首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

2.
Here we studied the effects of gut transit through the earthworm Eudrilus eugeniae, on the physicochemical, biochemical, and microbial characteristics of pig slurry, by analyzing fresh casts. The reduction in the dissolved organic C contents in casts we recorded suggests that during digestion, earthworms assimilated labile organic C preferentially, which is a limiting growth factor for them. Furthermore, both microbial biomass and activity in pig slurry were significantly decreased by earthworm gut transit. It appears that E. eugeniae is able to digest microorganisms, although the addition of glucose to the food increased respiration, indicating that growth of microorganisms in casts could be limited by depletion of labile C. Despite reduced microbial biomass and activity, the metabolic diversity of microbial communities was greater in casts than in original pig slurry. Community level physiological profiles obtained from Biolog Ecoplate data revealed that, after earthworm gut transit, the microbial communities in casts and pig slurry were clearly differentiated by their physiological profiles. The results indicate that first stage in vermicomposting of pig slurry by E. eugeniae, i.e., casting, produced changes that will influence the dynamics of the organic matter degradation by reducing forms of N and C available to microorganisms, hence restricting their growth and multiplication. Nevertheless, the reduced microflora of casts was characterized by an increased catabolic potential that might lead to thorough degradation of pig slurry.  相似文献   

3.
Earthworms and soil arthropods are major groups involved in soil decomposition processes. Although the interaction between these organisms can influence decomposition rates, little is known about their population dynamics during the decomposition of organic matter. In this study, we used the pig manure decomposition process to evaluate the effects of the presence of the epigeic earthworm Eisenia fetida on seven groups of soil arthropods: springtails, astigmatid, prostigmatid, mesostigmatid and oribatid mites, psocids and spiders. We carried out an experiment in which low and high doses (1.5 and 3 kg, respectively) of pig manure were applied in consecutive layers to small-scale mesocosms with and without earthworms. The presence of E. fetida increased the overall number of soil arthropods regardless of the dose of manure applied. This result was mainly due to the presence of large populations of springtails and mesostigmatid mites. Springtails were more abundant in the new layers of the mesocosms, which indicated a preference for substrates with fresh organic matter and higher microbial biomass. The other arthropod groups were consistently favored by the presence of earthworms, but remained at low densities throughout the decomposition process. Only the psocids were negatively affected by the presence of E. fetida. These results suggest that the development of large populations of soil arthropods, mainly springtails, in the mesocosms with earthworms is a characteristic feature of the initial stages of the earthworm-driven decomposition process.  相似文献   

4.
Energy crops are increasingly cultivated in agricultural management systems world-wide. A substitution of food crops (e.g. cereals) by energy crops may generally alter the biological activity and litter decomposition in soil due to their varying structural and chemical composition and subsequently modify soil functioning. A soil microcosm experiment was performed to assess the decomposition and microbial mineralization of different energy crop residues in soil compared to a food crop, with or without earthworms. Residues of the energy crops winter rape (Brassica napus), maize (Zea mays), miscanthus (Miscanthus giganteus) and the food crop oat (Avena sativa) were each provided as food source for a mixed earthworm population, each consisting of one individual of Lumbricus terrestris, Aporrectodea caliginosa, and Octolasion tyrtaeum. After 6 weeks, the rate of litter loss from the soil surface, earthworm biomass, microbial biomass-C and -N, microbial activity, and enzyme activities were determined. The results emphasized, that litter loss and microbial parameters were predominantly promoted by earthworms and were additionally influenced by the varying structural and chemical composition of the different litter. Litter decay by earthworms was highest in N-rich maize litter treatment (C-N ratio 34.8) and lowest in the case of miscanthus litter (C-N ratio 134.4). As a consequence, the microbial biomass and basal respiration in soils with maize litter were higher, relative to other litter types. MBC-MBN ratio in soil increased when earthworms were present, indicating N competition between earthworms and microorganisms. Furthermore, enzyme activities responded in different ways on the varying types of litter and earthworm activity. Enzymes involved in the N-cycle decreased and those involved in the C-cycle tended to increase in the presence of earthworms, when litter with high C-N ratio was provided as a food source. Especially in the miscanthus treatments, less N might remain for enzymatic degradation, indicating that N competition between earthworms and microorganisms may vary between different litter types. Especially, an expansion of miscanthus in agricultural management systems might result in a reduced microbial activity and a higher N deficit for microorganisms in soil.  相似文献   

5.
Vermicomposting is an efficient and environmentally friendly technology to dispose of agricultural organic residues. The efficiency of organic residue decomposition during vermicomposting is directly affected by the biomass and population structure of earthworms. In this study, we investigated how the earthworm biomass and population structure responded to changes in the physicochemical properties of six types of organic residue (cattle dung, herbal waste, rice straw, soybean straw, garden waste, and tea residues) during vermicomposting. Each type of organic residues was placed in a pot with earthworms Eisenia fetida, and the physicochemical properties of the organic residues and earthworm growth dynamics were recorded at 0, 30, 60, and 90 d of vermicomposting. The biomass and population structure of earthworms were stable or increased in rice straw, garden waste, and cattle dung within 60 d of vermicomposting, whereas in tea residues and herb waste, very little earthworm activity (3 adults and 2 cocoons) was recorded on day 30. Among the physicochemical parameters, the substrate C/N ratio was negatively correlated with earthworm growth dynamics. Decomposing organic residues showed higher NH4+-N and NH3--N concentrations but a lower total organic carbon content, which negatively affected earthworm growth and reproduction. We recommend that chemical properties of vermicomposting systems should be monitored regularly. At the threshold levels of decomposing organic residue NH4+-N and NH3--N concentrations, earthworms should be removed and the vermicompost can be harvested. Small- and large-scale farmers thus need to monitor the physicochemical properties of vermicompost to sustain active earthworm populations.  相似文献   

6.
Earthworms have been shown to produce contrasting effects on soil carbon (C) and nitrogen (N) pools and dynamics. We measured soil C and N pools and processes and traced the flow of 13C and 15N from sugar maple (Acer saccharum Marsh.) litter into soil microbial biomass and respirable C and mineralizable and inorganic N pools in mature northern hardwood forest plots with variable earthworm communities. Previous studies have shown that plots dominated by either Lumbricus rubellus or Lumbricus terrestris have markedly lower total soil C than uncolonized plots. Here we show that total soil N pools in earthworm colonized plots were reduced much less than C, but significantly so in plots dominated by contain L. rubellus. Pools of microbial biomass C and N were higher in earthworm-colonized (especially those dominated by L. rubellus) plots and more 13C and 15N were recovered in microbial biomass and less was recovered in mineralizable and inorganic N pools in these plots. These plots also had lower rates of potential net N mineralization and nitrification than uncolonized reference plots. These results suggest that earthworm stimulation of microbial biomass and activity underlie depletion of soil C and retention and maintenance of soil N pools, at least in northern hardwood forests. Earthworms increase the carrying capacity of soil for microbial biomass and facilitate the flow of N from litter into stable soil organic matter. However, declines in soil C and C:N ratio may increase the potential for hydrologic and gaseous losses in earthworm-colonized sites under changing environmental conditions.  相似文献   

7.
张宁  廖燕  孙振钧  王冲 《土壤学报》2012,49(2):364-372
采用样方法对华北平原(河北曲周)盐渍化改造区7种土地利用方式下的蚯蚓种群进行详细调查,并通过培养实验研究了蚯蚓种群特征对若干土壤生物学指标的影响。结果表明:(1)在7种土地利用调查样地中共存在蚯蚓有3个科,5个属,5个种,其中赤子爱胜蚓(Eisenia fetida)占调查样地总个体数的60%以上,梯形流蚓(Aporrectodea trapezoides)和赤子爱胜蚓两个种在本地区广泛分布,样点出现频率分别为74%和44%,为该地区的优势种;(2)不同土地利用方式的蚯蚓种群密度及生物量变化趋势是:庭院菜地>直立免耕>清茬免耕>商品菜地>传统玉米地>果园>原貌地。其中庭院菜地蚯蚓种群的平均密度和生物量分别达到272 Ind.m-2和68.04gm-2;(3)蚯蚓种群密度和物种数等种群特征与土壤基础呼吸强度、微生物生物量碳含量成显著正相关(p<0.01),与土壤基础呼吸商成显著负相关(p<0.01);(4)不同土地利用方式下,蚯蚓的种群密度、生物量等种群特征对土壤中微生物群落的影响作用显著。蚯蚓生物量越大、种群越丰富的土壤有机质、氮、磷、钾等有效成分越高,反之则相反。室内培养实验表明,随着蚯蚓个体数量增加土壤原生动物总丰度、微生物生物量碳、氮也存在升高的趋势,与用土壤生物学特性指标及土壤化学特性指标评价的结果基本一致。  相似文献   

8.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably.  相似文献   

9.
Microbial biomass is an important source of soil organic matter, which plays crucial roles in the maintenance of soil fertility and food security. However, the mineralization and transformation of microbial biomass by the dominant soil macrofauna earthworms are still unclear. We performed feeding trials with the geophagous earthworm Metaphire guillelmi using 14C-labelled bacteria (Escherichia coli and Bacillus megaterium) cells, fungal (Penicillium chrysogenum) cells, protein, peptidoglycan, and chitin. The mineralization rate of the microbial cells and cell components was significantly 1.2–4.0-fold higher in soil with the presence of M. guillelmi for seven days than in earthworm-free soil and 1–11-fold higher than in fresh earthworm cast material. When the earthworms were removed from the soil, the mineralization of the residual carbon of the microbial biomass was significantly lower than that in the earthworm-free soil, indicating that M. guillelmi affects the mineralization of the biomass in soil in two aspects: first stimulation and then reduction, which were attributed to the passage of the microbial biomass through the earthworm gut, and that the microorganisms in the cast could play only minor roles in the stimulated mineralization and residual stabilization of microbial biomass. Large amounts (8–29%) of radiolabel of the tested microbial biomass were assimilated in the earthworm tissue. Accumulation of fungal cells (11%) and cell wall component chitin (29%) in the tissue was significantly higher than that of bacterial cells (8%) and cell wall component peptidoglycan (15%). Feeding trails with 14C-lablled microbial cells and cell components provided direct evidence that microbial biomass is a food source for geophagous earthworm and fungal biomass is likely a more important food source for earthworms than bacterial biomass. Findings of this study have important implications for the roles of geophagous earthworms in the fate of microbial biomass in soil.  相似文献   

10.
Two field experiments had been conducted in Huantai County, Shandong Province, east of China, with an effort to understand the impact of agricultural intensification on earthworm diversity and population density. Seven species of earthworms were identified in the two experiments. Average earthworm populations in the higher fertility soil (experiment B, 1.83% organic matter) were relatively abundant, with a population density of 105 indiv./m2 and biomass of 57 g/m2. Aporrectae trapezoids was the most dominant species. In the lower fertility soils (experiment A, 1.43% organic matter) the population density was only 51 indiv./m2 and the average biomass was 30 g/m2. Drawida gisti was the most dominant species. For both the experiments A and B, organic fertilizer (OF) and crop straw return increased earthworm abundance. The impact of chemical fertilizer (CF) on the earthworm population was found to depend on the amount of organic input. In experiment B, the earthworm biomass decreased when only winter wheat (Triticum aestivum) straw was input at three CF application levels. However, while both winter wheat straw (WS) and corn (Zea mays) stalk returned, there was no negative correlation between CF and earthworm density and biomass.  相似文献   

11.
Ecological studies on earthworms were conducted in a Kumaun Himalayan pasture soil. The C:N ratio in the soil declined with increasing depth. A combination of hand-sorting and formalin application was used to sample the earthworms. Three species, Amynthas alexandri, A. diffringens (Megascolecidae), and Eisenia fetida (Lumbricidae) were found. Of the 13310 individuals collected, 99.9% were A. alexandri. The maximum density (138.8 m-2) and biomass (25.2 g m-2) were recorded in the wet season. More than 60% of the total earthworm numbers and biomass were recorded at 0–10 cm in depth. The mean yearly ratio of clitellate to aclitellate worms was 1:7.3.  相似文献   

12.
It is well known that organic matter in the form of dung is utilised as a food source by some earthworms, but little has been reported on the preferences of earthworms for different types of dung in agricultural settings. An experiment was carried out in spring in south-eastern Australia to evaluate the effect that dung from different livestock has on the abundance of earthworms in a grassland environment. We were particularly interested to compare the responses of native Australian earthworms (Megascolecidae) with those of exotic earthworms (Lumbricidae and Acanthodrilidae). The attractiveness of dung from sheep, cattle and horses was measured by determining the abundance and biomass of the resident earthworm species under each dung type at varying times after adding the dung to the soil surface (0, 10, 20 and 30 days). The earthworm population consisted of three exotic species, Apporrectodea trapezoides, Microscolex dubius and M. phosphoreus, and two native species, Spenceriella macleayi and S. bywongensis. Both the number of days that the dung was available to earthworms and the type of dung influenced the numbers and biomass of the earthworms found beneath the dung pats. Significant interactions existed between time and dung type when all adult earthworms were considered as one group and also when adults were split into individual species. The various species responded differently to the dung, but horse dung was generally the more preferred dung type. The significance of these results is discussed in terms of the management of dung in an Australian pastoral context.  相似文献   

13.
A pot experiment was conducted to investigate the effect of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal (AM) fungi (Glomus intraradices) on soil enzyme activities and nutrient uptake by maize, which was grown on a mixture of sterilized soil and sand. Maize plants were grown in pots inoculated or not inoculated with AMF, treated or not treated with earthworms. Wheat straw was added as a feed source for earthworms. Mycorrhizal colonization of maize was markedly increased in AM fungi inoculated pots and further increased by addition of epigeic earthworms. AM fungi and epigeic earthworms increased maize shoot and root biomass, respectively. Soil acid phosphatase activity was increased by both earthworms and mycorrhiza, while urease and cellulase activities were only affected by earthworms. Inoculation with AM fungi significantly (p?<?0.001) increased the activity of soil acid phosphatase but decreased soil available phosphorus (P) and potassium (K) concentrations at harvest. Addition of earthworms alone significantly (p?<?0.05) increased soil ammonium-N content, but decreased soil available P and K contents. AM fungi increased maize shoot weight and root P content, while earthworms improved N, P, and K contents in shoots. AM fungi and earthworm interactively increased maize shoot and root biomass through their regulation of soil enzyme activities and on the content of available soil N, P, and K.  相似文献   

14.
We studied the effects of organic residues with different C/N ratios and soil moisture contents on the growth and reproduction of the earthworm Aporrectodea trapezoides to investigate potential measures to increase its population in a salt-affected agricultural soil. The experiment consisted of eight treatments in a fully factorial design: low or high C/N ratio organic residue, soil moisture at 75 or 95% field capacity (FC), and salinity (as electrical conductivity (EC)) of 3.07 or 4.77 dS m?1. It was carried out under controlled laboratory conditions for 4 months. In the low C/N ratio organic residue application, there was a significantly greater mean total dry weight and number of clitellate individuals of A. trapezoides, regardless of the soil moisture and salinity content, which may be due to the greater soil microbial biomass and dissolved organic N (DON) derived from the low C/N ratio organic residue. Generally, more cocoons were found in the application of low C/N ratio clover residue at months 2 and 4. At an EC of 3.07 dS m?1 and moisture content of 75% field capacity (FC), significantly more hatchlings were found when low C/N ratio clover residue was applied compared to the high C/N ratio wheat residue. High soil moisture content (95% FC) resulted in a significantly greater mean total dry weight of A. trapezoides at months 2 and 4 and significantly more clitellate individuals and cocoons at month 4 compared to the low soil moisture content (75% FC), but only when the low C/N ratio residue was applied. In contrast, high soil moisture content (95% FC) resulted in significantly less hatchling numbers at an EC of 3.07 dS m?1, only when the low C/N ratio residue was applied. These results suggest that the organic residue type and soil moisture content can regulate the growth and reproduction of the earthworm A. trapezoides, which should help to improve the recovery of their populations in salt-affected agricultural soil.  相似文献   

15.
The effects of earthworm (Eisenia fetida) activity on soil pH, dissolved organic carbon (DOC), microbial populations, fraction distribution and bioavailability of heavy metals (Zn, Cu, Cr, Cd, Co, Ni, and Pb) in five Chinese soils were investigated using pot experiments. A three-step extraction procedure recommended by the European Community Bureau of Reference (BCR; now Standards, Measurements and Testing Programme of the European Community) was used to fractionate the metals in soils into water soluble, exchangeable and carbonate bound (B1), Fe-oxides and Mn-oxides bound (B2) and organic matter and sulfide bound (B3). After the soils were treated with earthworms, the soil pH, water-soluble metal fraction and DOC increased. A significant correlation was obtained between the increased DOC and the increased metals in the water-soluble fraction. The heavy metals in fraction B1 increased after earthworm treatments, while those in fraction B3 decreased. No significant differences were observed for heavy metals in fraction B2. The microbial populations in soil were enumerated with the dilution plate method using several media in the presence of earthworms. The microbial populations increased due to earthworm activity. The biomass of wheat shoots and roots, and the heavy metal concentrations in wheat roots and shoots, were also increased due to the earthworm activity. The present results demonstrated that earthworm activity increases the mobility and bioavailability of heavy metals in soils.  相似文献   

16.
《Soil biology & biochemistry》2001,33(4-5):583-591
Short-term effects of actively burrowing Octolasion lacteum (Örl.) (Lumbricidae) on the microbial C and N turnover in an arable soil with a high clay content were studied in a microcosm experiment throughout a 16 day incubation. Treatments with or without amendment of winter wheat straw were compared under conditions of a moistening period after summer drought. The use of 14C labeled straw allowed for analyzing the microbial use of different C components. Microbial biomass C, biomass N and ergosterol were only slightly affected by rewetting and not by O. lacteum in both cases. Increased values of soil microbial biomass were determined in the straw treatments even after 24 h of incubation. This extra biomass corresponded to the initial microbial colonization of the added straw. O. lacteum significantly increased CO2 production from soil organic matter and from the 14C-labeled straw. Higher release rates of 14C-CO2 were recorded shortly after insertion of earthworms. This effect remained until the end of the experiment. O. lacteum enhanced N mineralization. Earthworms significantly increased both mineral N content of soil and N leaching in the treatments without straw addition. Moreover, earthworms slightly reduced N immobilization in the treatments with straw addition. The immediate increase in microbial activity suggests that perturbation of soil is more important than substrate consumption for the effect of earthworms on C and N turnover in moistening periods after drought.  相似文献   

17.
由于饲料添加剂的使用,猪粪重金属污染已非常普遍,尤其是铜(Cu)、锌(Zn)污染最为明显。为了探讨利用蚯蚓萃取猪粪重金属Cu、Zn从而减少猪粪中重金属Cu、Zn含量的技术途径,采用室内接种法研究了赤子爱胜蚓(Eisenia foetida)对猪粪重金属Cu、Zn的吸收及影响因素。结果表明,蚯蚓对猪粪重金属Cu、Zn具有一定的吸收能力,富集系数分别为0.43、0.73; 物料C/N比、温度、湿度和蚯蚓接种密度均能影响蚯蚓对猪粪重金属Cu、Zn的吸收,在物料C/N比为17∶1~22∶1、温度为14-21℃、湿度为70%-75%、接种密度为10-20尾·200 g^-1物料(2.4-5.0 g·200 g^-1物料)条件下,蚯蚓对Cu、Zn的吸收量较高。  相似文献   

18.
Effects of earthworms on nitrogen mineralization   总被引:13,自引:0,他引:13  
The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.  相似文献   

19.
《Applied soil ecology》2003,22(2):181-190
The relative importance of reduced soil disturbance and increased food supply in supporting large earthworm populations in cereal–legume intercropping systems was investigated in two replicated field experiments over a 3-year period. In the first experiment, the effects of the absence of tillage and the presence of a permanent white clover understorey on earthworm populations were assessed in three winter wheat cropping systems. The mean earthworm abundance as assessed by electrical extraction in conventional wheat, direct drilled wheat and direct-drilled wheat–clover intercrops was 211, 280 and 572 individuals m−2 and the corresponding earthworm biomass was 62, 92 and 203 g m−2. In the second experiment, the effects of dairy cattle slurry and mineral fertilizer applications on earthworm populations in wheat–clover intercropping systems were assessed. Neither the input of additional organic matter (as slurry) nor mineral N fertilization increased earthworm population levels which were already remarkably high, averaging 1097 individuals m−2 and 266 g biomass m–2 in the third year of the experiment. These results suggest that while the absence of ploughing alone had only a modest effect, the combination of absence of ploughing and presence of a clover understorey increased earthworm populations greatly. It is concluded that cereal–legume intercrops support large earthworm populations primarily because the organic matter input from such systems is favourable for earthworms in terms of quantity, quality and continuity of food supply throughout the year.  相似文献   

20.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号