首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes from natural tree species to rapidly growing exotic species as well as intensification of forestry operations with heavy machinery can lead to changes in the quantity and quality of organic matter inputs to soil and to disruption of soil physical structure. These two ecosystem properties are tightly linked to organic matter dynamics. Five adjacent forest stands were selected to study soil organic matter dynamics in soil physical fractions. On one hand, two semi-natural broadleaved forests (Quercus robur, Fagus sylvatica) and an adult radiata pine plantation (40-year-old,) in order to study the effect of species change on these parameters, and on the other, a chronosequence of Pinus radiata plantations (40-year-old; 3-year-old; 16-year-old), to study the effect of mechanization during harvesting and intense site preparation. Samples of intact topsoil (0-5 cm) were collected and aggregate-size distribution, mean weight diameter (MWD), total C and N, particulate organic matter (POM)-C, POM-N and microbial biomass-C were determined in each aggregate size fraction. Microbial respiration and nitrogen mineralization were also assessed in each aggregate size fraction, during a 28 day incubation period.Losses of POM-C and POM-N in the bulk soil due to mechanical site preparation were high relative to total soil C and N, which suggests that POM is a sensitive parameter to the effect of mechanization. The ratio C-POM:SOM was significantly related to MWD (R2 = 0.75, P < 0.001) reflecting that POM may play a key role in the topsoil aggregate formation in these stands. Semi-natural stands had a higher proportion of macroaggregates (0.25-2 mm) than the cultivated adult one. Megaaggregates (>2 mm) were the most abundant class in mature stands (82-92%), whereas macro- and microaggregates (<2 mm) were the most abundant ones in the intensely soil prepared P. radiata plantation (49%).Indicators for sustainable forest management related to soil organic matter should not only be assessed in terms of total C stocks but also with respect to sensitive organic matter and its degradability in different size classes.  相似文献   

2.
The aim of this work was to determine whether the endogeic earthworm Hormogaster elisae [1] is involved in the active or passive predation of microarthropods at El Molar (Madrid, Spain). Different techniques were employed to study the gut content, and the casts of H. elisae earthworms cultivated in the laboratory. The casts consisted mainly of mineral particles and plant remains as well as a few microarthropods, nematodes and their remains. The gut contents were similar in composition, although no microarthropod remains were found, except for a single springtail (order Poduromorpha) in one earthworm's gizzard. The results suggest that H. elisae may accidentally ingest microarthropods along with soil. The microarthropods found in the casts may have colonized them after their deposition since none were found in isolated casts.  相似文献   

3.
In the Mediterranean region, long-term post-fire soil N dynamics may be relevant in the stabilisation of soil organic matter and N cycling in the plant-soil system. Post-fire recycling of N may be retained by the retention of N in physically and/or chemically protected fractions of soil organic matter. We studied the allocation of post-fire 15N-tracer among different soil organic matter fractions (coarse sand, fine sand, coarse silt and fine silt + clay) and 15N-tracer dynamics for 12 years after prescribed fires in three different Mediterranean plant communities (grassland, mixed shrub-grassland and shrubland). We selected 6 plots for each community and we set experimental fires. Directly after the fires, we applied 15NH4+-N and we monitored the fate of 15N-tracer over a period of 12 years. For this purpose, we carried out a physical size fractionation and we analysed the biochemical recalcitrance of N and 15N by acid hydrolysis in the size fractions obtained. In both burned and unburned plots the finest soil particles (<20 μm) accounted for most soil N. Fire promoted N increases in the medium size fractions while the N pool in the finest and coarsest fractions did not change after the fires. Interestingly, 15N-tracer was quickly incorporated into fine fractions from which, in the case of plant communities free of legumes, it was remobilised in the following years. Fire did not promote changes in recalcitrant N, but shrubland showed marked decreases in N recalcitrance 6 years after the fires. Despite the fact that the primary effects on soil fractions were detected just after the fires, these persisted for 12 years post-fire. Newly incorporated 15N-tracer was less recalcitrant than total N and, surprisingly, fine fractions had very low recalcitrant 15N values, similar to the coarse fractions. Apparently, the N transformations in the finest fraction (<20 μm) were mainly regulated by the quality of the 15N compounds retained in the fraction.  相似文献   

4.
Eroded soil material may be an important transporting agent for pesticides that are strongly sorbed to soil. The abilityof the fungicide propiconazole to interact with colloidal andparticulate materials has been studied by means of sorptionand desorption experiments. Size separation of silty clay soilfrom Mørdre, Norway and subsequent characterization showedthat different size fractions of soil possessed different physical and chemical properties and, therefore, different capacity to associate with propiconazole. A large part of the soil organic carbon was associated with coarser material (2–0.02 mm), which also showed higher affinity towards propiconazole than for smaller size fractions (<20 and <2 μm). Similar K oc values (2306 and 2244) for the size fractions <2 and <20 μm indicate that organic carbon played a dominant role in the sorption of propiconazole. Furthermore, organic carbon associated with these size fractions seemed to have similar properties withrespect to binding of propiconazole. Although, poor in organiccarbon (0.4%), the smallest size fraction (<2 μm) had higher sorption capacity for propiconazole compared to the medium size fraction (<20 μm). Higher sorption for the smallest size fraction (<2 μm) is probably due to higherspecific surface area, cation exchange capacity and content of Fe/Al oxides (free, organically bound and amorphous oxides) than the other size fractions. Results from the desorption experiments indicate that a part of propiconazole associates with sites in the soil material that resist desorption. Fluvialsediments originating from propiconazole treated fields may, therefore, represent potential reservoirs of propiconazole.Treatment with H2O2 modified the sorption/desorptioncharacteristics of the soil beyond that which could be expectedsimply by the removal of organic material. The pH values for all the size fractions decreased, and the specific surface areaof the medium sized fraction (<20 μm) increased from 14 to 19 m2 g-1 after the treatment with H2O2,probably due to disruption of the aggregate structure. Carrying out fractionation and separation procedures, it is important to be aware of physical and chemical changes that areintroduced during the different steps. An effort should be made to develop fractionation methods that keep the original characteristics of the soil material as intact as possible.  相似文献   

5.
The aim of this study was to determine whether tree species consistently affects soil microbial activities related to C and N cycling and to compare these activities with the characteristics of soil dissolved organic matter (DOM). Samples were taken from the mor-type organic layer (Of+Oh) underlain by podzols of six 20–72-year-old tree-species experiments on different site types in different parts of Finland. Sampling plots were dominated by silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) or Scots pine (Pinus sylvestris L., only on four sites). Amounts of C and N in the microbial biomass and rates of C mineralization (CO2 production) and net N mineralization were determined, and water extracts were analysed for concentrations of DOC and DON and characterized according to molecular size by ultrafiltration and according to chemical composition using a resin fractionation technique. In all older stands, birch, compared to spruce or pine, increased soil pH, NH4-concentration and amounts of C and N in microbial biomass and decreased the C-to-N ratio and ratio of dissolved organic N (DON)-to-mineral N. Birch had similar effects also in part of the younger stands. Birch also increased the rates of both C and net N mineralization compared to spruce or pine but only on two sites. In all soils, net nitrification was low. The distribution of DOC into different fractions based on chemical composition and molecular size was rather similar in all soils. The most abundant chemical fraction was hydrophobic acids, and the most abundant molecular size fraction was 10–100 kDa. The C-to-N ratio varied but was lowest in hydrophilic bases and in the smallest molecular size class. Mineralization of C was highly and positively correlated with concentration of DOC (Pearson's correlation coefficient r = 0.9, P < 0.01). The results indicated close interactions between microbial processes and dissolved organic matter.  相似文献   

6.
The long-term storage of soil organic matter (SOM) in forest soils is still poorly understood. In this study, particle size fractionation in combination with accelerator mass spectroscopy (AMS) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to investigate organic carbon (OC) stabilisation in Cambisol and Luvisol profiles under spruce (Picea abies) and beech (Fagus sylvatica L.) forests. In most samples, OC was preferentially associated with <2 μm fractions. Throughout soil profiles the contribution of OC in the clay fraction to the total OC increased from 27%-53% in A horizons to 44-86% in E, B and EB horizons. The 200-2000 μm fractions from all sites and all depths showed a percentage of modern C (pmC)>100. They were enriched in 14C owing to high inputs of recent material from leaves and roots. Clearly less active material was associated with <2 and 2-20 μm fractions. This demonstrated that the particle size fractionation procedure applied to our study was capable to isolate a young OC fraction in all samples. The pmC values were strongly decreasing with depth but the decrease was much more pronounced in the fine fractions. The <2 and 2-20 μm fractions of B, E and EB horizons revealed radiocarbon ages between 512 and 4745 years before present which indicated that the SOM in those horizons was little affected by the recent vegetation. The major components of labile and stable SOM pools in topsoils and subsoils were always O/N-alkyl C (28-53%) and alkyl C (14-48%) compounds. NMR spectra of bulk soils and particle size fractions indicated that high alkyl C and O/N-alkyl C proportions throughout the soil profile are typical of Cambisols and Luvisols which were not subjected to regular burning. A relation between radiocarbon age and chemical composition throughout soil profiles was not observed. This suggests that the long-term stabilisation of SOM is mainly controlled by the existence of various mechanisms of protection offered by the soil matrix and soil minerals but not by the chemical structure of SOM itself.  相似文献   

7.
One way to study the state in which stabilized extracellular enzymes persist and are active in the soil is by extraction from the soil, with subsequent fractionation of enzyme–organomineral complexes and characterization of such complexes. In order to investigate the location and characteristics of soil β‐glucosidase, three soil fractions were obtained both from real (undisturbed) soil aggregates and from structural (dispersed in water and physically disrupted) aggregates using two different granulometric procedures. The β‐glucosidase activity of the fraction was then assayed. When the aggregates were dispersed, more than 73% of activity was in the soil microaggregates with diameters of less than 50 μm (SF50). These aggregates were associated with strongly humified organic matter. Solutions of diluted pyrophosphate at neutral pH liberated active β‐glucosidase from all fractions, although the efficacy of extraction varied according to the type of fraction. The SF50 fraction and aggregates of 2000–100 μm obtained by sieving (SF2000) showed the greatest β‐glucosidase activity (34.5 and 36.0%, respectively). Micro‐ and ultrafiltration of SF50 extracts increased the total β‐glucosidase activity, whereas these procedures, applied to the RF2000 fraction, decreased it. Humus–β‐glucosidase complexes in the SF50 fraction, between 0.45 μm and 105 nominal molecular weight limit ( nmwl ) (SF50II) and < 105nmwl (SF50III) showed an optimum pH at 5.4, and in the SF50I fraction (> 0.45 μm) the optimum was 4.0. The stability of β‐glucosidase in the aggregates of the smallest size SF50II and SF50III decreased at acid pHs. The presence of two enzymes (or two forms of the same enzyme) catalysing the same reaction with different values of Michaelis constant and maximum velocity was observed in all but one of the β‐glucosidase complexes extracted and partially purified from the SF50 aggregates.  相似文献   

8.
Aggregate formation is a key process of soil development, which promotes carbon (C) stabilization by hindering decomposition of particulate organic matter (POM) and its interactions with mineral particles. C stabilization processes lead to 13C fractionation and consequently to various δ13C values of soil organic matter (SOM) fractions. Differences in δ13C within the aggregates and fractions may have two reasons: 1) preferential stabilization of organic compounds with light or heavy δ13C and/or 2) stabilization of organic materials after passing one or more microbial utilization cycles, leading to heavier δ13C in remaining C. We hypothesized that: 1) 13C enrichment between the SOM fractions corresponds to successive steps of SOM formation; 2) 13C fractionation (but not the δ13C signature) depends mainly on the transformation steps and not on the C precursors. Consequently, minimal differences between Δ13C of SOM fractions between various ecosystems correspond to maximal probability of the SOM formation pathways.We tested these hypotheses on three soils formed from cover loam during 45 years of growth of coniferous or deciduous forests or arable crops. Organic C pools in large macroaggregates, small macroaggregates, and microaggregates were fractionated sequentially for four density fractions to obtain free POM with ρ < 1.6 g cm−3, occluded POM with two densities (ρ < 1.6 and 1.6–2.0 g cm−3), and mineral fraction (ρ > 2.0 g cm−3).The density fractions were 13C enriched in the order: free POM < light occluded POM < heavy occluded POM < mineral fraction. This, as well as their C/N ratios confirmed that free POM was close to initial plant material, whereas the mineral fraction was the most microbially processed. To evaluate the successive steps of SOM formation, the Δ13C values between δ13C of SOM fractions and δ13C of bulk SOM were calculated. The Δ13C indicated that, parallel with biochemical transformations, the physical disintegration strongly contributed to the formation of free and occluded light POM. In contrast, biochemical transformations were more important than physical disintegration for formation of heavy occluded POM from light occluded POM. This was confirmed by review of 70 Δ13C values from other studies analyzed Δ13C depending on the density of SOM fractions. Accordingly, the successive steps of SOM formation were: fLF<1.6 = oLF<1.6 → oDF1.6–2.0 = MF>2.0. The obtained steps of C stabilization were independent on the initial precursors (litter of coniferous forest, deciduous forest or grasses).To test the second hypothesis, we proposed an extended scheme of C flows between the 3 aggregate size classes and 4 SOM fractions. Δ13C enrichment of the SOM fractions showed that the main direction of C flows within the aggregates and SOM fractions was from the macroaggregate-free POM to the mineral microaggregate fraction. This confirmed the earlier concept of SOM turnover in aggregates, but for the first time quantified the C flows within the aggregates and SOM density fractions based on δ13C values. So, the new 13C natural abundance approach is suitable for analysis of C pathways by SOM formation under steady state without 13C or 14C labeling.  相似文献   

9.
Ultrasonic energy has been widely used to disrupt soil aggregates before fractionating soil physically when studying soil organic matter (SOM). Nevertheless, there is no consensus about the optimum energy desirable to disrupt the soil. We therefore aimed (i) to quantify the effect of varied ultrasonic energies on the recovery of each particle‐size fraction and their C, N and δ13C distribution, and (ii) to determine an ideal energy to fractionate SOM of a specific soil. Our results show that the 2000–100 μm particle‐size fraction was composed mainly of unstable aggregates and the 100–2 μm fraction of stable aggregates. Energies of 260–275 J ml?1 were sufficient to disrupt most of the unstable aggregates and leave stable aggregates. The use of this threshold energy combined with particle‐size fractionation was not satisfactory for all purposes, since litter‐like material and relatively recalcitrant organic carbon present in stable aggregates > 100 μm were recovered in the same pool. An ultrasonic energy of 825 J ml?1 was not sufficient to stabilize the redistribution of soil mass and organic matter among particle‐size fractions, but at energies exceeding 260–275 J ml?1 relatively stable aggregates would fall apart and cause a mixture of carbon with varied nature in the clay fraction.  相似文献   

10.
The knowledge about the relevance of physical and chemical fractionation methods to soil organic carbon (SOC) stabilization mechanisms is fragmentary but needed to manage the SOC pool. Therefore, our objective was to compare the C contents of the particle size fractions coarse and fine sand, silt, and clay of the two uppermost horizons of a soil under three different management systems (meadow; no-till corn, NT; no-till corn with manure, NTm). The mineral composition was dominated by silt (48–60%). However, coarse sand and clay showed the highest enrichment of C compared to the bulk soil. In spite of an enrichment factor below 1, the high proportion of silt made this fraction the main C store. In the upper 30 cm, this fraction amounted to 27.1 Mg C ha−1 in NTm and progressively less in NT (15.5 Mg C ha−1), and meadow (14.9 Mg C ha−1), representing 44%, 39%, and 39% of the total SOC pool, respectively. The C in the isolated particle size fractions was further investigated by an oxidizing treatment with Na2S2O8 and a treatment with HF to solubilize the mineral phases. The pools of oxidizable C were comparable among particle size fractions and pedons, as indicated by Na2S2O8 treatment. The pools of C preferentially associated with soil minerals were also comparable among pedons, as indicated by HF treatment. However, NTm stored the largest pool (12.6 Mg ha−1) of mineral-associated C in 0–30 cm depth. The silt-associated and mineral-bound SOC pool in NTm was greater compared to NT due to increased organic matter (OM) input. Thus, the silt particle size fraction at the North Appalachian Experimental Watershed (NAEW) has the potential for SOC sequestration by stabilizing OM inputs. Mineralogical and molecular level analyses on a larger set of fractions obtained from entire rooted soil profiles are required, however, to compare the SOC sequestration capacity of the land uses.  相似文献   

11.
《Soil biology & biochemistry》2012,44(12):2359-2367
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil.  相似文献   

12.
On a sandy tropical soil, organic materials (prunings of Leucaena leucocephala, Senna siamea and maize stover) with contrasting C/N ratio (13, 18 and 56, respectively) were applied at the rate of 15 t ha?1a?1 in order to increase the amount of soil organic matter. Two light fractions (LF1 = LF > 2 mm and LF2 = 0.25 mm < LF < 2 mm) and the heavy fraction (HF) of the soil organic matter pool were determined by means of a combined density/particle size fractionation procedure and data obtained were related to soil nitrogen mineralization under controlled conditions and to nitrogen uptake by maize under field conditions. Under controlled conditions and when the LF1 fraction was excluded, nitrogen mineralization was found not to be correlated to total organic carbon content in the soil (R2=0.02). The R2-value of the linear regression increased considerably, when amount and C/N ratio of the LF2 fraction was taken into account in the regression analysis (R2 = 0.88). Under field conditions, a multiple linear regression with amount and C/N ratio of HF, LF1 and LF2 better explained variation in crop nitrogen content and nitrogen uptake of maize (R2 = 0.78 and 0.94) than a simple linear regression with total organic carbon (R2 = 0.48 and 0.76). The results illustrate the importance of the two light and heavy organic matter fractions for estimating soil nitrogen mineralization. Determination of light and heavy soil organic matter fractions by density/particle size fractionation seems to be a promising tool to characterize functional pools of soil organic matter.  相似文献   

13.
Future high levels of atmospheric carbon dioxide (CO2) may increase biomass production of terrestrial plants and hence plant requirements for soil mineral nutrients to sustain a greater biomass production. Phosphorus (P), an element essential for plant growth, is found in soils both in inorganic and in organic forms. In this work, three genotypes of Populus were grown under ambient and elevated atmospheric CO2 concentrations (FACE) for 5 years. An N fertilisation treatment was added in years 4 and 5 after planting. Using a fractionation scheme, total P was sequentially extracted using H2O, NaOH, HCl and HNO3, and P determined as both molybdate (Mo) reactive and total P. Molybdate-reactive P is defined as mainly inorganic but also some labile organic P which is determined by Vanado-molybdophosphoric acid colorimetric methods. Organic P was also measured to assess all plant available and weatherable P pools. We tested the hypotheses that higher P demand due to increased growth is met by a depletion of easily weatherable soil P pools, and that increased biomass inputs increases the amount of organic P in the soil. The concentration of organic P increased under FACE, but was associated with a decrease in total soil organic matter. The greatest increase in the soil P due to elevated CO2 was found in the HCl-extractable P fraction in the non-fertilised treatment. In the NaOH-extractable fraction the Mo-reactive P increased under FACE, but total P did not differ between ambient and FACE. The increase in both the NaOH- and HCl-extractable fractions was smaller after N addition. The results showed that elevated atmospheric CO2 has a positive effect on soil P availability rather than leading to depletion. We suggest that the increase in the NaOH- and HCl-extractable fractions is biologically driven by organic matter mineralization, weathering and mycorrhizal hyphal turnover.  相似文献   

14.
Agroforestry systems have the potential to increase sequestration of atmospheric carbon dioxide (CO2) as soil organic carbon (SOC) because of the increased rates of organic matter addition and retention. However, few studies have characterized the relative stability of sequestered SOC in soil. We characterized SOC storage in aggregate size and chemical stability classes to estimate the relative stability of SOC pools after the addition of Leucaena-KX2 pruning residues (mulch) from 2006 to 2008 in a shaded coffee agroforestry system in Hawaii. Soil samples were separated by microaggregate isolation, density flotation and dispersion, and acid hydrolysis, resulting in five distinct fractions that differed in relative stability: coarse particulate organic matter (POM), fine POM, microaggregate-protected POM, silt + clay hydrolyzable soil organic matter (SOM), and silt + clay non-hydrolyzable SOM. With mulch addition, the fine POM fraction increased. There was also a shift in the proportion of SOC to more stable silt + clay fractions. In the absence of mulch there was no significant change in SOC fractions. Given that the turnover time of SOC in silt + clay fractions is on the order of decades to centuries, the potential benefits of active shade management and mulching compensate for the loss of C sequestration in tree biomass from pollarding.  相似文献   

15.
There is a well-recognized need for improved fractionation methods to partition soil organic matter into functional pools. Physical separation based on particle size is widely used, yielding particulate organic matter(POM, i.e., free or "uncomplexed" organic matter 50 μm) as the most labile fraction. To evaluate whether POM meets criteria for an ideal model pool, we examined whether it is:1) unique, i.e., found only in the 50 μm fraction and 2) homogeneous, rather than a composite of different subfractions. Following ultrasonic dispersion, sand( 50 μm) along with coarse(20–50 μm) and fine(5–20 μm) silt fractions were isolated from a silt loam soil under long-term pasture at Lincoln, New Zealand. The sand and silt fractions contained 20% and 21% of total soil C, respectively.We adopted a sequential density separation procedure using sodium polytungstate with density increasing step-wise from 1.7 to 2.4 g cm~(-3) to recover organic matter(light fractions) from the sand and silt fractions. Almost all(ca. 90%) the organic matter in the sand fraction and a large proportion(ca. 60%–70%) in the silt fractions was recovered by sequential density separation. The results suggested that POM is a composite of organo-mineral complexes with varying proportions of organic and mineral materials. Part of the organic matter associated with the silt fractions shared features in common with POM. In a laboratory bio-assay, biodegradability of POM varied depending on land use(pasture arable cropping). We concluded that POM is neither homogeneous nor unique.  相似文献   

16.
Afforestation of grassland has been globally identified as being an important means for creating a sink for atmospheric carbon (C). However, the impact of afforestation on soil C is still poorly understood, due to the paucity of well designed long-term experiments and the lack of investigation into the response of different soil C fractions to afforestation. In addition, little is known about the origins of soil C and soil organic matter (SOM) stability after afforestation. In a retrospective study, we measured C mass in the soil light and heavy fractions in the first 10 years after afforestation of grassland with Eucalyptus nitens, Pinus radiata and Cupressus macrocarpa. The results suggest that C mass in the soil heavy fraction remained stable, but the C mass in the light fraction decreased at year 5 under three species. Soil δ13C analysis showed that the decrease in the light fraction may be due to reduced C inputs from grassland species litter and low inputs from the still young trees. After the initial reduction, the recovery of soil C in the light fraction depended on tree species. At year 10, an increase of 33% in light fraction soil C was observed at the 0-30 cm depth under E. nitens, compared to that under the original grassland (year 0). Planting P. radiata restored light fraction soil C to the original level under grassland, whereas planting C. macrocarpa led to a decrease of 33%. We concluded that the increase of light fraction soil C between year 5 and 10 is most likely due to C input from tree residues. Most of the increased C was derived from root turnover under pine and from both root and leaf turnover under E. nitens, as indicated by plant C biomarkers such as lignin-derived phenols and suberin and cutin-derived compounds in the 0-5 cm soil layer. Modelling of soil ?14C‰ suggested that SOM had a greater mean residence time at year 10 than year 0 and 5 due to increased relative abundance of recalcitrant plant biopolymers.  相似文献   

17.
Particle size fractions of soils from the surface 6 cm of two adjacent grassland plots which, as a result of different fertilizer treatments since 1897, have either a mor or a mull humus form were analysed using solid-state 13C nuclear magnetic resonance spectroscopy and fractionation of organic N by steam distillation. In the mor humus soil, which had received 180 kg (NH4)2SO4 ha?1 annually and was pH 4.3, there was more C and N in the larger particle size fractions than in the mull humus soil (pH 5.8). The NMR spectra of correspondingly sized soil fractions were similar for both soils. The intensities of NMR signals between 0 and 40 ppm (alkyl-C) and between 160 and 200 ppm (carbonyl-C) increased with decreasing particle size. The intensities of the NMR signals between 60 and 90 ppm (0-alkyl-C) and between 90 and 110 ppm (acetal- and ketal-C) decreased with increasing particle size. Comparison of the NMR spectra of the >2000 um fractions from both soils with those of dried grass litter from the same plots indicated the exclusive plant origin of the C in the largest size fraction of the soils. NMR resonances between 40 and 60 ppm were attributed to alkyl-amino-C because their intensities agreed with the amino-N determinations obtained during organic N fractionation. During incubation in soil microcosms, the larger sized fractions decomposed more rapidly than the smaller fractions. However, all the correspondingly sized particle fractions from the two soils decomposed at the same rate except the >2000 pm fractions. The largest size fraction from the mor humus soil decomposed faster than that from the mull humus soil. This difference in decomposition rate could not be attributed to differences in the chemical composition of the >2000 pm fraction.  相似文献   

18.
Serious concerns about carbon (C) sequestration capacity and the stabilization of sequestered C in forested soils have emerged in the context of global climate change. The organic C in soil and in soil fractions at four sampling times in Acacia auriculiformis plantations afforested in 1991 were investigated with a combination of density fractionation and acid hydrolysis techniques. The results showed that the accumulation of C in the forested soils had accelerated because the afforestation of wasteland with A. auriculiformis. The C accumulation rates of the surface and subsurface soils averaged 0.38 and 0.17 t C/ha/yr, respectively, during the 19 yr following the afforestation. The percentage of organic C in heavy fraction relative to total soil organic C at the surface soil was 71% in 2003. This value was significantly (< 0.05) higher than that in 2010 (68%). The chemical recalcitrant C index of light fraction was significantly (< 0.05) higher than that of heavy fraction in 2003 regardless of soil depth, but both decreased with time. ca. 58–68% of the newly sequestered C was protected by physical mechanism, and 41–50% was transferred into the acid nonhydrolysable fraction during the 12–19 yr after the trees were planted. The chemical stability of the physically protected C remained lower than that of the unprotected C following the afforestation in the valley‐type savannah. However, both the stability values showed a decline with time.  相似文献   

19.
Ants significantly change the soil environment within the nest. The aim of this study is to contribute to ecology and thus the importance of two ant species Lasius niger and Lasius flavus in a post-mining landscape near the town of Sokolov in northwest Bohemia where both species are common. Chemical (total C, N, and available P) and microbiological parameters (respiration, cellulose decomposition and direct counts of bacteria) were investigated in both ant species in two different habitats: a tertiary clay heap after brown coal mining with a weakly developed organic layer and semi natural meadows with well developed organic horizons. Total C and N in the L. flavus mound was lower than in the surrounding soil in both stands, the same was true for total N in L. niger on the heaps. L. niger nests in both sites were significantly enriched by available P. A litter bag test with cellulose indicated lower decomposition in the ant nest in comparison with the surrounding soil. Respiration seems to be limited by lower soil moisture in the nest. However, microbial respiration, even in suitable moisture conditions, did not differ between the nest and soil (on heaps) or nest respiration was significantly lower (in L. flavus nests in the meadow). In meadow soil both species had a lower bacteria count than the surrounding soil, but the L. niger nest on the heap had higher bacterial numbers. Both species significantly alter soil conditions, although the effect on selected parameters is variable. Moreover, the result with lower nest moisture and lower decomposition rate in ant mounds indicates that soil moisture should be the next important factor limiting soil processes inside ant mounds.  相似文献   

20.
We examined whether grass species and soil nitrogen (N) availability could enhance Carbon (C) and N turnover during root litter decay in grassland. Three species with increasing competitiveness (Festuca ovina, Dactylis glomerata and Lolium perenne) were grown at two N fertiliser levels in an undisturbed grassland soil, in which soil organic fractions derived for the last 9 years from Lolium root litter which was 13C-depleted. During the subsequent experimental year, the C turnover was calculated using the respective δ13C values of the old and new C in the root phytomass, in two Particulate Organic Matter (POM) fractions above 200 μm and in the lightest part of the aggregated soil fraction between 50 and 200 μm. Soil N availability was monitored during the regrowth periods with ion exchange resins (IER). The C decay rates of each particle size fraction were calculated with a simple mechanistic model of C dynamics. The N mineralisation immobilisation turnover (MIT) was characterised by dilution of 15N-labelled fertiliser in the N harvestThe C:N ratio and the residence time of C in the fractions decreased with particle size. The presence of a grass rhizosphere increased the decay rate of old C. Accumulation of new C in particle size fractions increased with species competitiveness and with N supply. Species competitiveness increased C turnover in the aggregated fraction, as a result of greater accumulation of new C and faster decay of old C. Fertiliser N increased N turnover and C mineralisation in the SOM. Species competitiveness decreased soil -N exchanged with the IER and increased dissolved organic C (DOC) content. The nature of the current rhizosphere is thus an important factor driving C and N transformations of the old root litter, in relation with grass species strategy. Plant competitiveness may stimulate the C and N turnover in the more evolved SOM fractions in a similar way to the mineral N supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号