首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Soil & Tillage Research》2007,92(1-2):39-47
Manure is a source of plant nutrients and can make a valuable contribution to soil organic matter (SOM). Two experimental sites were studied on a Halpic Phaeozem soil near Bad Lauchstadt in Germany. The first experiment, called the static experiment, commenced in 1902. The impact of fresh farmyard manure (FYM) (0, 20 and 30 t ha−1 2 year−1) combined with P, K and N fertiliser application on total organic C (CT), labile C (CL), non-labile C (CNL), total N (NT), mean weight diameter (MWD) and unsaturated hydraulic conductivity (Kunsat) was investigated. The second experiment commenced in 1984 and investigated the effect of extreme rates of fresh FYM applications (0, 50, 100 and 200 t ha−1 year−1) and cropping, or a continuous tilled fallow on the same soil properties. At both sites a nearby grassland site served as a reference. On the static experiment, FYM application increased all C fractions, particularly CL, where application of 30 t ha−1 2 year−1 increased CL by 70% compared with no FYM application. Fertiliser additions to the static experiment had a positive influence on C fractions while NT increased from both FYM and fertiliser application. MWD increased as a result of FYM application, but did not reach that of the grassland site. Both fertiliser and FYM application increased Kunsat (10 mm tension) on the static experiment. In the second experiment application of 200 t ha−1 year−1 of FYM increased concentrations of CL by 173% and of CNL by 80%, compared with no FYM application to make them equivalent to, or greater than the grassland site. A continuously tilled fallow resulted in significant decreases in all C fractions, NT and MWD compared with the cropped site, while Kunsat (10 mm tension) was increased on the 0 and 50 t ha−1 year−1 treatments as a result of a recent tillage. There was no difference in Kunsat between the cropped and the continuous tilled fallow at FYM applications of 100 and 200 t ha−1 year−1. There were similar significant positive correlations of all C fractions and NT with MWD on both experimental sites but the relationships were much stronger on the extreme FYM experiment. Weaker relationships of C fractions and NT with Kunsat (10 mm tension) occurred for the static experimental site but these were not significant for the extreme FYM experimental site. The strongest relationship between C fractions and Kunsat was with CL. This research has shown that applications of FYM can increase SOM and improve soil physical fertility. However, the potential risk of very high rates of FYM on the environment need to be taken into consideration, especially since the application of organic materials to soils is likely to increase in the future.  相似文献   

2.
《Applied soil ecology》2006,34(3):258-268
The potential negative impact of agricultural practices on soil and water quality is of environmental concern. The associated nutrient transformations and movements that lead to environmental concerns are inseparable from microbial and biochemical activities. Therefore, biochemical and microbiological parameters directing nitrogen (N) transformations in soils amended with different animal manures or inorganic N fertilizers were investigated. Soils under continuous corn cultivation were treated with N annually for 5 years at 56, 168, and 504 kg N ha−1 in the form of swine effluent, beef manure, or anhydrous ammonia. Animal manure treatments increased dehydrogenase activity, microbial biomass carbon (Cmic) and N (Nmic) contents, and activities of amidohydrolases, including l-asparaginase, urease, l-glutaminase, amidase, and β-glucosaminidase. Soils receiving anhydrous ammonia demonstrated increased nitrate contents, but reduced microbiological and biochemical activities. All treatments decreased Cmic:organic C (Corg) ratios compared with the control, indicating reduced microbial C use efficiency and disturbance of C equilibrium in these soil environments. Activities of all enzymes tested were significantly correlated with soil Corg contents (P < 0.001, n = 108), but little correlation (r = 0.03, n = 36) was detected between Cmic and Corg. Activities of amidase and β-glucosaminidase were dominated by accumulated enzymes that were free of microbial cells, while activities of asparaginase and glutaminase were originated predominately from intracellular enzymes. Results indicated that soil microbial and biochemical activities are sensitive indicators of processes involved in N flow and C use efficiency in semiarid agroecosystems.  相似文献   

3.
Upland soils have been identified as a major CO2 source induced by human activities, such as fertilizer applications. The aim of this study is to identify the characteristics of soil CO2 emission and carbon balance in cropland ecosystems after continuous fertilizer applications over decades. The measurements of soil surface CO2 fluxes throughout the years of 2009 and 2010 were carried out based on a fertilization experiment (from 1990) in a double cropping system rotated with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) in upland soil in southern China. Four treatments were chosen from the experiment for this study: no-fertilizer application (SR), nitrogen–phosphorus–potassium chemical fertilizers (NPK), NPK plus pig manure (NPKM) and pig manure alone (M). Results showed that the mean value of soil CO2 fluxes from 08:00 to 10:00 am could represent its daily mean value in summer period (June–August) and that from 09:00 am to 12:00 pm for the rest season of a year. Soil temperature and moisture combined together could explain 70–83% of variations of CO2 emission. Annual cumulative soil CO2 fluxes in the treatments with manure applications (8.2 ± 0.8 and 11.0 ± 1.2 t C ha−1 in 2009, and 7.9 ± 0.9 and 11.1 ± 1.2 t C ha−1 in 2010 in NPKM and M, respectively) were significantly higher than those in the treatments with non-manure addition (2.5 ± 0.2 and 3.4 ± 0.2 t C ha−1 in 2009, and 2.1 ± 0.2 and 3.7 ± 0.3 t C ha−1 in 2010 in SR and NPK, respectively). However, the treatments with manure applications represented a carbon sink in the soil (carbon output/input ratio < 1.0), which demonstrated potential for carbon sequestration.  相似文献   

4.
《Soil biology & biochemistry》2001,33(4-5):533-551
This study aimed to determine the factors which regulate soil microbial community organisation and function in temperate upland grassland ecosystems. Soil microbial biomass (Cmic), activity (respiration and potential carbon utilisation) and community structure (phospholipid fatty acid (PLFA) analysis, culturing and community level physiological profiles (CLPP) (Biolog®)) were measured across a gradient of three upland grassland types; Festuca–Agrostis–Galium grassland (unimproved grassland, National Vegetation Classification (NVC) — U4a); FestucaAgrostisGalium grassland, Holcus–Trifolium sub-community (semi-improved grassland, NVC — U4b); Lolium–Cynosurus grassland (improved grassland, NVC — MG6) at three sites in different biogeographic areas of the UK over a period of 1 year. Variation in Cmic was mainly due to grassland type and site (accounting for 55% variance, v, in the data). Cmic was significantly (P<0.001) high in the unimproved grassland at Torridon (237.4 g C m−2 cf. 81.2 g C m−2 in semi- and 63.8 g C m−2 in improved grasslands) and Sourhope (114.6 g C m−2 cf. in 44.8 g C m−2 semi- and 68.3 g C m−2 in improved grasslands) and semi-improved grassland at Abergwyngregyn (76.0 g C m−2 cf. 41.7 g C m−2 in un- and 58.3 g C m−2 in improved grasslands). Cmic showed little temporal variation (v=3.7%). Soil microbial activity, measured as basal respiration was also mainly affected by grassland type and site (n=32%). In contrast to Cmic, respiration was significantly (P<0.001) high in the improved grassland at Sourhope (263.4 l h−1m−2 cf. 79.6 l h−1m−2 in semi- and 203.9 l h−1m−2 unimproved grasslands) and Abergwyngregyn (198.8 l h−1m−2 cf. 173.7 l h−1m−2 in semi- and 88.2 l h−1m−2 unimproved grasslands). Microbial activity, measured as potential carbon utilisation, agreed with the respiration measurements and was significantly (P<0.001) high in the improved grassland at all three sites (A590 0.14 cf. 0.09 in semi- and 0.07 in unimproved grassland). However, date of sampling also had a significant (P<0.001) impact on C utilisation potential (v=24.7%) with samples from April 1997 having highest activity at all three sites. Variation in microbial community structure was due, predominantly, to grassland type (average v=23.6% for bacterial and fungal numbers and PLFA) and date of sampling (average v=39.7% for bacterial and fungal numbers and PLFA). Numbers of culturable bacteria and bacterial PLFA were significantly (P<0.001) high in the improved grassland at all three sites. Fungal populations were significantly (P<0.01) high in the unimproved grassland at Sourhope and Abergwyngregyn. The results demonstrate a shift in soil microbial community structure from one favouring fungi to one favouring bacteria as grassland improvement increased. Numbers of bacteria and fungi were also significantly (P<0.001) higher in August than any other sampling date. Canonical variate analysis (CVA) of the carbon utilisation data significantly (P<0.05) differentiated microbial communities from the three grassland types, mainly due to greater utilisation of sugars and citric acid in the improved grasslands compared to greater utilisation of carboxylic acids, phenolics and neutral amino acids in the unimproved grasslands, possibly reflecting substrate availability in these grasslands. Differences in Cmic, activity and community structure between grassland types were robust over time. In addition, broad scale measures of microbial growth and activity (Cmic and respiration) showed little temporal variation compared to measures of soil microbial community structure, which varied quantitatively with respect to environmental variables (temperature, moisture) and plant productivity, hence substrate supply.  相似文献   

5.
《Applied soil ecology》2001,16(1):11-21
The natural abundance of 13C was used to estimate the turnover of the soil organic matter in a vertisol re-grassed with Digitaria decumbens (C4 plant) following intensive market gardening (C3 plants). In addition, the experimental design allowed us to determine the respective roles of roots and earthworms (Polypheretima elongata) in soil C stock restoration in D. decumbens pasture.The C stock increased from 31 to 37 Mg C ha−1 in 5 years and the δ13C increased from −18.1‰ in market gardening soil to −15.5‰ in the 5-year-old pasture soil in the upper 20 cm. Below the 20 cm soil layer, the C stock and the δ13C did not change significantly in 5 years. The net gain of 6 Mg C ha−1 was the balance of a loss of 5 Mg C ha−1 derived from market gardening and a gain of 11 Mg C ha−1 derived from D. decumbens. Effects of earthworms on the C dynamics were not discernible.  相似文献   

6.
Underestimation of nocturnal CO2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed CO2 flux above the canopy (Fc), changes in CO2 storage in the canopy (St) and soil, and trunk and foliar respiration for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (Fs, Ft, Ff, respectively) and used the relationships of Fs, Ft, and Ff with air or soil temperature for comparison with canopy-scale CO2 exchange measurements (=Fc + St). The annual average Fs, Ft, and Ff were 714 g C m−2 year−1, 170 g C m−2 year−1, and 575 g C m−2 year−1, respectively. At small friction velocity (u*), nocturnal Fc + St was smaller than Fs + Ft + Ff estimated using the chamber method, whereas the two values were almost the same at large u*. We replaced Fc + St measured during calm nocturnal periods with a value simulated using a temperature response function derived during well-mixed nocturnal periods. With this correction, the estimated net ecosystem exchange (NEE) from Fc + St data ranged from −713 g C m−2 year−1 to −412 g C m−2 year−1 in 2003 and from −883 g C m−2 year−1 to −603 g C m−2 year−1 in 2004, depending on the u* threshold. When we replaced all nocturnal Fc + St data with Fs + Ft + Ff estimated using the chamber method, NEE was −506 g C m−2 year−1 and −682 g C m−2 year−1 for 2003 and 2004, respectively.  相似文献   

7.
《Applied soil ecology》2007,35(3):660-669
The current study tested the contribution of native Acacia species of the Sudano-Sahelian zone to improving organic carbon and nitrogen level in Cambisols and Vertisols with specific focus on variation in microbial biomass (Cmic), soil basal respiration (Cresp) and metabolic quotient (qCO2). The results show enrichment in total organic carbon (Ctotal), in total nitrogen (Ntotal) and higher clay content under Acacia canopies as compared to adjacent open grasslands. The relative nutrient concentration in Acacia cover showed an increase in Cmic ranging from 203 to 572 μg g−1 whereas in adjacent open grassland it varied from 100 to 254 CO2–C μg g−1. As a function of Cmic (r = 0.60), Ctotal (r = 0.70) and Ntotal (r = 0.70), Cresp was higher under Acacia canopies than open grassland and this difference was more pronounced when measured over lengthier incubation periods (10–21 days). A lower qCO2 under Acacia cover (except for one site) demonstrated a change in microorganisms communities structure and higher substrate use efficiency as compared to open grassland. The results also show that soil texture, as well as vegetation cover, influenced microbial processes. The negative correlation between clay content and carbon mineralization (Cresp/Ctotal, qCO2), and positive linear relation between clay and Cmic supported the hypothesis that finer soil texture protects soil microbial biomass against degradation and limits organic matter mineralization. The specific effects of soil typology and vegetation cover on Cmic and qCO2 variability were significant, but the greater effects were attributed to vegetation cover.  相似文献   

8.
Old-growth forests are often assumed to exhibit no net carbon assimilation over time periods of several years. This generalization has not been typically supported by the few whole-ecosystem, stand-scale eddy-covariance measurements of carbon dioxide exchange in old-growth forests. An eddy-flux tower installed in a >300-year-old hemlock–hardwood forest near the Sylvania Wilderness, Ottawa National Forest, MI, USA, observed a small annual carbon sink of CO2 of −72 ± 36 g C m−2 year−1 in 2002 and −147 ± 42 g C m−2 year−1 in 2003. This carbon sink was much smaller than carbon sinks of −438 ± 49 g C m−2 year−1 in 2002 and −490 ± 48 g C m−2 year−1 in 2003 observed by a nearby flux tower in a 70-year-old mature hardwood forest (Willow Creek, WI). The mature forest had vegetation similar to the old-growth site prior to European settlement. Both sites had slightly larger carbon sinks in 2003, which was a drier and cooler year than 2002. However, the difference in sink strength between the two years was smaller than the uncertainty in the results arising from missing and screened data. Both sites also had significant systematic errors due to non-representative fluxes during certain micrometeorological conditions, which required careful screening. The difference in sink strength between the two sites was driven mainly by greater ER at the old-growth site (965 ± 35 g C m−2 year−1 in 2002 and 883 ± 69 g C m−2 year−1 in 2003) compared to the mature site (668 ± 21 g C m−2 year−1 in 2002 and 703 ± 17 g C m−2 year−1 in 2003). GEP was lower at the old-growth site (1037 ± 47 g C m−2 year−1 in 2002 and 1030 ± 41 g C m−2 year−1 in 2003) compared to the mature site (1106 ± 47 g C m−2 year−1 in 2002 and 1192 ± 51 g C m−2 year−1 in 2003), especially in 2003. Observations also suggested that growing season ER had greater interannual variability at the old-growth site. These results imply that old-growth forests in the region may be carbon sinks, though these sinks are smaller than mature forests, mostly likely due to greater ER.  相似文献   

9.
《Soil & Tillage Research》2005,80(1-2):201-213
Minimum tillage practices are known for increasing soil organic carbon (SOC). However, not all environmental situations may manifest this potential change. The SOC and N stocks were assessed on a Mollisol in central Ohio in an 8-year-old tillage experiment as well as under two relatively undisturbed land uses; a secondary forest and a pasture on the same soil type. Cropped systems had 51±4 (equiv. mass) Mg ha−1 lower SOC and lower 3.5±0.3 (equiv. mass) Mg ha−1 N in the top 30 cm soil layer than under forest. Being a secondary forest, the loss in SOC and N stocks by cultivation may have been even more than these reported herein. No differences among systems were detected below this depth. The SOC stock in the pasture treatment was 29±3 Mg ha−1 greater in the top 10 cm layer than in cultivated soils, but was similar to those under forest and no-till (NT). Among tillage practices (plow, chisel and NT) only the 0–5 cm soil layer under NT exhibited higher SOC and N concentrations. An analysis of the literature of NT effect on SOC stocks, using meta-analysis, suggested that NT would have an overall positive effect on SOC sequestration rate but with a greater variability of what was previously reported. The average sequestration rate of NT was 330 kg SOC ha−1 year−1 with a 95% confidence interval ranging from 47 to 620 kg SOC ha−1 year−1. There was no effect of soil texture or crop rotation on the SOC sequestration rate that could explain this variability. The conversion factor for SOC stock changes from plow to NT was equal to 1.04. This suggests that the complex mechanisms and pathways of SOC accrual warrant a cautious approach when generalizing the beneficial changes of NT on SOC stocks.  相似文献   

10.
《Soil & Tillage Research》2007,96(1-2):348-356
Agricultural soils can be a major sink for atmospheric carbon (C) with adoption of recommended management practices (RMPs). Our objectives were to evaluate the effects of nitrogen (N) fertilization and cropping systems on soil organic carbon (SOC) and total N (TN) concentrations and pools. Replicated soil samples were collected in May 2004 to 90 cm depth from a 23-year-old experiment at the Northwestern Illinois Agricultural Research and Demonstration Center, Monmouth, IL. The SOC and TN concentrations and pools, soil bulk density (ρb) and soil C:N ratio were measured for five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)]. Long-term N fertilization and cropping systems significantly influenced SOC concentrations and pools to 30 cm depth. The SOC pool in 0–30 cm depth ranged from 68.4 Mg ha−1 for N0 to 75.8 Mg ha−1 for N4. Across all N treatments, the SOC pool in 0–30 cm depth for CC was 4.7 Mg ha−1 greater than for CS. Similarly, TN concentrations and pools were also significantly affected by N rates. The TN pool for 0–30 cm depth ranged from 5.36 Mg ha−1 for N0 to 6.14 Mg ha−1 for N4. In relation to cropping systems, the TN pool for 0–20 cm depth for CC was 0.4 Mg ha−1 greater than for CS. The increase in SOC and TN pools with higher N rates is attributed to the increased amount of biomass production in CC and CS systems. Increasing N rates significantly decreased ρb for 0–30 cm and decreased the soil C:N ratio for 0–10 cm soil depth. However, none of the measured soil properties were significantly correlated with N rates and cropping systems below 30 cm soil depth. We conclude that in the context of developing productive and environmentally sustainable agricultural systems on a site and soil specific basis, the results from this study is helpful to strengthening the database of management effects on SOC storage in the Mollisols of Midwestern U.S.  相似文献   

11.
Effects of fertilisation and cropland management on soil organic carbon (SOC) dynamics can be assessed best in long-term experiments. Using data from the long-term fertilisation experiment in Puch, Germany (part of the series “Internationale Organische Stickstoff Dauerversuche”, IOSDV), we tested the performance of the Rothamsted Carbon Model 26.3 (RothC). The objectives of this work were: (i) quantify the C-input and the efficiency of SOC stabilisation, (ii) test the performance of different input estimates on predictive power of the RothC and (iii) test implementations of residue quality and C-saturation on model predictions. The experiment is a full-factorial strip design, the factors being “organic amendment” and “level of N-fertiliser”. Each treatment was replicated three times. The crop rotation is silage maize–winter wheat–winter barley. Five levels of the factor “organic amendment” were considered: (i) CON: no organic amendment; (ii) SLU: slurry application (on average 0.8 Mg C ha? 1 year? 1); (iii) FYM: application of farmyard manure (30 to 40 Mg ha? 1 fresh mass every third year to maize, on average 1.0 Mg C ha? 1 year? 1); (iv) STR: straw incorporation after harvest of wheat and barley (depending on straw yield on average 0.7 to 2.2 Mg C ha? 1 year? 1); (v) STSL: slurry application plus straw incorporation (on average 1.1 to 2.4 Mg C ha? 1 year? 1). All treatments (including CON) were combined with five different levels of N-fertilisation (N0 to N4), whereas N0 was nil N application and N4 averaged 177 kg N ha? 1 year? 1. N-rates increased gradually and differed depending on the crop. Starting values for SOC stocks (Mg ha? 1) were measured in 1983 as a mean among N-rates for organic amendment treatments (CON: 42; SLU: 39.8; FYM: 40.5; STR 39.8; STSL: 40.5). SOC stocks (0–25 cm) in 2004 (35.5 to 46.6 Mg C ha? 1) were in the order STSL > FYM = SLU > STR = CON (p  0.001). However, slightly different starting values indicated a higher loss of SOC after 21 years in the CON (11–14%) compared to the STR treatments (1–10%). Effect of N-rate was not significant. The observed relation between change of SOC and C-input was quadratic (YO = ? 13.4 + 7.5x ? 0.9x2; R2 = 0.74, p  0.001), which contrasted the linear relationship predicted by RothC (YP = ? 12.9 + 5.5x; R2 = 0.97, p  0.0001). Serious deviation between observed and predicted relationship occurred above C-inputs of 2.5 Mg C ha? 1 year? 1. Mechanistic explanation (e.g. C-saturation or increased mineralisation by N-fertilisation) for the observation needs further exploration, but implication on regional estimates for C-accumulation for different cropland management scenarios is obvious: potential gain in SOC storage by increasing C-inputs may be overestimated, at least under conditions of the Puch site. Independent model predictions (i.e. no parameter adjustment and independent estimation and measurement of C-input) were successful for treatments without straw incorporation (CON, SLU, FYM). Using a regression between crop yields and crop residue input yielded better results than using a constant belowground-to-aboveground biomass ratio. SOC stocks of treatments STR and STSL were seriously overestimated by the model. Using a higher decomposability of crop residue improved result only marginally and required the change of a standard parameter. Using a simple implementation of C-saturation improved predictions for STR and STSL but failed to simulate dynamics in all other treatments. Overall, our results showed that it is important to recognise that relation between SOC change and C-input is not necessarily linear. However, the RothC model predicted SOC dynamics well at lower input levels. Observation that a regression equation for input estimation is superior to a constant biomass ratio for modelling purposes has to be tested further. An implementation of residue quality or saturation capacity in the RothC model may be promising for a better mechanistic understanding of SOC dynamics. However, this requires careful calibration and will increase the number of parameters to be fitted.  相似文献   

12.
《Soil biology & biochemistry》2001,33(12-13):1797-1804
Sulphur transformations were monitored in a unique set of arable, grassland and woodland soils from the Broadbalk Classical Experiment, which started in 1843. In an open incubation experiment with periodic leaching, 14–35 mg SO42−-S kg−1 was mineralised in 28 weeks at 25°C, equivalent to 4.4–8.3% soil organic S. Cumulative amounts of S mineralised increased linearly during the 28 weeks, indicating constant rates of mineralisation. The rate of mineralisation was the greatest in the woodland soil (170 μg SO4-S kg−1 day−1), followed by the grassland (120 μg SO4-S kg−1 day−1) and the arable soil from the farmyard manure (FYM) plot (110 μg SO4-S kg−1 day−1). Three soils from arable plots receiving different inorganic fertiliser treatments but no FYM had similar rates of S mineralisation (~70 μg SO4-S kg−1 day−1). In an incubation experiment with 35SO42−, addition of glucose greatly enhanced S immobilisation. In 132 days, the woodland and grassland soils immobilised more S than the arable soils, with or without glucose amendment. Immobilisation and mineralisation of S occurred concurrently, and both were stimulated by glucose addition. The results show that S mineralisation and immobilisation were influenced strongly by the type of land-use and long-term organic manuring, whereas annual application of sulphate-containing fertilisers for over 150 years had few effects on short-term S transformations.  相似文献   

13.
Abstract

The influence of farmyard manure (FYM) and equivalent mineral NPK application on organic matter content, hot water extractable carbon (HWC), microbial biomass C (Cmic), and grain yields in a long-term field experiment was assessed after 40 years in Hungary. The unfertilized plot, FYM fertilized plots and plots fertilized with equivalent NPK fertilizer contained 0.99%, 1.13% and 1.05% total organic carbon (TOC) respectively. Compared to the unfertilized plot, FYM application resulted in 8.2% higher TOC than equivalent NPK fertilization. The highest TOC was only 1.21%, much lower than expected for a soil containing 21.3% of clay. The quantity of HWC varied depending on the type of fertilization: Compared to control, FYM treatments lead to 29% more HWC than mineral fertilization (FYM: 328 mg kg?1; NPK: 264 mg kg?1). The impact of FYM and equivalent NPK fertilizer on Cmic was contrary. FYM and NPK resulted in 304 and 423 mg kg?1 Cmic, respectively. The difference was 119 mg kg?1; 42% as compared to the unfertilized plot. Despite the higher HWC content, FYM treatments lead to significantly less (35%) grain yields than equivalent NPK doses; Cmic content showed closer correlation to grain yields.  相似文献   

14.
Biochar’s role on greenhouse gas emission and plant growth has been well addressed. However, there have been few studies on changes in soil microbial community and activities with biochar soil amendment (BSA) in croplands. In a field experiment, biochar was amended at rates of 0, 20 and 40 t ha−1 (C0, C1 and C2, respectively) in May 2010 before rice transplantation in a rice paddy from Sichuan, China. Topsoil (0–15 cm) was collected from the rice paddy while rice harvest in late October 2011. Soil physico-chemical properties and microbial biomass carbon (MBC) and nitrogen (MBN) as well as selected soil enzyme activities were determined. Based on 16S rRNA and 18S rRNA gene, bacterial and fungal community structure and abundance were characterized using terminal-restriction fragment length polymorphism (T-RFLP) combined with clone library analysis, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR assay (qPCR). Contents of SOC and total N and soil pH were increased but bulk density decreased significantly. While no changes in MBC and MBN, gene copy numbers of bacterial 16S rRNA was shown significantly increased by 28% and 64% and that of fungal 18S rRNA significantly decreased by 35% and 46% under BSA at 20 and 40 t ha−1 respectively over control. Moreover, there was a significant decrease by 70% in abundance of Methylophilaceae and of Hydrogenophilaceae with an increase by 45% in Anaerolineae abundance under BSA at 40 t ha−1 over control. Whereas, using sequencing DGGE bands of fungal 18S rRNA gene, some bands affiliated with Ascomycota and Glomeromycota were shown inhibited by BSA at rate of 40 t ha−1. Significant increases in activities of dehydrogenase, alkaline phosphatases while decreased β-glucosidase were also observed under BSA. The results here indicated a shift toward a bacterial dominated microbial community in the rice paddy with BSA.  相似文献   

15.
Gross phosphorus (P) fluxes measured in isotopic dilution studies with 33P labeled soils include the biological processes of microbial P immobilization, remineralization of immobilized P and mineralization of non-microbial soil organic P. In this approach, isotopic dilution due to physicochemical processes is taken into account. Our objectives were to assess the effect of inorganic P availability on gross P mineralization and immobilization in soil under permanent grassland, and to relate these fluxes to soil respiration, phosphatase activity and substrate availability as assessed by an enzyme addition method. We used soils from an 18-year-old grassland fertilization experiment near Zurich, Switzerland, that were collected in two treatments which differed only in the amount of mineral P applied (0 and 17 kg P ha−1 yr−1 in NK and NPK, respectively). Water-extractable phosphate was low (0.1 and 0.4 mg P kg−1 soil in NK and NPK, while hexanol-labile (microbial) P was high (36 and 54 mg P kg−1 soil in NK and NPK). Extremely fast microbial P uptake under P-limited conditions in NK necessitated the use of a microbial inhibitor when determining isotopic dilution due to physicochemical processes. At the higher inorganic P availability in NPK, however, isotopic exchange parameters were similar in the presence and absence of a microbial inhibitor. Phosphatase activity was higher in NK than in NPK, while soil respiration, water-extractable organic P and its enzyme-labile fraction were not affected by P status. Together, the results showed that inorganic P availability primarily affected microbial P immobilization which was the main component of gross P fluxes in both treatments. Gross P mineralization rates (8.2 and 3.1 mg P kg−1 d−1 for NK and NPK) during the first week were higher than reported in other studies on arable and forest soils and at least equal to isotopically exchangeable P due to physicochemical processes, confirming the importance of microbial processes in grassland soils.  相似文献   

16.
《Applied soil ecology》2001,16(3):243-249
Very little is known about the effect of overgrazing on carbon loss from soil in semi-arid savannas and woodlands of South America. Soil carbon parameters were measured in a 10,000 ha restoration project in the western Chaco of Argentina (24°43′S and 63°17′W). Three situations were compared: highly restored (HRS), moderately restored (MRS) and highly degraded (HDS). Soil and litter samples were recovered in the dry and wet seasons. SOC and CO2–C values decreased from the HRS (7.0 kg m−2 and 130 g m−2) to the HDS (1.5 kg m−2 and 46 g m−2) whereas the C mineralization rate increased toward the less restored sites (0.96–2.29). Surface-litter C was similar in both sites under restoration (260 and 229 g m−2), being non-existent at the HDS. Leaves from woody species dominated surface-litter in the HRS, whereas grass material was predominant in the MRS. During the wet season, the SOC decreased, whereas both CO2–C and C mineralization rate increased. The magnitude of the between-season differences was highest at the HDS (62% in SOC, 55% in CO2, and 80% in C mineralization rate). We estimated that C loss since introduction of cattle into the forest was 58 Mg ha−1, reaching a total of 2×1015 g at for the entire Chaco. These values are higher than those caused by the conversion of savannas and other ecosystems into agriculture or cultivated pastures. The amount of C fixed in the highly restored site (275 g ha−1 per year) indicates that the Chaco soils have a significant potential as atmospheric carbon sinks.  相似文献   

17.
《Soil & Tillage Research》2007,92(1-2):96-103
Soil loss due to crop harvesting (SLCH) has been established as an important soil erosion process that has significantly contributed to soil degradation in highly mechanised agriculture. This has stimulated the need to investigate the importance of this process of erosion under low input agriculture where, until now, only water and tillage erosion are known as important phenomena causing soil degradation. This study was conducted in Eastern Uganda with the following objectives: (1) to assess the amount of soil lost due to the harvesting of cassava roots and sweet potato tubers under low input agriculture, (2) to look into the factors that influence variations in these soil losses, and (3) to estimate the amount of plant nutrients lost due to SLCH for cassava and sweet potato. Soil sticking to roots and tubers was washed and the soil suspension oven dried to estimate the amount of soil lost after harvesting. Mean annual soil loss for cassava was 3.4 tonnes ha−1 and for sweet potato was 0.2 tonnes ha−1. Ammonium acetate lactate extractable soil nutrient losses for cassava were N = 1.71 kg ha−1 harvest−1, P = 0.16 kg ha−1 harvest−1, K = 1.08 kg ha−1 harvest−1 and for sweet potato were N = 0.14, P = 0.01 kg ha−1 harvest−1, K = 0.15 kg ha−1 harvest−1. Difference in soil loss due to crop harvesting for cassava and sweet potato could be due to: (1) smaller yields of sweet potato leading to smaller soil losses on an area basis, (2) smoother skin and less kinked morphology of sweet potato that allowed less soil to adhere, and (3) the fact that sweet potato is planted in mounds which dry out faster compared to the soil under cassava. Soil moisture content at harvesting time and crop age were significant factors that explained the variations in the soil lost at cassava harvesting. Soil loss under cassava justifies the need to conduct further investigations on this process of soil erosion under low input agriculture.  相似文献   

18.
《Applied soil ecology》2006,32(3):199-210
Common root rot (causal agent Aphanomyes euteiches) is a major disease of commercially grown snap bean (Phaseolus vulgaris L.). Organic amendments hold potential to suppress plant diseases, which may be due to changes in soil biology and other soil properties. The objective of this study was to determine the potential of paper-mill residual by-products to suppress common root rot of snap bean in relation to soil properties. The study was done on soil (Plainfield sandy loam, Hancock, WI) from a field trial comparing annual applications of fresh paper-mill residuals (0, 22 or 33 dry Mg ha−1) or composted paper-mill residuals (0, 38 or 78 dry Mg ha−1). Soil was removed from each treatment that had been in place 3 years in April 2001 (1 year after last amendment) and on September 2001 (4 months after last amendment) and brought to the laboratory. Soils were incubated at field moisture content (25 °C) and periodically bioassayed with bean seedlings (9, 44, 84, 106, 137, 225 or 270 days after removal from the field) for snap bean root rot. Soils were sampled on the same day as the root rot bioassay and assayed for β-glucosidase, arylsulfatase and fluorescein diacetate hydrolysis activities (FDA), microbial biomass-C (MBC) (by chloroform fumigation), water stable aggregation, and total C. There were large differences in snap bean root rot incidence between the field amendment treatments. The unamended field soil had high levels of disease incidence throughout the experiment but disease incidence tended to decrease over time in amended soils. The disease was suppressed by both fresh and composted paper-mill residuals, but the composted residuals at high rates had the lowest disease incidence (<40%) and produced healthiest plants. Root rot severity was strongly negatively correlated with total C (0.001  p) and arylsulfatase activity (0.001  p). β-Glucosidase activity was negatively correlated (0.05  p) with disease severity while soil MBC showed inconsistent negative correlations with disease severity over the incubation sampling periods. Arylsulfatase activity was the best indicator for reflecting disease suppression. The amendments improved soil quality, which was exemplified by improved aggregation.  相似文献   

19.
《Soil biology & biochemistry》2001,33(7-8):1103-1111
Biologically active fractions of soil organic matter are important in understanding decomposition potential of organic materials, nutrient cycling dynamics, and biophysical manipulation of soil structure. We evaluated the quantitative relationships among potential C and net N mineralization, soil microbial biomass C (SMBC), and soil organic C (SOC) under four contrasting climatic conditions. Mean SOC values were 28±11 mg g−1 (n=24) in a frigid–dry region (Alberta/British Columbia), 25±5 mg g−1 (n=12) in a frigid–wet region (Maine), 11±4 mg g−1 (n=117) in a thermic–dry region (Texas), and 12±5 mg g−1 (n=131) in a thermic–wet region (Georgia). Higher mean annual temperature resulted in consistently greater basal soil respiration (1.7 vs 0.8 mg CO2–C g−1 SOC d−1 in the thermic compared with the frigid regions, P<0.001), greater net N mineralization (2.8 vs 1.3 mg inorganic N g−1 SOC 24 d−1, P<0.001), and greater SMBC (53 vs 21 mg SMBC g−1 SOC, P<0.001). Specific respiratory activity of SMBC was, however, consistently lower in the thermic than in the frigid regions (29 vs 34 mg CO2–C g−1 SMBC d−1, P<0.01). Higher mean annual precipitation resulted in consistently lower basal soil respiration (1.1 vs 1.3 mg CO2–C g−1 SOC d−1 in the wet compared with the dry regions, P<0.01) and lower SMBC (31 vs 43 mg SMBC g−1 SOC, P<0.001), but had inconsistent effects on net N mineralization that depended upon temperature regime. Specific respiratory activity of SMBC was consistently greater in the wet than the dry regions (≈33 vs 29 mg CO2–C g−1 SMBC d−1, P<0.01). Although the thermic regions were not able to retain as high a level of SOC as the frigid regions, due likely to high annual decomposition rates, biologically active soil fractions were as high per mass of soil and even 2–3-times greater per unit of SOC in the thermic compared with the frigid regions. These results suggest that macroclimate has a large impact on the portion of soil organic matter that is potentially active, but a relatively small impact on the specific respiratory activity of SMBC.  相似文献   

20.
The aim of this study was to survey and evaluate the microbial respiration of main soil types (gleyic Cryosols, umbric Albeluvisols, albic Luvisols, luvic Chernozems, Kastanozems) across European Russia, from semiarid to polar climatic zones. Soil was sampled from 0–5 and 5–10 cm layers at natural (forest, grassland, fallow) and corresponding sites under agricultural land use. Soil microbial biomass carbon (Cmic) determined by the substrate-induced respiration method and basal respiration (BR) were measured under standardized laboratory conditions (22 °C, 60% WHC). The ratios of BR/Cmic and Cmic/Corg were also calculated. Cmic and BR were highest in polar (gleyic Cryosols) and temperate (albic Luvisols, luvic Chernozems) climatic zones, the lowest were in boreal (umbric Luvisols) and semiarid (Kastanozems). Cmic, BR and Cmic/Corg ratios were higher in 0–5 cm layers compared to the corresponding 5–10 cm and in natural sites versus in arable. Principal component analysis yielded a clear separation of the vegetation zones with respect to the several principal components (PC). PC 1 was composed of Cmic, BR, soil chemical (Corg, Ntot) and texture parameters. PC 2 was composed of climatic (MAT, MAP) and soil pH variables. Three-way ANOVA indicated that “soil type”, “ecosystem” and “layer” factors, and their interactions accounted for almost 98 and 99% of the total variance in Cmic and BR, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号