首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ulrich Irmler 《Pedobiologia》2004,48(4):349-363
Collembola and oribatid mites were investigated at four sites along a cross section in an alder wood at a lake margin (northern Germany) over a period of 7 years. Monthly samples of the litter and the mineral layer were taken. Additionally, fluctuations of groundwater level, soil moisture, precipitation and soil temperature at 2 cm depth were measured. The alder wood was characterised by a depression between the lake margin and the foot of a hill slope, where waterlogged periods occurred. Groundwater level was the main environmental factor influencing the composition of collembolan and oribatid mite assemblages. Climatic factors, e.g. July temperature and July precipitation were also found to be significant factors, but with a much lower influence. Collembola predominantly showed higher variation in time than in space indicating that more collembolan species migrate within the investigated cross section or react with higher abundance fluctuations on the groundwater level changes, while Oribatida had a higher part of space variation, indicating that migration potential is lower and the environmental gradient is of higher influence on the distribution. Reaction time of soil fauna species on the groundwater fluctuation varies between 1 and 12 months. Retreat of Collembola from the waterlogged situation was between 4 and 6 months in the litter layer and 3 months in the mineral layer. Recolonisation of the waterlogged site lasted approximately 12 months. A positive reaction by precipitation was observed in four collembolan species that was 1 month in the edaphic species and between 9–10 months in the larger litter dwelling species. Only few oribatid mites reacted on the waterlogged situation.  相似文献   

2.
Differences in tree species may lead to contrasting soil environments via differences in litter chemical quality and physical environmental factors, such as soil type and soil moisture. However, separating the effects of litter quality and physical environment is difficult under field conditions. Both litter quality and soil environment affect the species composition of the soil animal community. A diversity gradient of canopy tree species (11–25 species) located on homogeneous soil substrate at Tomakomai Experimental Forest of Hokkaido University was used to analyse the relationship between tree species diversity and oribatid mite community structure. Soil samples were collected from three levels of tree species richness (high, intermediate and low) with three replicates each, in July 2000. Leaf area index (LAI) was positively correlated with tree species diversity suggesting higher litter input into the soils with increasing tree diversity. However, the tree species diversity gradient affected neither accumulation of litter on the forest floor nor abundance and species richness of oribatid mites. Canopy and understory plant species richness, LAI, total soil carbon and biomass of epigeic and endogeic earthworms did not significantly affect mite community structure as indicated by redundancy analysis (RDA). The results suggest that oribatid mite community structure is minimally affected by tree species diversity and associated changes in litter diversity.  相似文献   

3.
The patterns of oribatid communities were investigated in relation to elevations (700, 1700, 2700 and 3100 m a.s.l.) and geological substrates (i.e. non-ultrabasic and ultrabasic rocks) on the slopes of Mt. Kinabalu, Sabah, Malaysia. The density and morphospecies richness of oribatid mites were greater in the non-ultrabasic plot than in the ultrabasic plot at each of the same elevations. The density and richness of Oribatid mites decreased with elevation on both substrates, but the effects of elevation on the density on non-ultrabasic were less significant than on the ultrabasic substrate. Oribatid mite density correlated positively with the concentration of soil organic phosphorus and negatively with that of exchangeable Ca in soil. The richness of morphospecies of oribatid mites positively correlated with phosphorus concentration in litter, above-ground biomass, tree diversity and litterfall amount, and negatively correlated with elevation and Ca in soil. Morphospecies from families Galumnidae, Otocepheidae, Haplozetidae and Scheloribatidae were dominant in each plot. Canonical correspondence analysis (CCA) showed the importance of elevation for the community structure of oribatid mite. In conclusion, total density or morphospecies richness of oribatid communities was influenced by both geology and elevation, and morphospecies composition was strongly influenced by elevation.  相似文献   

4.
The aim of the study reported here was to assess the impact of climate continentality across Europe on the structure and diversity of oribatid communities. Five sites were chosen along a West–East transect from The Netherlands to the Moscow region in Russia in the zone of deciduous forest. Our results suggest that at the chosen scale climate has a moderate impact on abundance and biomass of oribatid communities. However there is a clear impact of continentality on the functional structure and diversity of oribatid populations expressed as the increase of soil-dwelling species abundance towards the East and the decrease of litter-dwellers. There are also strong indications of a gradual faunistic shift along the transect. Soil type plays a modulating role in oribatid communities composition and species richness.  相似文献   

5.
This study examined the influence of forest management intensity (3 unmanaged, 3 mild managed, 5 intensively managed stands) on soil microarthropods in montane spruce forest. We particularly focused on Oribatida and Collembola which play important roles in organic matter decomposition and nutrient cycling. Our results showed a significant shift from fungivory and carnivory to detritivory in the Oribatida community accompanying management intensification. Similarly, parthenogenetic oribatid mite species contributed more to the community in intensively managed forests and the presence of Collembola species with developed furca increased with management intensification. Although there was no remarkable influence of management intensity on total densities or diversity indices, important and significant shifts in species composition and functional groups showed that soil functions and processes were affected by forest management. Trait assessment indicates a shift in roles Oribatida play in decomposition; fragmentation and comminuting of undecomposed litter seems to gain importance in the intensively managed forest, whereas fungivorous species affect primary decomposers through feeding on fungi in the unmanaged forest.  相似文献   

6.
The role of tree diversity and identity as determinants of soil animal community structure is little understood. In a mature deciduous forest dominated by beech we identified clusters of one, two and three tree species of beech, ash and lime allowing to investigate the role of tree species diversity and identity on the density and community structure of oribatid mites. To relate oribatid mite community structure to environmental factors we measured leaf litter input, fine root biomass, mass of organic layers, topsoil pH and C and N content. We expected oribatid mite density to increase with increasing tree diversity, but we expected the effects of tree species identity to override effects of tree diversity. Further, we hypothesized the density of oribatid mites to be reduced by the presence of beech but increased by the presence of lime and ash. As expected tree diversity little affected oribatid mite communities, whereas tree species identity strongly altered density and community structure of oribatid mites. However, in contrast to our expectations the density of oribatid mites was highest in presence of beech indicating that many oribatid mite species benefit from the presence of recalcitrant litter forming thick organic layers. Especially Oppioidea benefited from the presence of beech presumably due to an increased availability of food resources such as fungi and nematodes. Lower density of oribatid mites in monospecific clusters of lime and ash suggests that oribatid mites did not benefit from high quality litter of these species. Notably, large and strongly sclerotized oribatid mite species, such as Steganacarus magnus and Chamobates voigtsi, benefited from the presence of ash and lime. Presumably, these large species better resist harsh microclimatic conditions in shallow organic layers.  相似文献   

7.
Microarthropod abundance, oribatid mite species richness and community composition were assessed in the high canopy (ca. 35 m) of an ancient temperate rainforest and compared with microarthropod communities of the forest floor. Microarthropods were extracted from 72 core samples of suspended soils and 72 core samples from forest floors associated with six western redcedar trees in the Walbran Valley on the southwest coast of Vancouver Island, Canada. Total microarthropod abundances, mesostigmatid and astigmatid mites, Collembola and other microarthropod abundances were significantly greater in forest floors compared to canopy habitats. Oribatid and prostigmatid mite abundance were not significantly different between habitats. The relative abundances of all microarthropod groups considered in this study differed significantly between habitats. Eighty-eight species of oribatid mites were identified from the study area. Eighteen of the 53 species observed in suspended soils were unique to the canopy. Cluster analysis indicates that the arboreal oribatid mite community is distinct and not a taxonomic subset of the forest floor assemblage, however, canopy oribatid mite communities are more heterogeneous in species composition than in the forest floor.  相似文献   

8.
We investigated oribatid mite community diversity and structure in the managed conversion of coniferous stands into semi-natural montane forests that are composed of a small-scale mosaic formed by different age classes of silver fir, Norway spruce and European beech in the southern Black Forest area, South-Western Germany, using the space-for-time substitution method. The core hypothesis was that changing tree composition and management practice will affect functional structure and diversity of oribatid mite community through changing substrate quality and litter diversity. Three forest districts were selected within the research region. Four stand types representing the major stages of forest conversion were selected within each forest district: (i) even-aged spruce monocultures, (ii) species enrichment stage, (iii) forest stand structuring stage, at which fur and beech and other deciduous trees penetrate the upper storey of the forest and (iv) a diverse continuous cover forest respectively. Oribatid mite abundance, species richness and composition, biomass, ecomorphs and feeding groups relative abundance were determined. An overall increase in species richness moving from the spruce monoculture to a continuous cover forest was detected. However, the herbivorous and litter-dwelling mites were most sensitive to forest conversion demonstrating significant differences in abundance between conversion stages. Almost all changes in the oribatid community were associated with the properties of the changing litter layer. Abundance of soil-dwelling mites remained very stable what is in contradiction with the response of the other soil fauna groups found at the same sites. Overall oribatid community seemed to be more dependent on total microbial biomass than fungi. However, observed effects were overshadowed by considerable district-induced differences.  相似文献   

9.
The effects of broad-leaved trees on the collembolan community in larch plantations were investigated at the foot of Mt. Yatsugatake (1200–1400 m a.s.l.) in Japan. The study sites comprised five pure larch plantation plots (larch dominated more than 95% of the area at breast height) and five mixed forest plots (larch dominated between 50% and 80% of the area at breast height). We compared the collembolan community structures between stand types and related them to the plant community composition and soil properties at each plot. Density and species richness of Collembola were not significantly different between pure larch and mixed plots. Using partial redundancy analysis (pRDA), the variance of collembolan species data in the litter layer was explained by the biomass of grass on the forest floor, and the variance in the soil layer was explained by the biomass of total forest floor plants. These results suggest that the biomass or the composition of forest floor plants influence the collembolan community more than the crown trees in this area.  相似文献   

10.
Despite the ubiquity of oribatid mites in soil and litter systems, and their importance in decomposition and nutrient cycling processes, little is known of the factors underlying the composition of their assemblages. Our objective was to address this by determining how oribatid assemblage composition changes by forest stand type. This work was done in and near a hardwood forest in southwestern Quebec, Canada. We sampled mites by collecting 1 L of litter and 170 cm3 of soil from four sites in each of four distinct habitat types: American beech stands, sugar maple stands, mixed deciduous stands and mixed conifer plantations. Samples were collected in July and September 2005, and June 2006, and over 6500 oribatid mites were collected and identified to species. Abundance and species richness differed between forest types: for abundance conifer>beech>maple>mixed deciduous while for species richness beech and conifer>maple>mixed deciduous. Ordination analyses revealed that conifer plantations and beech stands supported distinct assemblages, while there were some overlap in the assemblages found in maple stands and mixed deciduous stands. These data support the importance of aboveground plant communities in affecting the composition of oribatid assemblages even at local scales and provide insight into additional impacts that may be caused by shifts in plant species ranges due to global changes.  相似文献   

11.
Global increases in temperature and atmospheric CO2, coupled with increasingly sporadic and intense precipitation regimes, may affect the biodiversity of boreal forest communities, potentially leading to shifts in functional process rates such as decomposition. However, the effects of these factors on microarthropod community composition have not been thoroughly studied in combination in controlled settings. We conducted a full factorial experiment exposing moss/soil mesocosms to three temperatures (11.5, 15.5, and 19.5 °C), two CO2 levels (430 ppm and 750 ppm), and three moisture levels (drought, intermediate, and saturated conditions) for 18 weeks. Following treatment, we quantified effects on species diversity of a representative group of mesofaunal microarthropods, the Collembola. We also quantified the effects of these factors on the distribution of collembolan body sizes as an indicator of functional changes in the community. We found that moisture regime was a dominant factor, with increased precipitation leading to decreased collembolan abundance and richness. The mechanisms of these detrimental effects are unclear but may be due to the saturation of air-filled soil pore space or competition with moisture-tolerant species. Severe precipitation regimes caused a general loss of abundance in species of all sizes, which may have long term effects on boreal forest soil food webs.  相似文献   

12.
Jan Materna   《Pedobiologia》2004,48(4):339-347
The influence of forest type and heterogeneity of understory vegetation on the horizontal distribution of soil living Collembola was studied in two neighbouring mountain forest sites—a 180-year old beech forest and a 70-year old natural spruce forest. Four homogenous patches with different understory vegetation were chosen within each forest site and sampled 12 times between 1997 and 1998. A total of 56 collembolan species were identified, 51 in the beech forest and 48 in the spruce site. Twenty-three species were rare—they were recorded with low constancy and density. Although both forest sites differed in soil type, humus form and soil chemical parameters, the species composition of their collembolan communities was quite similar (77% shared species). Nevertheless, soil collembolan communities of both forest sites were clearly delimited on both qualitative (presence–absence) and quantitative (in density of individual species) levels as well as in terms of total collembolan density. Mean collembolan density reached 26 650–44 030 ind/m2 in the beech patches compared to 44 470–68 050 ind/m2 found in the spruce patches. Considerably higher densities of several species in one forest site may indicate more suitable habitat. In spite of similar species composition and minor differences in qualitative parameters among different vegetation patches within one forest site, there was clear variation in density of individual species, particularly between patches with and without herb vegetation. This could reflect different microclimatic conditions, additional litter supply from herbs or indirect interactions of Collembola with their roots.  相似文献   

13.
Little effect of forest age on oribatid mites on the bark of trees   总被引:1,自引:0,他引:1  
This study investigates the effect of forest age (20-, 50-, 160-year-old, and primeval forest) on oribatid mite communities on the bark of oak trees in the National Park Pusza Białowieża in eastern Poland. We hypothesized that oribatid mite diversity on bark peaks at forests of intermediate age and that the number of parthenogenetic species of oribatid mites is highest in young stands. In contrast to these hypotheses, the diversity, density, number of juveniles, community structure and the mode of reproduction of oribatid mite species were not significantly affected by forest age. None of the oribatid mite species occurred exclusively on trees of a specific age. The results suggest that oribatid mite communities on the bark of trees are minimally affected by tree harvesting regimes. In contrast to oribatid mites in soil, communities on bark appear to be less sensitive to disturbances.  相似文献   

14.
Collembolas are important members of belowground food webs. There is little information available on the effects of the plant residues of transgenic maize expressing Bacillus thuringiensis (Bt) toxin on soil animals, including collembola. This is why two questions were addressed in laboratory feeding experiments with three collembolan species: (i) Are collembola equally distributed on residues of isogenic and Bt-maize? and (ii) Do collembola show feeding preference to either of the maize types? Bt-maize (producing Cry1Ab toxin) proved to be a less preferred food source for Folsomia candida than the isogenic one. No similar phenomenon was found in the case of Heteromurus nitidus and Sinella coeca. F. candida reacted to as low as 3.45 (± 0.8 mg g−1) Bt-toxin content of the maize. Our results show that the effect of the Bt-toxin producing maize on the collembolan is species specific.  相似文献   

15.
Investigations on the mass loss of leaf litter were carried out between 1992 and 1994 using litter bags of 0.02 mm and 5 mm mesh sizes in a beech and a mixed forest in northern Germany. The two forests on moder humus differed in soil faunal composition, vegetation type, and nutrient supply. Mass loss and N and C concentrations were determined from the litter at bimonthly intervals. From subsamples macrofauna were sorted by hand and mesofauna was extracted by heat. The biomass and N content of the litter bag fauna was estimated. Mass loss, particularly that attributed to the fauna, was different between the two sites with highest rates in the mixed forest and lowest at the beech site. A significantly higher rate of N release was found for the litter extracted from 5 mm mesh size litter bags in the mixed forest but not in the beech forest. Collembola and Cryptostigmata changed in numbers during litter breakdown. Collembola reached high numbers in the beginning, whereas Cryptostigmata dominated later. The diversity of Cryptostigmata increased at both sites during litter breakdown, whereas collembolan diversity only increased in the beech forest and remained at the same level in the mixed forest. Several species of Collembola and Cryptostigmata occurred earlier in the mixed forest than in the beech forest. Mass loss rate attributable to the fauna did not correspond to total faunal biomass. Only Isopoda, Diplopoda and Cryptostigmata appeared to affect the mass loss positively, whereas the biomass of Lumbricidae was negatively correlated with mass loss, particularly in the beech forest. On the other hand, the release of N attributable to the fauna was positively correlated with the total faunal biomass in the beech forest and Lumbricidae in particular were positively correlated with N-release at both sites.  相似文献   

16.
Two key determinants of biological diversity that have been examined in aboveground and aquatic systems are productivity, or resource supply, and physical disturbance. In this study, we examined how these factors interact under field conditions to determine belowground diversity using microarthropods (mites and Collembola) as our test community. To do this, we established a field manipulation experiment consisting of crossed, continuous gradients of nitrogenous (N) fertilizer addition (up to 240 kg N ha?1) and disturbance (imitated trampling by cattle) to produce a gradient of soil nutrient availability and disturbance. Due to the relatively short-term nature of our study (i.e. 2 years), we only detected minimal changes in plant diversity due to the experimental manipulations; in the longer term we would expect to detect changes in plant diversity that could potentially impact on soil fauna. However, disturbance reduced, and additions of N increased, aboveground biomass, reflecting the potential effects of these manipulations on resource availability for soil fauna. We found that disturbance strongly reduced the abundance, diversity, and species richness of oribatid mites and Collembola, but had little effect on predatory mites (Mesostigmata). In contrast, N addition, and therefore resource availability, had little effect on microarthropod community structure, but did increase mesostigmatan mite richness and collembolan abundance at high levels of disturbance. Oribatid community structure was mostly influenced by disturbance, whereas collembolan and mesostigmatan diversity were responsive to N addition, suggesting bottom-up control. That maximal species richness of microarthropod groups overall occurred in undisturbed plots, suggests that the microarthropod community was negatively affected by disturbance. We found no change in microarthropod species richness with high N additions, where plant productivity was greatest, indicating that soil biotic communities are unlikely to be strongly regulated by competition. We conclude that the diversity of soil animals is best explained as a combination of their many varied life history tactics, phenology and the heterogeneity of soils that enable so many species to co-exist.  相似文献   

17.
Little is known about the collembolan community involved in the decomposition of fine root (≤2.0 mm in diameter) litter, which is largely different from leaves in both litter quality and position. The collembolan communities involved in root and leaf litter decomposition were compared in a litterbag experiment in a coniferous forest of Chamaecyparis obtusa. A two-factor experiment (litter type × litter position) was conducted to evaluate the relative effects of litter quality and position. Litterbags of roots and leaves were each placed at two positions (on the soil surface and in the soil), and were collected at seven different times over three years. Abundance and biomass of Collembola involved in root decomposition in the soil were higher than those involved in leaf decomposition on the soil surface, and the collembolan community composition largely differed between these two types of litterbag. Differences between root and leaf decomposition were mainly caused by litter position, but effects of litter type were also detected at species-level. Species that preferred roots were abundant at an early stage of litter decomposition in the soil. Because the early stage of decomposition in the soil is naturally achieved only by root litter initially deposited in the soil, root litter may function as an essential resource for certain species. The results of this study indicate that root litter contributes to collembolan community organization as a spatially and qualitatively different resource than leaf litter. This also suggests that root litter is decomposed via different soil faunal processes than leaf litter.  相似文献   

18.
Litter decomposition and changes in oribatid mite community composition were studied for 2 years in litterbags collected from arboreal organic matter accumulations (canopy suspended soils) and forest floors associated with western redcedar trees on Vancouver Island, British Columbia. We tested the hypotheses that lower rates of mass loss, higher nutrient levels, and different patterns of oribatid mite richness and abundance in decomposing western redcedar litter would be observed in litterbags associated with canopy suspended soils compared to forest floors. Decomposition, measured by mass loss of cedar litter in litterbags, was not significantly different in canopy and forest floor habitats, although reduced in the canopy. Abundance and richness of oribatid mites inhabiting litterbags were significantly greater on the forest floor compared to the canopy suspended soils. Canopy suspended soils had higher levels of total nitrogen, available phosphorus and potassium than the forest floor, but moisture content was significantly lower in the suspended soils. Higher nutrient levels in the canopy system are attributed to differences in coarse woody debris input (but not foliar litter), combined with reduced nutrient uptake by roots and lower mobilisation rates of nutrients by detritivorous and fungivorous microarthropods. Moisture limitation in the canopy system possibly contributed to lower mass loss in litterbags, and lower abundance and richness of oribatid mites in litterbags placed on canopy suspended soils. Patterns of oribatid mite community composition were related to mite communities associated with the underlying substrate (forest floor or canopy suspended soil) which act as source pools for individuals colonising litterbags. Successional and seasonal trends in oribatid mite communities were confounded by moisture limitation at 24 months, particularly within the canopy habitat.  相似文献   

19.
Influence of drought and litter age on Collembola communities   总被引:1,自引:0,他引:1  
A field experiment was carried out to study the impact of drought and litter quality on the structure and performance of collembolan communities. The hypothesis was tested that changes in substrate humidity and resource quality significantly influence decomposition processes via alterations in soil faunal community structure. Litterbags (1000 μm mesh size) containing either freshly fallen or aged spruce litter were placed on the floor of a German spruce forest for one year. The bags were exposed to either ambient conditions (control) or drought (covered with roofs). Drought-induced changes in biological parameters were associated with a strong reduction in decomposition rates. Moreover, drought stress decreased Collembola abundance and species richness. The influence of drought on some microbiological parameters strongly depended on the litter age. A comparison of the two litter treatments revealed major effects of litter age on microbiological and physico-chemical parameters, but no effects on Collembola abundance and species richness. A detailed analysis of the collembolan community structure showed that certain species are highly adapted to specific characteristics of the substrate and thus rapidly respond to changes in microhabitat conditions.  相似文献   

20.
Composition, structure and diversity of oribatid communities inhabiting saxicolous mosses and lichens were studied in the Krkonoše Mts. (Czech Republic) along an altitudinal gradient reaching from submontane to alpine belt. Samples of various saxicolous mosses and lichens from 197 stands were collected. Impact of altitude and dominant moss or lichen species on community structure were analysed. Data were evaluated using divisive cluster analysis and direct ordination analysis. Altogether 104 oribatid species were recorded. Four groups of saxicolous habitats, which differ in the composition of their oribatid communities, were distinguished:1. Mosses below the upper forest line with accessory higher plants growing on their surface. Higher plants indicate favourable moisture conditions and an appreciable degree of humus layer development. Their oribatid mite community is rich in number of frequent species and consists of ubiquitous species, ubiquitous species with higher requirements for moisture and amount of decaying organic matter, a high number of soil dwelling species and several hygrophilous species.2. Mosses below the upper forest line without accessory higher plants. They predominantly include mosses with no or only a weakly developed humus layer. Their oribatid mite community is composed mainly of ubiquitous species and a few soil dwelling species.3. Mosses in open areas above the upper forest line. Their humus layer is not developed at all or only weakly. Humidity and temperature fluctuations are here much higher compared with mosses below the upper forest line, which are protected by the specific forest microclimate. Their oribatid mite community is poor in number of frequent and dominant species and consists predominantly of Oribatula cf. pallida and two specialised species living exclusively in mosses and lichens (Mycobates tridactylus and Trichoribates monticola).4. Saxicolous lichens. Their oribatid community comprises ubiquitous species, species frequent both in mosses and lichens and several species with a strong affinity to lichens (Mycobates carli and five species of the genus Carabodes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号