首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Systematically varied reaction times and concentrations of trifluoroacetic acid (TFA) have been used to remove polysaccharides associated with suberin isolated from potato wound periderm, thereby augmenting spectroscopic determinations of the molecular structure of this protective plant polyester. Treatments with dilute TFA left a residual insoluble material for which both solid-state 13C and 1H NMR spectra displayed significant improvements in resolution without compromising the integrity of the protective plant polyester, whereas higher concentrations of TFA made it possible to achieve controlled hydrolysis of the suberin aliphatic or aromatic domains. Among the isolated fragments were two hydroxyphenyl derivatives reported previously in lignins and a novel aliphatic-aromatic ester trimer that is identified provisionally. Together these protocols help to characterize the carbohydrate types that are bound covalently to the suberin polyester and to identify the interunit covalent linkages among the aliphatic ester, phenolic, and carbohydrate moieties in suberized potato tissue. The strategies described herein may also advance molecular-level investigations of lignocellulosic materials or vegetable tissues that exhibit strengthened intercellular adhesion.  相似文献   

2.
Post-harvest toughening of asparagus spears is associated with a large increase in monomeric and diferulic acids in the cell walls of stem tissues. The purpose of this study has been to investigate the distribution of these phenolic components among cell wall polymers and the role they play in the formation of associated pectic-xylan-phenolic complexes in relation to post-harvest toughening. The phenolic esters are found in all the extractable polysaccharide fractions, particularly the 0.5 M KOH fraction, as well as the insoluble cellulose-rich residue. The storage-related increase occurs in all fractions but is most prominent in the 0.5 M KOH-soluble components. Degradation of 0.5 M KOH subfractions with pure polysaccharide degrading enzymes has confirmed the occurrence of pectic-xylan-phenolic complexes in which ferulic acid and its dehydrodimers are attached to the xylan component but not to the pectic component. Studies on cell separation show that the maturation- and storage-related increase in thermal stability of cell adhesion (and therefore texture) is probably due to an increase in phenolic cross linking of xylans mainly in the parenchyma tissues. This overcomes the thermal lability of the pectic polysaccharides that are responsible for cell adhesion in immature tissues. The storage-induced appearance of some of the diferulic acid moieties in a number of wall polymer fractions supports the hypothesis that the storage affect is a wound-induced response rather than a continuation of maturation-related activity.  相似文献   

3.
The molecular composition of humic acids (HA) extracted from compost at increasing maturity stages was determined by off-line TMAH-thermochemolysis-GC-MS, in combination with solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies. While spectroscopy measurements followed the bulk changes, thermochemolysis provided a detailed molecular variation of HA composition. Both thermochemolysis and spectroscopy indicated that polysaccharides, alkyl, cyclic, and aromatic compounds were the predominant components of HA, the stable fraction of compost. NMR dipolar dephasing (DD) experiments confirmed that HA extracts contained lignin in lower amount than its oxidized degradation products. The progressive compost maturity was reflected in HA extracts by a decrease of carbohydrate content and a selective preservation of hydrophobic alkyl molecules, such as medium- and long-chain fatty acids, aliphatic alcohols, linear hydrocarbons, and plant polyester derivatives, like long-chain alkyl dicarboxylic acids, and ω-hydroxyacids. Spectroscopy results showed a concomitant entrapment in HA of biolabile compounds, such as peptidic moieties. The wide range of identified lipid components and plant biomarkers may represent useful tools to trace origin, quality, and transformation of amended compost in soil ecosystems.  相似文献   

4.
The monomeric composition of suberin extracts obtained by gradual alkaline methanolysis of Quercus suber cork was determined by gas chromatography-mass spectrometry (GC-MS). Results show that 1-alkanols and alkanoic and alpha,omega-alkanedioic acids are preferentially removed upon mild alkaline conditions, whereas mid-chain-modified omega-hydroxyalkanoic acids are preferentially removed under stronger alkaline conditions. Saturated omega-hydroxyalkanoic acids are found to be abundant in all suberin extracts. These results are consistent with two distinct suberin fractions with different locations in cork cell walls and/or esterification degrees. It is proposed that these fractions correlate with the two main suberin peaks in the solid state (13)C NMR spectra of cork and suberin extracts. Quantitative GC-MS analysis showed that suberin monomers comprise approximately 30% (w/w) of the suberin extracts, the remaining comprising nonvolatile structures with high M(n) values, as measured by vapor pressure osmometry. The presence of a large fraction of high molecular weight aliphatic structures in suberin extracts is supported by the corresponding NMR spectra.  相似文献   

5.
Pineapple (Ananas comosus [L.] Merrill) is one of the economically cultivated crops in Taiwan, which is grown mostly on acid soil. Aluminum (Al) is phytotoxic and sometimes inhibits root growth of crops in strongly acid soils. This study was conducted to evaluate the role in Al resistance of root‐apex cell walls of four important pineapple cultivars (Cayenne, Tainung No. 6, Tainung No. 13, and Tainung No. 17). The cell‐wall characteristics of root apices were determined using Fourier transform infrared spectroscopy (FTIR) and solid‐state 13C‐nuclear–magnetic resonance spectroscopy (13C‐NMR). The results show that the carboxylic and phenolic groups were highest in the cell wall of Tainung No.17 and lowest in that of Cayenne. Aluminum adsorption by cell wall could be described by Freundlich equation. The adsorption of Al by the cell wall of root apices was highest in Tainung No.17 and lowest in Cayenne. Tainung No.17 contained more carboxylic and phenolic groups in its cell wall of the root apices, causing more Al adsorption and so more damage to its root apices than that of the other three pineapple cultivars.  相似文献   

6.
A new method has been developed for the quantitative determination of hydroxycinnamic acids participating in ester or ether linkages to the cell wall polymers. The method is based on mild alkaline hydrolysis followed by acid hydrolysis or mild alkaline hydrolysis, which partially removed esterified phenolic acids, and high-temperature concentrated alkaline treatment, which cleaved both the ester and ether linkages. It was found that traditional mild alkaline hydrolysis and acid hydrolysis released only part of the ester- and ether-linked phenolic acids, respectively. Approximately half (44.0-47.9%) of the total ester-linked p-coumaric acid and 18.2-32.6% of the total esterified ferulic acid remained ester-linked to the mild alkali-soluble lignin polymers, and 55.0-72.0% of the total ether-linked p-coumaric acid and 37.5-53.8% of the total ether-linked ferulic acid remained ether-linked to the solubilized lignin molecules after the acid hydrolysis. To correct this, a second mild alkaline hydrolysis of the alkali-soluble lignin preparations and acid hydrolysis of the solubilized lignin fractions, obtained from the first acid hydrolysis of the cell wall materials, was investigated. On the basis of this new method, a majority of the cell wall p-coumaric acid (55.8-81.5%) was found to be ester-linked to cell wall components, mainly to lignin, and about half of the cell wall ferulic acid is etherified through its phenolic oxygen to the cell wall lignin component, whereas the remainder is esterified to the cell wall hemicelluloses and/or lignin in different plant materials.  相似文献   

7.
To analyze the accuracy of the Klason lignin method as applied for the determination of lignin contents in plant based-food products, Klason lignin preparations from curly kale, pears, whole wheat grains, and corn bran were chemically characterized. Characterization included routine ash and protein determinations and the extraction of fat/waxes as well as cutin/suberin depolymerization and extraction of the liberated monomers. Fat/wax and cutin/suberin amounts in the Klason lignin preparations were determined gravimetrically, and their compositions were analyzed by using GC-MS. Typical fat, wax, and cutin (and suberin) constituents such as saturated and unsaturated fatty acids, hydroxy and/or epoxy fatty acids, and phenolic acids were identified in all samples, whereas the detection of long-chain hydrocarbons, alcohols, and ketones, sterols, stanols, and dioic acids was dependent on the sample analyzed. Estimation of the contribution of non-lignin compounds to the Klason lignin contents reduced the noncorrected Klason lignin contents of the insoluble fibers from 28.7% (kale), 22.8% (pear), 14.8% (wheat), and 9.9% (corn) to maximum lignin contents of 6.5% (kale), 16.4% (pear), 4.9% (wheat), and 2.3% (corn). These data demonstrate that certain commonly used statements such as "cereal brans are highly lignified" need to be revised.  相似文献   

8.
The oyster mushroom (Pleurotus ostreatus) is widely cultivated on wheat straw (Triticum aestivum); however, there is a need to better understand the relationship between the chemical composition of the compost and mushroom growth. Wheat straw was degraded over a period of 63 days by P. ostreatus during which time it was sampled at weekly intervals. Off-line thermochemolysis with tetramethylammonium hydroxide and solid-state (13)C NMR were then used in the molecular characterization of the undegraded wheat straw and the degraded samples. The degraded wheat straw samples had a lower proportion of syringyl- to guaiacyl-derived moieties and cinnamyl- to guaiacyl-derived moieties than the undegraded control. There were increases in both guaiacyl and syringyl acid to aldehyde ratios with composting time, which showed that side-chain oxidation has been mediated by P. ostreatus. The (13)C NMR spectra confirmed the increase in carboxyl content but indicated that the overall lignin and methoxyl contents remained relatively constant, although some nonsystematic variations were observed. The spectra also showed a decrease in amorphous noncellulosic polysaccharides in relation to the crystalline cellulose upon degradation.  相似文献   

9.
The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ~0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.  相似文献   

10.
Residue quality is a key factor governing biodegradation and the fate of C in soil. Most investigations of relationships existing between crop residue quality and soil decomposition have been based on determining the relative proportions of soluble, cellulose, hemicellulose and lignin components. However, cell wall cohesion is increased by tight interconnections between polysaccharides and lignin that involve cross-linking agents (phenolic acids). The aim of this study was to determine the role of lignin composition and phenolic acids on short- to medium-term decomposition of maize roots in soil. Sixteen maize genotypes, presenting a range of chemical characteristics related to root lignin and phenolic acids, were used. The main components were characterized by Van Soest (VS) extraction and cell wall acid hydrolysis, and the non-condensed Syringyl and Guaicyl lignin monomers, esterified phenolic acids and etherified phenolic acids were determined. Maize roots were then incubated in soil under controlled conditions (15 °C, −80 kPa moisture) for 796 days. Results showed that VS extraction over-estimated the structural hemicellulose content and that VS lignin was more recalcitrant than Klason lignin. The tremendous effect of cell wall chemical characteristics was shown by marked variations (almost two-fold differences in C mineralization), between the 16 maize roots. Decomposition was controlled by soluble residue components in the short term whereas lignin and the interconnections between cell wall polymers were important in the long-term. Notably the cell wall domain rich in non-condensed lignin and esterified phenolic acids was prone to decomposition whereas the presence of etherified ferulic acids seemed to hamper cell wall decomposition.  相似文献   

11.
Cell wall polysaccharides of 'Scarlet Warren' winter squash ( Cucurbita maxima ) were investigated before and after thermal processing. Linkage analysis of polysaccharides was done by gas chromatography coupled to mass spectrometry (GC-MS). The linkage analysis showed the cell wall polysaccharide compositions of raw and cooked squash were similar. The total pectic polysaccharides (galacturonan, rhamnogalacturonan, arabinan, and arabinogalactan) contents of the cell walls of both raw and cooked squash were 39 mol %. The amounts of pectic polysaccharides and xyloglucan in the cell walls of squash showed little alteration on heating. The cellulose content of the raw and cooked cell walls was relatively high at 47 mol %, whereas the xyloglucan content was low at 4 mol %. Solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy techniques were used to examine the molecular motion of the polysaccharides in the cell walls. The mobility of highly flexible galactan depends on the water content of the sample, but no difference was seen between raw and cooked samples. Likewise, the mobility of semimobile pectic polysaccharides was apparently unaltered by cooking. No change was detected in the rigid cellulose microfibrils on cooking.  相似文献   

12.
Recent studies have indicated that some structural features of arabinoxylans, the major cell wall polysaccharides, might be potential quality markers in the selection of rye breeding materials. To specify the most appropriate characteristics, the differences in the structure of cell wall components were studied in two ryes with high and low breadmaking qualities. Two cell wall fractions were isolated from the outer layers of the grain (pooled shorts and bran fractions) by a consecutive water extraction with alpha-amylase (WE-A) and proteinase K (WE-P). Polysaccharides predominated in the WE-A fraction (approximately 64%, mainly arabinoxylans). By contrast, the WE-P fraction contained mostly protein (approximately 63%), and its level of polysaccharides was relatively low (approximately 18%). The 1H NMR and sugar analysis of the ammonium sulfate precipitated subfractions revealed that the WE-A was built of four arabinoxylan populations with marked structural differences (arabinose-to-xylose ratios, Ara/Xyl, of approximately 0.3, 0.5, 0.8, and 1.2). Instead, the arabinoxylans present in the WE-P were generally enriched in disubstituted xylopyranosyl residues. The ratio of phenolic components to arabinose residues in the WE-P fraction (indicated by 1H NMR) and the proportion of polymers with the highest molecular weights in the WE-A fraction (revealed by HPSEC) distinguished well two ryes with diverse breadmaking qualities. Much less obvious differences between both ryes were observed in the ratio of amide I to amide II band intensities of FTIR spectra for the WE-P and in the level of phenolic acids and ferulic acid dehydrodimers for both cell wall preparations.  相似文献   

13.
Rhizodeposition is an important pathway of atmospheric C-input to soil, however, quantity and quality of plant rhizodeposition are insufficiently known. Therefore, the composition and diurnal dynamics of water-soluble root-derived substances and products of their interaction with sandy soil were investigated in maize plants (Zea mays L.) by pyrolysis-field ionization mass spectrometry (Py-FIMS). In both night- and day-rhizodeposits the C, N and S concentrations were larger by factors ranging from 3.0 to 9.7 than the samples from non-cropped soil. The rhizodeposition was larger during the day than during the night-time and the composition of these deposits was different. The largest differences in the Py-FI mass spectra resulted from signals assigned to amino acids (aspartic acid, asparagine, glutamic acid, leucine, isoleucine, hydroxyproline and phenylalanine) and carbohydrates, in particular pentoses, which were exuded in the photosynthetic period. Marker signals in the Py-FI mass spectra and the curves of their thermal volatilization provided unequivocal evidence for the occurrence of free amino acids in the day-rhizodeposits. Other compounds detected in the Py-FI mass spectra were interpreted as constituents of rhizodeposits (lipids, suberin, fatty acids) or products of the interaction of rhizodeposits and microbial metabolites with stable soil organic matter (lignin dimers and alkylaromatics). It was concluded that the diurnal dynamics in the molecular-chemical composition between day- and night-rhizodeposits resulted from the exudation carbohydrates and amino acids during the photosynthetic period, the deposition of other root-derived compounds such as lipids, suberin and fatty acids, and the microbial metabolism of all available organic compounds in the rhizosphere. Furthermore, applications of the presented approach in C-turnover and phytoremediation research, and for risk assessment of genetically modified crops are proposed.  相似文献   

14.
The Chinese herb Radix astragalus (RA) has been widely used as a dietary supplement in Asia, and there are numerous reports on its bioactivities. However, there are no reports to date regarding the use of Aspergillus spp. in the culture medium of the RA plant for the production of phenolic antioxidants. In this study, utilizing the fungus Aspergillus to ferment the native RA has successfully resulted in a significant increase in the phenolic contents of RA, and the fermented RA also revealed much better antioxidant activity toward 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals, hydroxyl radical, superoxide radical and peroxyl radical than those of unfermented RA. Among these phenolics, a potent novel antioxidant was isolated and identified as 3,4-di(4'-hydroxyphenyl) isobutyric acid with a molecular weight of 272, by ESI-MS (electrospray ionization mass), 1H NMR (nuclear magnetic resonance), 13C NMR, DEPT (distortionless enhancement by polarization transfer)-NMR, HMQC (heteronuclear multiple quantum coherence), and HMBC (heteronuclear multiple bond correlation) spectra. These data demonstrated that the solid-state bioprocessing strategy could be an innovative approach to enhance the antioxidant activity of RA.  相似文献   

15.
To better understand the role of organic matter (OM) prepared from chicken manure and agriculture residues compost on the growth of plants (Lepidium sativum L.) and antagonistic fungi (Trichoderma harzianum), we analyzed the structure and composition of extracted OM using fluorescence excitation-emission matrix (EEM) spectroscopy and solid-state 13C cross-polarization magic-angle- spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy. The results showed that the EEM contours of water-extracted OM (WEOM) and alkali-extracted OM (AEOM) were similar. Furthermore, solid-state 13C CPMAS NMR spectroscopy demonstrated that water extraction could not proportionally pull out aromatic moieties (112-145 ppm) from compost, but the alkali method in proportion extracted both carbohydrates (65 85 ppm) and aromatic moieties. The results suggest that AEOM may better reflect the bulk OM composition of compost, and one should be cautious when applying WEOM as an alternative indicator of total compost OM. Further investigations demonstrated that, compared to carbohydrates, aromatic moieties played a predominant role in growth suppression of Lepidium sativum L. seeds and Trichoderma harzianum.  相似文献   

16.
为研究龙须菜(Gracilaria lemaneiformis)细胞壁多糖对硼的吸附作用机制及官能团之间的交互作用,本试验分别采用电感耦合等离子发射光谱(ICP-OES)和傅里叶变换红外光谱(FTIR)技术对其细胞壁多糖组分在吸附试验中进行硼的测定和表征。结果表明,细胞壁去琼胶后,硼吸附量减少50.13%,半纤维素去除后,硼吸附量减少21.20%,故可得纤维素吸附量占细胞壁总硼吸附量的28.67%。同时,通过细胞壁不同组分脱硼及硼胁迫后的红外光谱表征结果可知,龙须菜细胞壁及多糖在吸附硼的过程中,羟基、羧基、多糖碳链C-C为硼离子的主要结合位点,其中,琼胶、半纤维素中起主要作用的官能团为羟基、羧基,纤维素中起主要作用的官能团为多糖碳链C-C。本研究结果为进一步探究龙须菜多糖组分与硼的内在结合机制提供了基础依据。  相似文献   

17.
Pectinolytic and cellulolytic enzymes (Pectinase 62L, Pectinase 690L, and Cellulase CO13P) were used to evaluate the solubilization of carbohydrates and low molecular weight flavonoids from bergamot peel, a major byproduct of the essential oil industry. The enzymes were characterized for main-chain and side-chain polysaccharide hydrolyzing activities and also against pure samples of various flavonoids previously identified in bergamot peel to determine various glycosidase activities. The addition of Pectinase 62L or 690L alone, or the combination of Pectinase 62L and Cellulase CO13P, was capable of solubilizing between 70 and 80% of the bergamot peel, and up to 90% of the flavonoid glycosides present were cleaved to their aglycones. Cellulase CO13P alone solubilized 62% of the peel but had no deglycosylating effect on the flavonoid glycosides. Over a 24-h time course, a rapid release of cell wall carbohydrates was observed after treatment with Pectinase 62L, with a concurrent gradual hydrolysis of the flavonoid glycosides. Size-exclusion chromatography of the solubilized extract showed that after 24-h incubation, the majority of the solubilized carbohydrates were present as monosaccharides with a smaller proportion of oligosaccharides.  相似文献   

18.
Off-line pyrolysis TMAH-GC-MS (thermochemolysis) and solid-state 13C NMR spectroscopy were applied for the direct molecular characterization of composted organic biomasses after 60, 90, and 150 days of maturity. Off-line thermochemolysis of both fresh and mature composts released various lignin-derived molecules, the quantitative measurement of which was used to calculate structural indices related to compost maturity. These indicated that most of the molecular transformation occurred within the first 60 days of the composting process, whereas slighter molecular variations were observed thereafter. Both 13C NMR spectra and offline programs suggested that the process of compost maturity was characterized by a progressive decrease of alkyl components, whereas cellulose polysaccharides appeared to be more resistant and began to be transformed at a later composting period. The main components of the final mature compost were lignocellulosic material and hydrophobic alkyl moieties, in as much as that commonly found in well-humidified organic matter of soils and sediments. The persistence of untransformed lignin-derived products and di- and triterpenoids throughout the maturity period suggested that these molecules are useful markers to both evaluate compost origin and trace its fate in the environment. Thermochemolysis provided the same characterization of molecules either unbound or bound to the compost matrix as that reached by a previously applied sequential chemical fractionation of the same compost materials, thereby indicating that thermochemolysis is a more rapid and equally efficient tool to assess compost molecular quality.  相似文献   

19.
Cranberry pomace contains large amounts of phenolic glycosides, which are important sources of free phenolics that have many food uses such as antioxidants, flavorings, and nutraceuticals. Our hypothesis was that these glycosides in cranberry pomace could be hydrolyzed by beta-glucosidase produced by Lentinus edodes during solid-state fermentation. On the basis of this hypothesis, our objective was to investigate the potential of using cranberry pomace as a substrate for the production of free phenolics and beta-glucosidase through solid-state fermentation by a food-grade fungus L. edodes. Our results suggested that L. edodes beta-glucosidase played a major role in release of phenolic aglycons from cranberry pomace during solid-state fermentation. After 50 days of cultivation, the yield of total free phenolics reached the maximum of 0.5 mg per g of pomace, while the beta-glucosidase activity was about 9 units per g of pomace. The enzyme exhibited optimal activity at 60 degrees C and at pH 3.5 and was stable at temperatures up to 50 degrees C and between pH 3 and 6.5. The major free phenolics produced from cranberry pomace were identified by HPLC as gallic acid, chlorogenic acid, p-hydroxybenzoic acid, and p-coumaric acid. These results suggest that cranberry pomace is a potential substrate for producing food-grade phenolics and fungal beta-glucosidase. The L. edodes beta-glucosidase showed good stability and tolerance to low pH and, therefore has potential applications in wine and juice processing for aroma and flavor enrichment through enzymatic hydrolysis of glucoside precursors.  相似文献   

20.
Rye bran and aleurone, wheat bran and aleurone, and oat bran and cell wall concentrate were compared in their in vitro gut fermentation patterns of individual phenolic acids and short-chain fatty acids, preceded by enzymatic in vitro digestion mimicking small intestinal events. The formation of phenolic metabolites was the most pronounced from the wheat aleurone fraction. Phenylpropionic acids, presumably derived from ferulic acid (FA), were the major phenyl metabolites formed from all bran preparations. The processed rye, wheat, and oat bran fractions contained more water-extractable dietary fiber (DF) and had smaller particle sizes and were thus more easily fermentable than the corresponding brans. Rye aleurone and bran had the highest fermentation rate and extent probably due to high fructan and water-extractable arabinoxylan content. Oat samples also had a high content of water-extractable DF, β-glucan, but their fermentation rate was lower. Enzymatic digestion prior to in vitro colon fermentation changed the structure of oat cell walls as visualized by microscopy and increased the particle size, which is suggested to have retarded the fermentability of oat samples. Wheat bran was the most slowly fermentable among the studied samples, presumably due to the high proportion of water-unextractable DF. The in vitro digestion reduced the fructan content of wheat samples, thus also decreasing their fermentability. Among the studied short-chain fatty acids, acetate dominated the profiles. The highest and lowest production of propionate was from the oat and wheat samples, respectively. Interestingly, wheat aleurone generated similar amounts of butyrate as the rye fractions even without rapid gas production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号