首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】研究旨在分析场、出生季节、出生月份、出生类型和性别对湖羊初生重性状的影响,并估计该性状的遗传力。【方法】运用SAS 9.2软件对2021年新疆地区3个规模化湖羊养殖企业共计4 570只母羊所产的8 352只羔羊初生重作非遗传因素分析,使用DMU软件对湖羊初生重性状进行方差组分估计,并使用两种单性状动物模型估计该性状的遗传力,根据赤池信息准则(Akaike’s information criterion, AIC)确定最佳固定效应组合和动物模型。【结果】场、出生季节、出生月份、出生类型和性别对湖羊的初生重均有极显著影响(P<0.01)。场1和场2羔羊初生重无显著差异(P>0.05),且均极显著大于场3羔羊的初生重(P<0.01);冬季出生的羔羊的初生重整体较大,其中以1月出生的羔羊初生重最大;出生类型越丰富,其羔羊初生重越小,各出生类型间羔羊初生重均呈现出极显著差异(P<0.01);根据单性状动物模型(考虑母体效应)的计算得出,湖羊初生重性状的直接、母体、总体遗传力分别为0.251、0.668、0.211,属于中等遗传力。【结论】在对羊场首年的生产数据分析...  相似文献   

2.
Abstract

In this study, genetic parameters were estimated for the Danish populations of Danish Marsk, Finnish Landrace, Gotland Pelt and Spel for birth weight (BW), average daily gain until two months (DG2) and litter size (LS). A multivariate animal model was used for estimation of genetic parameters, including fixed effects, both direct and maternal additive genetic effects, common litter effects and permanent environmental effects. Mean birth weight and DG2 ranged from, respectively, 3.39 kg and 262 g to 4.61kg and 286 g. Litter size ranged from 1.60 to 2.07. Direct heritability for BW ranged from 0.12 to 0.24, and maternal heritability for BW was about 0.23 for all breeds. Direct heritability of DG2 ranged from 0.19 to 0.33. The heritability for LS was between 0.08 and 0.13. The significant genetic correlations between the direct and maternal effect on both BW and DG2 were negative. The genetic correlations between the growth traits and LS were not uniform.  相似文献   

3.
This study examined the viability of 4,554 D’man lambs born alive at Errachidia research station in south-eastern Morocco between 1988 and 2009. Lamb survival to 1, 10, 30 and 90 days old was 0.95, 0.93, 0.93 and 0.92, respectively. The majority of deaths (85.7 %) occurred before 10 days of age. Type and period of birth both had a significant effect on lamb survival traits, whereas age of dam and sex of lamb did not. The study revealed a curvilinear relationship between lamb’s birth weight and survival traits from birth to 90 days, with optimal birth weights for maximal perinatal and preweaning survival varying according to type of birth from 2.6 to 3.5 kg. Estimation of variance components, using an animal model including direct and maternal genetic effects, the permanent maternal environment as well as fixed effects, showed that direct and maternal heritability estimates for survival traits between birth and 90 days were mostly low and varied from 0.01 to 0.10; however, direct heritability for survival at 1 day from birth was estimated at 0.63. Genetic correlations between survival traits and birth weight were positive and low to moderate. It was concluded that survival traits of D’man lambs between birth and 90 days could be improved through selection, but genetic progress would be low. However, the high proportion of the residual variance to total variance reinforces the need to improve management and lambing conditions.  相似文献   

4.
Genetic parameters for birth weight (BW), weaning weight (WW) and pre-weaning daily gain (PWDG) in Iranian Mehraban sheep were estimated using restricted maximum likelihood (REML) procedure. Six different animal models were fitted, differentiated by including or excluding maternal effects, with and without covariance between maternal and direct genetic effects. The estimates for direct heritability ranged from 0.26 to 0.53, 0.18 to 0.32 and 0.15 to 0.33 for BW, WW and PWDG respectively. The estimates were substantially higher when maternal effects, either genetic or environmental, were ignored in the model. The results of this study show that full models with maternal genetic and environmental effects gave the most accurate estimates for early growth traits.  相似文献   

5.
Data from a French experimental herd recorded between 1990 and 1997 were used to estimate genetic parameters for individual birth and weaning weight, as well as litter size of Large White pigs using restricted maximum likelihood (REML) methodology applied to a multivariate animal model. In addition to fixed effects the model included random common environment of litter, direct and maternal additive genetic effects. The data consisted of 1928 litters including individual weight observations from 18 151 animals for birth weight and from 15 360 animals for weaning weight with 5% of animals transferred to a nurse. Estimates of direct and maternal heritability and proportion of the common environmental variance for birth weight were 0.02, 0.21 and 0.11, respectively. The corresponding values for weaning weight were 0.08, 0.16 and 0.23 and for litter size 0.22, 0.02 and 0.06, respectively. The direct and the maternal genetic correlations between birth and weaning weight were positive (0.59 and 0.76). Weak positive (negative) genetic correlations between direct effects on weight traits and maternal effects on birth weight (weaning weight) were found. Negative correlations were found between direct genetic effect for litter size and maternal genetic effects on all three traits. The negative relationship between litter size and individual weight requires a combined selection for litter size and weight.  相似文献   

6.
Data from a French experimental herd recorded between 1990 and 1997 were used to estimate genetic parameters for individual birth and weaning weight, as well as litter size of Large White pigs using restricted maximum likelihood (REML) methodology applied to a multivariate animal model. In addition to fixed effects the model included random common environment of litter, direct and maternal additive genetic effects. The data consisted of 1928 litters including individual weight observations from 18151 animals for birth weight and from 15360 animals for weaning weight with 5% of animals transferred to a nurse. Estimates of direct and maternal heritability and proportion of the common environmental variance for birth weight were 0.02, 0.21 and 0.11, respectively. The corresponding values for weaning weight were 0.08, 0.16 and 0.23 and for litter size 0.22, 0.02 and 0.06, respectively. The direct and the maternal genetic correlations between birth and weaning weight were positive (0.59 and 0.76). Weak positive (negative) genetic correlations between direct effects on weight traits and maternal effects on birth weight (weaning weight) were found. Negative correlations were found between direct genetic effect for litter size and maternal genetic effects on all three traits. The negative relationship between litter size and individual weight requires a combined selection for litter size and weight.  相似文献   

7.
Variance components and genetic parameters were estimated for post-weaning (i.e., at 6, 9, and 12 months of age) body measurements in Muzaffarnagari sheep maintained at the Central Institute for Research on Goats, Makhdoom, Mathura, India over a period of 29 years (1976 through 2004). Records of 2,965 lambs descended from 162 rams and 1,213 ewes were used in the study. Analyses were carried out by REML fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Moderate estimates of direct heritability for body length (0.11–0.15), height at withers (0.14–0.19), and heart girth (0.14–0.24) of lambs were observed at post-weaning stages of growth. Results suggest that only direct additive genetic effects were important for body measurements at post-weaning stages of growth, and hence, modest rates of genetic progress were possible for post-weaning body measurements.  相似文献   

8.
Estimates of (co)variance components were obtained for weights at birth, weaning and 6, 9 and 12 months of age in Chokla sheep maintained at the Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India, over a period of 21 years (1980–2000). Records of 2030 lambs descended from 150 rams and 616 ewes were used in the study. Analyses were carried out by restricted maximum likelihood (REML) fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Heritability estimates for weight at birth, weaning and 6, 9 and 12 months of age were 0.20, 0.18, 0.16, 0.22 and 0.23, respectively in the best models. Additive maternal and maternal permanent environmental effects were both significant at birth, accounting for 9% and 12% of phenotypic variance, respectively, but the source of maternal effects (additive versus permanent environmental) at later ages could not be clearly identified. The estimated repeatabilities across years of ewe effects on lamb body weights were 0.26, 0.14, 0.12, 0.13, and 0.15 at birth, weaning, 6, 9 and 12 months of age, respectively. These results indicate that modest rates of genetic progress are possible for all weights.  相似文献   

9.
Estimates of genetic parameters for growth traits in Kermani sheep   总被引:3,自引:0,他引:3  
Birth weight (BW), weaning weight (WW), 6-month weight (W6), 9-month weight (W9) and yearling weight (YW) of Kermani lambs were used to estimate genetic parameters. The data were collected from Shahrbabak Sheep Breeding Research Station in Iran during the period of 1993-1998. The fixed effects in the model were lambing year, sex, type of birth and age of dam. Number of days between birth date and the date of obtaining measurement of each record was used as a covariate. Estimates of (co)variance components and genetic parameters were obtained by restricted maximum likelihood, using single and two-trait animal models. Based on the most appropriate fitted model, direct and maternal heritabilities of BW, WW, W6, W9 and YW were estimated to be 0.10 +/- 0.06 and 0.27 +/- 0.04, 0.22 +/- 0.09 and 0.19 +/- 0.05, 0.09 +/- 0.06 and 0.25 +/- 0.04, 0.13 +/- 0.08 and 0.18 +/- 0.05, and 0.14 +/- 0.08 and 0.14 +/- 0.06 respectively. Direct and maternal genetic correlations between the lamb weights varied between 0.66 and 0.99, and 0.11 and 0.99. The results showed that the maternal influence on lamb weights decreased with age at measurement. Ignoring maternal effects in the model caused overestimation of direct heritability. Maternal effects are significant sources of variation for growth traits and ignoring maternal effects in the model would cause inaccurate genetic evaluation of lambs.  相似文献   

10.
The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49 011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal’s age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi‐trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.  相似文献   

11.
Genetic parameters of mature weight are needed for effective selection and genetic evaluation. Data for estimating these parameters were collected from 1963 to 1985 and consisted of 32,018 mature weight records of 4,175 Hereford cows that were in one control and three selection lines that had been selected for weaning weight, for yearling weight, or for an index combining yearling weight and muscle score for 22 yr. Several models and subsets of the data were considered. The mature weight records consisted of a maximum of three seasonal weights taken each year, at brand clipping (February and March), before breeding (May and June), and at palpation (August and September). Heritability estimates were high (0.49 to 0.86) for all models considered, which suggests that selection to change mature weight could be effective. The model that best fit the data included maternal genetic and maternal permanent environmental effects in addition to direct genetic and direct permanent environmental effects. Estimates of direct heritability with this model ranged from 0.53 to 0.79, estimates of maternal heritability ranged from 0.09 to 0.21, and estimates of the genetic correlation between direct and maternal effects ranged from -0.16 to -0.67 for subsets of the data based on time of year that mature weight was measured. For the same subsets, estimates of the proportions of variance due to direct permanent environment and maternal permanent environment ranged from 0.00 to 0.09 and 0.00 to 0.06, respectively. Using a similar model that combined all records and included an added fixed effect of season of measurement of mature weight, direct heritability, maternal heritability, genetic correlation between direct and maternal effects, proportion of variance due to direct permanent environmental effects, and proportion of variance due to maternal permanent environmental effects were estimated to be 0.69, 0.13, -0.65, 0.00, and 0.04, respectively. Mature weight is a highly heritable trait that could be included in selection programs and maternal effects should not be ignored when analyzing mature weight data.  相似文献   

12.
In the present study, (co)variance components and genetic parameters in Nellore sheep were obtained by restricted maximum likelihood (REML) method using six different animal models with various combinations of direct and maternal genetic effects for birth weight (BW), weaning weight (WW), 6-month weight (6MW), 9-month weight (9MW) and 12-month weight (YW). Evaluated records of 2075 lambs descended from 69 sires and 478 dams over a period of 8 years (2007–2014) were collected from the Livestock Research Station, Palamaner, India. Lambing year, sex of lamb, season of lambing and parity of dam were the fixed effects in the model, and ewe weight was used as a covariate. Best model for each trait was determined by log-likelihood ratio test. Direct heritability for BW, WW, 6MW, 9MW and YW were 0.08, 0.03, 0.12, 0.16 and 0.10, respectively, and their corresponding maternal heritabilities were 0.07, 0.10, 0.09, 0.08 and 0.11. The proportions of maternal permanent environment variance to phenotypic variance (Pe2) were 0.07, 0.10, 0.07, 0.06 and 0.10 for BW, WW, 6MW, 9MW and YW, respectively. The estimates of direct genetic correlations among the growth traits were positive and ranged from 0.44(BW-WW) to 0.96(YW-9MW), and the estimates of phenotypic and environmental correlations were found to be lower than those of genetic correlations. Exclusion of maternal effects in the model resulted in biased estimates of genetic parameters in Nellore sheep. Hence, to implement optimum breeding strategies for improvement of traits in Nellore sheep, maternal effects should be considered.  相似文献   

13.
绵羊生长性状母本效应方差组分、遗传参数估计的研究   总被引:5,自引:0,他引:5  
本文利用公畜母畜模型和公畜外祖父模型估计了初生重、断奶重的直接加性遗传方差、母本遗传方差和遗传参数,得出初生重的直接加性遗传效应、母本遗传效应和总的加性遗传效应的遗传力分别为:0.164、0.101、0.103;断奶重相应的各遗传力为:0.076、0.108、0.081。初生重和断奶重二性状加性遗传效应和母本遗传效应间的遗传相关为:-0.57和-0.36。  相似文献   

14.
Correlations between genetic expression in lambs when dams were young (1 yr), middle-aged (2 and 3 yr), or older (older than 3 yr) were estimated with three-trait analyses for weight traits. Weights at birth (BWT) and weaning (WWT) and ADG from birth to weaning were used. Numbers of observations were 7,731, 9,518, 9,512, and 9,201 for Columbia (COLU), Polypay (POLY), Rambouillet (RAMB), and Targhee (TARG) breeds of sheep, respectively. When averaged, relative estimates for WWT and ADG were similar across breeds. Estimates were variable across breeds. On average, direct heritability was greater when environment was young dams (.44 for BWT and .34 for WWT) than when environment was dams of middle age or older (.24 and .28 for BWT and .20 and .16 for WWT, respectively). Maternal heritability was greater when dams were middle-aged or older (.28 and .22 vs .18) for BWT but was greater when dams were younger (.10 vs .05 and .04) for WWT. The estimates of genetic correlations for direct effects across age of dam environments averaged .32 for birth weight and averaged .70 for weaning weight. Average estimates of maternal genetic correlations across age of dam classes were .36 or less for both BWT and WWT. Average estimates of correlations among maternal permanent environmental effects were .49 or less across age of dam classes. Total maternal effects accounted for .33 to .42 of phenotypic variance for BWT and for .09 to .26 of phenotypic variance for WWT. The average estimates of genetic correlations between expressions of the same genotypes with different ages of dams suggest that measurements of BWT of lambs with dams in young, middle, and older age classes should be considered to be separate traits for genetic evaluation and that for WWT measurements with young age of dam class and combined middle and older age of dam classes should be considered to be separate traits for genetic evaluation.  相似文献   

15.
M. Chimonyo  K. Dzama  E. Bhebhe   《Livestock Science》2006,105(1-3):69-77
Genetic parameters for individual birth weight (IBWT), total number of pigs born (NBT), number of pigs born alive (NBA), number of pigs born dead (NBD) and litter weight at birth (LBWT) were estimated using 1961 Mukota pigs kept at the University of Zimbabwe Farm, Harare, Zimbabwe. Variance components were estimated for IBWT based on a direct-maternal genetic effects model. The genetic relationships among NBT, NBA, NBD and LBWT were assessed using a multi-trait direct effects model. For LBWT, the direct, maternal and common environmental litter proportions on the phenotypic variance were 0.090, 0.033 and 0.009, respectively. After adjustment of IBWT for NBA, phenotypic fractions were 0.091, 0.034 and 0.011 for direct, maternal and litter effects. The correlation between the direct and maternal genetic effects of IBWT was − 0.354 and − 0.295, with and without adjustment for NBT. Heritabilities for NBT, NBA, NBD and LBWT were 0.020, 0.030, 0.088 and 0.196, respectively. Differences in the maternal heritability and the heritability for LBWT, a trait of the dam, are different due to accumulation of observations per litter. Maternal genetic effects are, therefore, of less importance than in highly selected European breeds.  相似文献   

16.
A total of 11,815 weight records from 23,94 Japanese Black calves was used to estimate direct, maternal, direct permanent environmental, and maternal permanent environmental effects on growth from birth to 356 d of age. The data were collected from a herd of Japanese Black cattle in Shiroshi city, Miyagi prefecture, Japan. A random regression model, including parity of dam and year-season of calving-sex of calf as fixed effects and animal, dam, animal permanent environmental, and maternal permanent environmental as random effects, was fitted to the data using Legendre polynomials for age of calf. Direct heritability estimates increased from 0.38 at birth to 0.65 at 120 d of age, decreased to 0.38 at 300 d, and then increased again up to 0.47 at 356 d. The ratio of animal permanent environmental variance to phenotypic variance decreased from 0.41 at birth to 0.12 at 90 d, and then increased gradually up to 0.40 at 270 d and oscillated around this value up to the end of the test period. Maternal genetic heritabilities increased from 0.04 at birth to 0.09 at 120 d and then decreased to 0.06 thereafter, whereas the variance ratios due to maternal permanent environment were fairly constant across the age trajectory, fluctuating around the value of 0.03. Direct genetic, phenotypic, maternal genetic, animal permanent environmental, and maternal permanent environmental correlations between different ages were all positive, and they generally decreased as the interval between ages increased. These correlations were lower between weights from nonadjacent ages than those between weights from adjacent ages. Results suggest that selection on preweaning weights would have a positive effect on weights at later ages.  相似文献   

17.
The present study was carried out from 1999 to 2003 to determine the genetic and environmental influences of faecal egg count (FEC), an indicator of host resistance, in adult Jamunapari goats with naturally acquired gastrointestinal nematode parasite infections (predominantly Haemonchus contortus). FEC data on 670 records of Jamunapari goats descended from 54 bucks and 208 does were used in this study. Analyses were carried out by restricted maximum likelihood estimation, fitting an animal model. Four different animal models ignoring or including maternal genetic or permanent environmental effects were fitted. Different environmental effects, that is, sampling year, month and the sex of the animals, significantly (P<0.01) influenced FECs in the goats. Direct heritability estimates were inflated substantially for this trait when maternal effects were ignored. The direct heritability estimates for the trait ranged from 0.11 to 0.16 depending on the model used. Low estimates of maternal heritability (m(2)=0.06) and the fraction of variance due to maternal permanent environmental effects (c(2)=0.09) for FECs were observed in the present study. The results suggest that direct and permanent environmental maternal effects were important for this trait; however, maternal additive effects had less impact on this trait. These results also indicate that modest rates of genetic progress appear possible for FECs.  相似文献   

18.
The effect of ewe maternal behaviour score on lamb and litter survival   总被引:1,自引:0,他引:1  
The study was carried out on a commercial New Zealand sheep farm with high ewe reproductive rates and lamb survival produced through intensive selection in its Coopworth flock for maternal ability.Heritability and repeatability estimates were derived for ewe maternal behaviour score (MBS) and litter survival (LIS). Heritability estimates were derived for lamb survival as a trait of the lamb (LAS) for all lambs, for twin (LAS2) and for triplet (LAS3) lambs.MBS and LIS were measured on 1954 dams, for a maximum of four parities: 1997, 1998, 1999 and 2000. MBS was measured at tagging on a 5-point scale (1=poor, 5=excellent) when the dam's lambs were between 12 and 36 h old. The mean MBS in this study was 3.3 and increased with litter size. LIS was measured from birth to weaning. Mean litter survival was 83%. LIS increased significantly as MBS increased (P<0.01). LIS decreased as the size of the litter increased (P<0.01). Age of dam was a nonsignificant effect on LIS (P>0.05).LAS was measured from birth to weaning on 4171 Coopworth lambs. Mean LAS was higher for lambs born as twins compared to lambs born as singles and lowest for lambs born as triplets (P<0.01). LAS was lower for lambs born to dams aged 2 years. This effect was significant for all lambs, regardless of litter size at birth and for the triplet lamb data set (P<0.01). The effects of age of dam and sex of lamb on twin lamb survival were not significant (P>0.05). Ewe lamb survival rate was higher when compared to ram lambs in the full data set, however the relationship was reversed for the triplet lamb data set where ram lamb survival was greatest (P<0.01). LAS decreased as the MBS of its dam increased (P<0.01). The relationship was significant for lambs in the full data set and the twin data set (P<0.05).MBS and LIS were under minimal genetic control. The heritability and repeatability for MBS were both 0.09. The heritability and repeatability for dam LIS were 0.0 and 0.11. Heritability for LAS over all lambs attributed to direct effects was 0.14, while the heritability attributed to maternal effects was 0.11. The heritability for twin (LAS2) and triplet (LAS3) lamb survival differed. Heritability attributed to direct and maternal effects were 0.0 and 0.21, respectively, for twin lambs and 0.08 and 0.16, respectively, for triplets.The genetic correlation between maternal and direct effect for LAS was −0.74. It is possible that the genes that regulate physiological and biochemical processes for survival are incompatible with the genes that enhance ewe-lamb bonding. For example, the genes that regulate the physiological factors to reduce gregariousness at parturition may in fact be the same genes that encourage isolation in the neonate from its littermates and dam.There is minimal genetic variation in this flock for lamb survival and maternal traits. Low genetic variation suggests that selection will be ineffective, and that farmers must consider environment and management techniques for improving lamb survival.  相似文献   

19.
Genetic parameters were estimated using REML with animal models for number of lambs born and 18-mo body weight in Rambouillet sheep. Number of lambs born was modeled either as repeated measurements on the same trait or as different traits at different ages. The original data for number of lambs born were separated according to age of the ewe into two classes: 2 and 3 yr, and older than 3 yr. Numbers of ewes with lambing records for the age classes were 653 and 466 with 1,106 and 1,118 records, respectively. For the data set that included all ages, the number of ewes was 684 with 2,224 records, and for 18-mo body weight the number of ewes measured was 557. For number of lambs born, the animal model included random genetic, permanent environmental, and residual environmental effects and fixed effects for age of ewe, year of lambing, and month of year of lambing. Lambing day within season was used as a covariate. For 18-mo body weight, year of birth of ewe was used as a fixed effect. Actual age in days when the ewe was weighed was used as a covariate. Estimates of heritability for number of lambs born by age group were .04, for 2- and 3-yr old ewes, and .06, for ewes greater than 3 yr old, from the two-trait (two age of ewe classes) analyses and .06 when all ages were included. Estimates of heritability for number of lambs born from the single-trait analyses were somewhat less than estimates from two-trait analyses. Estimate of genetic correlation between number of lambs born for the 2 and 3 yr and the >3 yr classes was near unity (1.00), which suggests that a repeated measures model for number of lambs born is adequate for making selection decisions. Estimate of genetic correlation between number of lambs born and 18-mo body weight was .35 with a heritability estimate of .48 for 18-mo body weight. The estimate of genetic correlation suggests that selection for increased number of lambs born would result in increased 18-mo body weight.  相似文献   

20.
Estimates of genetic parameters resulting from various analytical models for birth weight (BWT, n = 4,155), 205-d weight (WWT, n = 3,884), and 365-d weight (YWT, n = 3,476) were compared. Data consisted of records for Line 1 Hereford cattle selected for postweaning growth from 1934 to 1989 at ARS-USDA, Miles City, MT. Twelve models were compared. Model 1 included fixed effects of year, sex, age of dam; covariates for birth day and inbreeding coefficients of animal and of dam; and random animal genetic and residual effects. Model 2 was the same as Model 1 but ignored inbreeding coefficients. Model 3 was the same as Model 1 and included random maternal genetic effects with covariance between direct and maternal genetic effects, and maternal permanent environmental effects. Model 4 was the same as Model 3 but ignored inbreeding. Model 5 was the same as Model 1 but with a random sire effect instead of animal genetic effect. Model 6 was the same as Model 5 but ignored inbreeding. Model 7 was a sire model that considered relationships among males. Model 8 was a sire model, assuming sires to be unrelated, but with dam effects as uncorrelated random effects to account for maternal effects. Model 9 was a sire and dam model but with relationships to account for direct and maternal genetic effects; dams also were included as uncorrelated random effects to account for maternal permanent environmental effects. Model 10 was a sire model with maternal grandsire and dam effects all as uncorrelated random effects. Model 11 was a sire and maternal grandsire model, with dams as uncorrelated random effects but with sires and maternal grandsires assumed to be related using male relationships. Model 12 was the same as Model 11 but with all pedigree relationships from the full animal model for sires and maternal grandsires. Rankings on predictions of breeding values were the same regardless of whether inbreeding coefficients for animal and dam were included in the models. Heritability estimates were similar regardless of whether inbreeding effects were in the model. Models 3 and 9 best fit the data for estimation of variances and covariances for direct, maternal genetic, and permanent environmental effects. Other models resulted in changes in ranking for predicted breeding values and for estimates of direct and maternal heritability. Heritability estimates of direct effects were smallest with sire and sire-maternal grandsire models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号