte Carlo and molecular dynamics methods have been used to study the shearing behavior of an atomic fluid between two plane-parallel solid surfaces having the face-centered cubic (100) structure. A distorted, face-centered cubic solid can form epitaxially between surfaces that are separated by distances of one to five atomic diameters. Under these conditions a critical stress must be overcome to initiate sliding of the surfaces over one another at fixed separation, temperature, and chemical potential. As sliding begins, a layer of solid exits the space between the surfaces and the remaining layers become fluid.  相似文献   

15.
This discussion of a few preliminary experiments with nickel points out some of the potential uses of low energy electron diffraction in improving our understanding of many types of surface phenomena. The first, and probably the most basic use, is in the study of clean surfaces. As illustrated in this article, the physical properties of the surface layer of atoms may be totally unlike those in the bulk of the crystal. It is necessary to understand such phenomena before a thorough understanding of chemical effects on surfaces can be achieved. The adsorption of gases, oxidation and corrosion, and the formation of epitaxial layers can all be studied in great detail by low energy electron diffraction.  相似文献   

16.
BC Stipe  MA Rezaei  W Ho 《Science (New York, N.Y.)》1998,279(5358):1907-1909
Tunneling electrons from the tip of a scanning tunneling microscope were used to induce and monitor the reversible rotation of single molecules of molecular oxygen among three equivalent orientations on the platinum(111) surface. Detailed studies of the rotation rates indicate a crossover from a single-electron process to a multielectron process below a threshold tunneling voltage. Values for the energy barrier to rotation and the vibrational relaxation rate of the molecule were obtained by comparing the experimental data with a theoretical model. The ability to induce the controlled motion of single molecules enhances our understanding of basic chemical processes on surfaces and may lead to useful single-molecule devices.  相似文献   

17.
Atomic and molecular orbitals are among the tools used by chemists to view the world. The validity of this view for reaction systems can be experimentally probed by examination of the chemistry of electronically excited states and, in particular, by comparison of the reactivities of states having different orbital occupations (electron configurations). Reactivity changes associated with electron configuration are instructive with regard to chemists' views of molecular orbital interactions, but electronic excitation can also influence the course of a chemical reaction by increasing the energy content of the system or by affecting access to different potential energy surfaces by changing spin, orbital symmetry, or spin-orbit level. These various effects are illustrated by studies of gasphase transition metal-mediated H-H and C-H bond-activation processes.  相似文献   

18.
Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.  相似文献   

19.
The Born-Oppenheimer approximation of uncoupled electronic and nuclear motion is a standard tool of the computational chemist. However, its validity for molecule-metal surface reactions, which are important to heterogeneous catalysis, has been questioned because of the possibility of electron-hole pair excitations. We have performed experiments and calculations on the scattering of molecular hydrogen from a catalytically relevant metal surface, obtaining absolute probabilities for changes in the molecule's velocity parallel to the representative Pt(111) surface. The comparison for in-plane and out-of-plane scattering and results for dissociative chemisorption in the same system show that for hydrogen-metal systems, reaction and diffractive scattering can be accurately described using the Born-Oppenheimer approximation.  相似文献   

20.
Lee YT 《Science (New York, N.Y.)》1987,236(4803):793-798
The experimental investigation of elementary chemical reactions is presently in a very exciting period. The advance in modern microscopic experimental methods, especially crossed molecular beams and laser technology, has made it possible to explore the dynamics and mechanisms of important elementary chemical reactions in great detail. Through the continued accumulation of detailed and reliable knowledge about elementary reactions, we will be in a better position to understand, predict, and control many time-dependent macroscopic chemical processes that are important in nature or to human society. In addition, because of recent improvements in the accuracy of theoretical predictions based on large-scale ab initio quantum mechanical calculations, meaningful comparisons between theoretical and experimental findings have become possible. In the remaining years of the 20th century, there is no doubt that the experimental investigation of the dynamics and mechanisms of elementary chemical reactions will play a very important role in bridging the gap between the basic laws of mechanics and the real world of chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号