首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A field experiment was carried out to assess the impact of elevated carbon dioxide (CO2) and temperature on phosphorous (P) nutrition in relation to organic acids exudation, soil microbial biomass P (MBP) and phosphatase activities in tropical flooded rice. Rice (cv. Naveen) was grown under chambered control (CC), elevated CO2 (EC, 550 μmol mol−1) and elevated CO2 + elevated temperature (ECT, 550 μmol mol−1 and 2 °C more than CC) in a tropical flooded soil under open top chambers (OTCs) along with unchambered control (UC) for three years. Root exudates were analyzed at different growth stages of rice followed by organic acids determination. Rhizospheric soil was used for analysis of soil phosphatase, MBP and available P. The total organic carbon (TOC) in root exudates was increased by 27.5% and 30.2% under EC and ECT, respectively over CC. Four different types of organic acids viz. acetic acid (AA), tartaric acid (TA), malic acid (MA) and citric acid (CA) were identified and quantified as dominant in root exudates, concentration of these was in the order of TA > MA > AA > CA. The TA, MA, AA and CA content were increased by 34.4, 31.1, 38.7 and 58.3% under ECT compared to that of UC over the period of 3 years. The P uptake in shoot, root and grain under elevated CO2 increased significantly by 29, 28 and 22%, respectively than CC. Soil MBP, acid and alkaline phosphatase activity was significantly higher under elevated CO2 by 35.1%, 27 and 36%, respectively, compared to the CC. Significant positive relationship exists among the organic acid exudation, MBP, phosphatase activities and P uptake by rice. The enhanced organic acid in root exudates coupled with higher soil phosphatase activities under elevated CO2 resulted in increased rate of soil P solubilization leading to higher plant P uptake.  相似文献   

2.
The effects of high CO2 concentration (10% CO2, 17% O2) on the changes of functional cell wall components (pectic substances, hemicellulose, cellulose, lignin), mechanical properties, content of free soluble sugars (sucrose, glucose, fructose), and respiration activity were studied in harvested white asparagus spears stored at 10 and 20 °C, respectively, for up to 7 d. Spears stored at 2, 10 and 20 °C in air were studied as controls, where the 2 °C condition indicated the effects of cold storage. During storage, respiration activity declined only slightly, irrespective of the CO2 and temperature regime. Spears stored at 20 °C under both CA and normal air became less stiff and more elastic, however, tissue toughness increased significantly. Changes in toughness were associated primarily with the dynamics of lignin and cellulose, revealing a strong correlation (r2 = 0.81). High CO2 concentration inhibited the synthesis of cellulose and, to some extent, lignin accumulation at 20 °C. Additionally, elevated CO2 inhibited the degradation of soluble carbohydrates. In contrast, slightly lower temperatures of 10 °C in combination with high CO2 did not have a pronounced effect on changes in structural carbohydrates (lignin, cellulose, hemicellulose and pectins). The effect low temperature (2 °C) under normal atmosphere conditions resulted in the inhibition of cell wall changes in asparagus spears.  相似文献   

3.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

4.
Anthropogenic increases in atmospheric carbon dioxide concentration [CO2], and subsequent increases in surface temperatures, are likely to impact the growth and yield of cereal crops. One potential means for yield reduction is for climate parameters to increase the occurrence of lodging. Using an in situ free-air CO2 enrichment (FACE) system, two morphologically distinct rice cultivars, KH (Koshihikari) and SY (Shan you 63), were grown at two [CO2]s (ambient and ambient + 200 μmol mol−1) and two soil temperatures (ambient and ambient ± 1.8 °C) over a two year period to assess and quantify lodging risk. Elevated [CO2] per se had no effect on lodging resistance for either cultivar. However, elevated [CO2] and higher soil temperature increased the lodging risk for SY, due to a relatively higher increase in plant biomass and height at the elevated, relative to the ambient [CO2] condition. Elevated soil temperature per se also increased lodging risk for both cultivars and was associated with longer internodes in the lower portion of the tillers. These findings illustrate that lodging susceptibility in rice, an important cereal crop, can be increased by rising [CO2] and soil temperature; however, variation observed here between rice cultivars suggests there may be sufficient intraspecific variability to begin choosing rice lines that minimize the potential risk of lodging.  相似文献   

5.
Controlled atmosphere (CA) treatments with ultralow oxygen (ULO) alone and in combinations with 50% carbon dioxide were studied to control grape mealybug, Pseudococcus maritimus (Ehrhorn) on harvested table grapes. Two ultralow oxygen levels, 30 and <0.01 μL L−1, were tested in both ULO and ULO + 50% CO2 treatments. The ULO treatments with the lower oxygen level were more effective than the ULO treatments at the higher oxygen level. The ULO + 50% CO2 treatments were more effective than the ULO treatments. Grape mealybug eggs were significantly more tolerant of ULO and ULO + CO2 treatments than nymphs and adults. A 14 day ULO treatment with 30 μL L−1 O2 at 2 °C did not achieve 100% mortalities of any life stage. In the presence of 50% CO2, the 14 d treatment achieved complete mortality of all life stages of the grape mealybug. A 3 d ULO treatment with <0.01 μL L−1 O2 at 2 °C resulted in 93.3% mortality of nymphs and adults. The 3 d ULO treatment in combination with 50% CO2 treatments, however, achieved complete control of grape mealybug nymphs and adults and caused 70.5% relative egg mortality. Complete egg mortality was achieved in a 10 d ULO + 50% CO2 treatment with <0.01 μL L−1 O2 at 2 °C. Both the 14 d CA treatment with 30 μL L−1 O2 and 50% CO2 and the 10 d CA treatment with <0.01 μL L−1 O2 and 50% CO2 were tested on table grapes and grape quality was evaluated after two weeks of post-treatment storage. The CA treatments did not have a significant negative impact on grape quality and were safe for table grapes. The study indicated that CA treatments have potential to be developed for postharvest control of grape mealybug on harvested table grapes.  相似文献   

6.
Based on the carboxylation kinetics of the C3 and C4 photosynthetic pathway, it is anticipated that C3 crops may be favored over C4 weeds as atmospheric CO2 increases. In the current study, tomato (Lycopersicon esculentum), a C3 crop species, was grown at ambient (~400 μmol mol−1) and enhanced carbon dioxide (~800 μmol mol−1) with and without two common weeds, lambsquarters (Chenopodium album), a C3 weed, and redroot pigweed (Amaranthus retroflexus), a C4 weed, from seedling emergence until mutual shading of crop-weed leaves. Because growth temperature is also likely to change in concert with rising CO2, the experiment was repeated at day/night temperatures of 21/12 and 26/18 °C. For both day/night temperatures, elevated CO2 exacerbated weed competition from both the C3 and C4 weed species. A model based on relative leaf area following emergence was used to calculate potential crop losses from weeds. This analysis indicated that potential crop losses increased from 33 to 55% and from 32 to 61% at the 21/12 and 26/18 °C day/night temperatures, for ambient and elevated CO2, respectively. For the current study, reductions in biomass and projected yield of tomato appeared independent of the photosynthetic pathway of the competing weed species. This may be due to inherent variation and overlap in the growth response of C3 and C4 species, whether weeds or crops, to increasing CO2 concentration. Overall, these results suggest that as atmospheric CO2 and/or temperature increases, other biological interactions, in addition to photosynthetic pathway, deserve additional consideration in predicting competitive outcomes between weeds and crops.  相似文献   

7.
The effects of radiation and temperature during the seed set period (SSP) on pod number per square metre (PN m−2) and seed number per square metre (SN m−2) and those of temperature during grain filling on unit seed weight (USW, milligram per seed) of field pea (Pisum sativum L.) were examined in experiments involving irrigated crops of three or more cultivars of contrasting maturity sown on two or more dates per year from 1996 to 1998 at Buenos Aires, Argentina. The duration of the seed-setting phase was estimated from records of the progress of flowering on the main stem and an estimate (obtained using an optimisation procedure) of the thermal time from flowering at which the uppermost reproductive node reached the final stage of seed abortion (FSSA). The FSSA at a particular node was assumed to be achieved 200 °C day (Tb=4 °C) after flowering at the same node. The grain-filling phase was assumed to run from the achievement of FSSA at the first reproductive node through to 200 °C day (Tb=0 °C) after the date of achievement of the FSSA by the second flowering node.The treatments (cultivar, sowing date, year) produced important ranges of above-ground biomass (AGB) at maturity (271–782 g m−2), seed yield (SY, 119–331 g m−2), SN (1062–3698 seeds m−2) and USW (67–150 mg seed−1). Seed yield was strongly correlated with SN, and there was full compensation between SN and USW in large-seeded cultivars in the high SN range, but not at lower values of SN or in small-seeded cultivars. Both PN (r=0.83) and SN (r=0.87, P<0.0005) were strongly correlated with the mean daily value of the photothermal quotient (PQ=incident radiation/(mean temperature − base temperature)) for the seed-setting phase. Large- and small-seeded cultivars had PN/PQ and SN/PQ relationships with slopes which did not differ among categories but with significantly different intercepts. When the effects of low temperatures during flowering and early grain growth were allowed for, outliers on the PN/PQ and SN/PQ relationships for unstressed crops fell within the confidence limits of the respective linear regressions. Unit seed weight showed a negative response to mean temperature during the grain-filling phase in large- and small-seeded cultivars. We conclude that the relationships established in these experiments, taken together with previous work by other authors, constitute a robust basis for modelling the yield of unstressed field pea crops.  相似文献   

8.
The increased consumption of fresh-cut celery has led to the need to explore packaging alternatives for fresh-cut celery that can meet consumer, market, and industry needs. In this study, the effect of bio-based packaging and non-conventional atmospheres on the quality and safety of chlorine-sanitized celery sticks stored at 7 °C was investigated. Two materials differing in permeability [a bio-based polyester (polylactic acid (PLA)) and a petroleum-based polyolefin (polypropylene/low density polyethylene (PP/PE)] and four initial gas compositions [air (A-PLA or A-PP/PE), 95 kPa O2 + 5 kPa N2 (O2-PLA), 99 kPa N2 + 1 kPa O2 (N2-PLA), and 6 kPa O2 + 12 kPa CO2 + 82 kPa N2 (CO2-PLA)] were evaluated. Changes in headspace composition, weight loss, surface and cut end color, texture, ethanol content, appearance, and growth of Listeria monocytogenes on inoculated celery sticks were assessed during 21 d of storage. Active MAP (CO2-PLA) out-performed passive MAP (A-PLA) in maintaining celery stick quality but not safety. Conventional active MAP (CO2-PLA) out-performed non-conventional active MAPs (O2-PLA and N2-PLA) in maintaining celery stick quality throughout storage, but O2-PLA suppressed L. monocytogenes growth while CO2-PLA promoted growth during the first 10 d of storage. PLA and PP/PE materials affected celery stick quality but not Listeria growth. This study shows that the initial gas composition and packaging material both impact the quality and safety of celery sticks. Overall, the combination PLA and 95 kPa O2 proved most beneficial in maximizing both the safety and quality of celery sticks during one week of storage at 7 °C.  相似文献   

9.
A model of potential olive oil production is presented, based on a three-dimensional model of canopy photosynthesis and respiration and dynamic distribution of assimilates among organs. The model is used to analyse the effects of planting density (high and super-high density orchards with 408 and 1667 trees ha−1, respectively) and climate change (ΔT of 4 °C and CO2 concentration of 740 ppm) on olive oil production. To evaluate its predictive power, the simulations were tested with published measurements of leaf area, growth and yield for a high density olive orchard cv. ‘Arbequina’ in Cordoba, Spain. The model slightly overestimated (less than 7%) the different measurements reported in the experiment. For all simulations, the maximum yields obtained were in agreement with literature. Simulations showed that climate change had a very small effect on yields due to compensation of the negative and positive effects of temperature and CO2 on photosynthesis and respiration. However, high temperatures led to some sterile years due to lack of vernalization. The model predicts that super-high density olive orchards achieve higher potential yields than high-density systems and that maximum yields are reached on the third year of the orchard. The advantage of a higher density is a higher interception of solar radiation, especially during the first years of the orchard. In all the simulations, the model predicted a small decrease of the radiation use efficiency for oil production with the age of the orchard as well as an important inter-annual variability (range of 0.11–0.19 g (MJ PAR)−1), indicating that the use of a constant radiation use efficiency may not be adequate to predict oil production.  相似文献   

10.
Despite its economic and environmental importance, information about effects of future atmospheric carbon dioxide (CO2) enrichment on aboveground biomass production and tuber yield of potato is still rare. Responses of potato (Solanum tuberosum L. cv. Bintje) were thus investigated in two full growing seasons under 380, 550 or 680 μmol mol?1 CO2 in open-top chambers (OTCs). When averaged over both years, aboveground stem biomass at canopy maturity was negatively related to CO2 enrichment. Aboveground-to-belowground biomass ratio was negatively related to CO2 enrichment as there was a positive relationship between CO2 and total dry yield of potato tubers. The stimulation was mainly related to an increase in the tuber size fraction for commercial yield (tubers > 35 mm). For the largest size class (tubers > 50 mm), which is important for industrial processing, large CO2-induced impacts were observed too, although these effects were not significant. Elevated CO2 concentrations will thus affect biomass allocation of potato plants and result in improvements concerning the market value of the commercial tuber yield.  相似文献   

11.
Southern hemisphere blueberry producers often export their products through extended supply chains to Northern hemisphere consumers. During extended storage, small variations in temperature or atmosphere concentrations may generate significant differences in final product quality. In addition, relatively short delays in establishing cool storage temperatures may contribute to quality loss. In these experiments a full factorial analysis was done of the effects of three cooling delays (0, 12 or 24 h at 10 °C), three atmosphere concentrations (air, 10% CO2 + 2.5% O2 and 10% CO2 + 20% O2) and two storage temperatures (0 °C and 4 °C) which were assessed for their impact on final quality, measured as weight loss, firmness and rot incidence. Two blueberry cultivars were studied: ‘Brigitta’, a highbush cultivar, and ‘Maru’, a rabbiteye. Delays in cooling had a small effect on final product weight, whereas variation in storage temperature and atmosphere during simulated transport influenced both firmness and rot incidence. Atmospheres with 10% CO2 reduced decay incidence, particularly at low oxygen concentration (2.5% O2), although the latter conditions tended to soften fruit. In order to achieve optimal postharvest storage for blueberries, minimising temperature variability in the supply chain is important, as is finding the potentially cultivar-specific optimal combination of high CO2 and low O2 concentration that results in simultaneously minimising rot incidence and induced softening.  相似文献   

12.
A series of field experiments were undertaken at three locations in Khyber PukhtunKhwa (KPK) Province, Pakistan to assess the effects of low temperatures and phytohormone applications on chickpea (Cicer arietinum L.) growth and yield. These trials showed that ABA application (10−4 M) to 40-day-old plants (before the first seasonal frost) offset low temperature-induced growth and yield depression at harvest (200-day-old plants) by up to 17%. These yield improvements were mainly due to an increase in the number of seeds pod−1. Growth room experiments were carried out under controlled environmental conditions to establish how foliar application of 10−4 M ABA to 40-day-old plants might improve seed production at harvest. The foliar application of 10−4 M ABA had no detectable effect on endogenous shoot or root ABA levels four-days after spraying or on biomass when plants were maintained in warm conditions. When exposed to night temperatures of −2 °C, however, the endogenous ABA levels increased dramatically in both control and ABA-treated plants, but this rise was more rapid after ABA application (p < 0.01); after 14 days, these plants had gained significantly more biomass than the unsprayed controls (p < 0.05). No evidence was found to suggest ABA affected the osmotic or water balance of plants, but parallel experiments have shown ABA reduced low temperature-induced cell damage. Analysis of the proteome of the shoot tissues of ABA treated and untreated plants by 2-Dimensional Gel Electrophoresis identified several proteins that are induced by low temperatures and/or by ABA application in chickpea and which may be involved in conferring cold tolerance. Attempts were made to establish the identity of these proteins using mass spectrometry but in all cases the results were ambiguous; a more complete protein data base for legumes is required before the function of these proteins can be inferred.  相似文献   

13.
The vapours of allyl-isothiocyanate (AITC) were evaluated in in vitro and in vivo trials against Botrytis cinerea, a severe pathogen of strawberries. In in vitro trials AITC activity was assayed on conidial germination and mycelial growth of the fungus. The mycelium appeared less sensitive to AITC than conidia (EC50 values of 1.35 mg L−1 and 0.62 mg L−1, respectively). In addition, AITC had a fungistatic effect against the pathogen, since the values of EC50, for both parameters, increased by around 30% after AITC removal. In in vivo trials, ‘Tecla’ and ‘Monterey’ strawberries (spring-bearing and day-neutral cultivars, respectively) obtained from organic production and naturally infected by B. Cinerea, were exposed for 4 h in an atmosphere enriched by pure AITC or derived from defatted seed meals of Brassica carinata (0.1 mg L−1, in a 0.1 m3 treatment cabinet). After 2 days at 0 °C and another 3–4 days at 20 °C, the fruit were evaluated for grey mould infections. The AITC treatment reduced the decay caused by the pathogen by over 47.4% up to 91.5%, significantly different from the untreated fruit. No significant differences were found between synthetic and glucosinolate-derived AITC. Residue analysis performed on fruit at the end of storage (7 d after treatment) showed values lower than 1 mg kg−1. Total phenolic content and antioxidant capacity estimated in treated and untreated strawberries showed no significant difference between control and AITC treated fruit. Our results show it is possible to reduce the incidence of postharvest grey mould on strawberries with a treatment of AITC (0.1 mg L−1) for 4 h, opening a potential application of biofumigation in the postharvest control of B. cinerea in strawberry.  相似文献   

14.
Phosphine (PH3) fumigation with different concentrations and exposure durations at low temperature was studied to determine its effects on Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae) on carnations, and on postharvest quality. Laboratory tests showed that tolerance of L. huidobrensis to phosphine fumigation at 5 °C varied with different life stages. 1 d-old eggs and adults showed the highest susceptibility, and 3 d-old eggs was the most tolerant stage. In the fumigation tests of 3 d-old eggs with a range of phosphine concentrations from 0.46 to 2.73 mg L−1 and exposure durations from 6 to 144 h at 5 °C, 85.96–282.08 h fumigation durations were required to achieve 99% mortality with different phosphine concentrations. The expression of C0.77T = k was obtained, which indicated that exposure duration other than phosphine concentration was the critical factor in the toxicity of phosphine against the 3 d-old eggs of L. huidobrensis. Controlled atmosphere (CA) treatment with increased CO2 and reduced O2 had synergistic effects on phosphine toxicity. Phosphine fumigation could achieve 100% mortality for insects of L. huidobrensis on carnation, and had no significant adverse effects on vase life and damage indices of carnation at 1.92 mg L−1 PH3 and 8% CO2 for 32 h, and at 3.44 mg L−1 for 3 d at 5 °C. All results suggested that phosphine fumigation at low temperature could be used as an alternative for postharvest control of L. huidobrensis on carnations.  相似文献   

15.
Field experiments were conducted in 2006 and 2007 to evaluate the competitive ability of bush type red kidneybean (RKB) (Phaseolus vulgaris L.) cultivars against redroot pigweed (Amaranthus retroflexus L.). Three cultivars of RKB (Akhtar, Sayyad and D81083) and five A. retroflexus densities (0, 4, 8, 16 and 32 plants m−2) were established in a factorial arrangement. A. retroflexus had a greater plant height and growth rate (GR) but a lower leaf area index (LAI) than RKB cultivars in almost all treatments. Higher densities of A. retroflexus increased LAI and GR but decreased yield of RKB cultivars. The cv. Sayyad and D81083 had the greatest and lowest LAI and GR, respectively, in competition with A. retroflexus. The maximum intercepted photosynthetically active radiation (PAR) at noon by A. retroflexus was 90.4 and 66.0% in competition with cv. D81083 and Sayyad, respectively. The seed yield and pod number per plant of RKB cultivars decreased severely with increasing A. retroflexus density. A. retroflexus seed number m−2 was the highest and lowest in competition with cv. D81083 and Sayyad, respectively. The competitive ability of RKB cultivars was compared using parameters estimated through two-parameter yield loss-relative leaf area model. The relative ranking of the RKB cultivars examined for their competitiveness, supported by modeling results, was Sayyad > Akhtar > D81083.  相似文献   

16.
The effect of MAP on extending storage life and maintaining fruit quality was studied in ‘Doyenne du Comice’ (Pyrus communis L.) pears at Hood River and Medford, Oregon. Control fruit packed in standard perforated polyethylene liners started to show senescent core breakdown and lost the capacity to ripen at 20 °C after 4–5 months of cold storage in Hood River and after 5.25–6 months in Medford. LifeSpan® L257 MAP achieved steady-state atmospheres of 15.8% O2 + 3.7% CO2 in Hood River and 15.7–17.5% O2 + 3.8–5.7% CO2 in Medford. MAP inhibited ethylene production, ascorbic acid degradation and malondialdehyde accumulation, and extended storage life for up to 6 months with maintenance of fruit flesh firmness (FF) and skin color without commercially unacceptable level of physiological disorders. After 4, 5 and 6 months at −1 °C, MAP fruit exhibited climacteric-like patterns of ethylene production and softened to proper texture with desirable eating quality on day 5 during ripening at 20 °C. After 6 months at −1 °C plus 2 weeks of simulated transit conditions, MAP fruit maintained FF and skin color and had good eating quality at transit temperatures of 2 and 4.5 °C (10.1–11.5% O2 + 4.8–5.2% CO2), but reduced FF substantially and developed internal browning disorder at 7.5 and 20 °C (3.2–7.2% O2 + 7.9–9.5% CO2). The storage life of ‘Doyenne du Comice’ pears with high eating quality could be increased by up to 2 months when packed in MAP as compared with fruit packed in standard perforated polyethylene liners.  相似文献   

17.
The effect of different O2 levels from 0 to 100 kPa in combination with 0, 10 and 20 kPa CO2 on the respiration metabolism of greenhouse grown fresh-cut butter lettuce was studied. Controlled atmospheres of 20 or 75 kPa O2 with 0 or 10 kPa CO2 showed a constant respiration rate during the first 2–4 days at different temperatures (1, 5 and 9 °C). Therefore, constant respiration rates during a short period of 2–4 days could be considered as valid for a large part of the commercial life of, for instance, a modified atmosphere package development. The fresh-cut lettuce exposed to low O2 levels (2–10 kPa) combined with moderate to high CO2 levels (10 and 20 kPa) had a higher respiration rate than when 20–100 kPa O2 were used. Moderate CO2 levels (10 kPa) reduced the respiration rates of fresh-cut lettuce 20–40% at 9 °C. This effect was less noticed at lower temperatures. Gas composition with high CO2 levels (20 kPa) probably caused a metabolic disorder increasing the respiration rate of fresh-cut butter lettuce. It was concluded that 80 kPa O2 must be used in modified atmosphere packaging (MAP) to avoid fermentation of fresh-cut butter lettuce in combination with 10–20 kPa CO2 for reducing their respiration rate.  相似文献   

18.
Peel yellowing is a major postharvest problem of lime fruit. Research was conducted to control peel yellowing by UV-B irradiation. Mature green lime fruit were irradiated with UV-B doses at 0 (control), 8.8, and 13.2 kJ m?2 and then stored at 25 °C in darkness. UV-B treatment at 8.8 kJ m?2 efficiently delayed the decrease of chlorophyll content. A high level of chlorophyllide a accumulated in mature green fruit and then gradually decreased with the progress of peel yellowing. The chlorophyllide a level was higher in 8.8 kJ m?2 UV-B-treated fruit than it was in the controls. The pheophorbide a level declined in lime fruit treated with 8.8 kJ m?2 UV-B, especially during the development of yellowing. In addition, the pheophytin a level increased by 8.8 kJ m?2 UV-B treatment at the late period of storage. We concluded that UV-B treatment effectively suppressed chlorophyll degradation in mature green lime during storage, which suggests that UV-B irradiation is a usable method for prolonging the postharvest life of lime fruit.  相似文献   

19.
Atmospheric CO2 concentrations ([CO2]) are predicted to increase from current levels of about 400 ppm to reach 550 ppm by 2050. The direct benefits of elevated [CO2] (e[CO2]) to plant growth appear to be greater under low rainfall conditions, but there are few field (Free Air CO2 Enrichment or FACE) experimental set-ups that directly address semi-arid conditions. The objectives of this study were to investigate the following research questions: 1) What are the effects of e[CO2] on the growth and grain yield of lentil (Lens culinaris) grown under semi-arid conditions under FACE? 2) Does e[CO2] decrease grain nitrogen in lentil? and 3) Is there genotypic variability in the response to e[CO2] in lentil cultivars? Elevated [CO2] increased yields by approximately 0.5 t ha−1 (relative increase ranging from 18 to 138%) by increasing both biomass accumulation (by 32%) and the harvest index (by up to 60%). However, the relative response of grain yield to e[CO2] was not consistently greater under dry conditions and might depend on water availability post-flowering. Grain nitrogen concentration was significantly reduced by e[CO2] under the conditions of this experiment. No differences were found between the cultivars selected in the response to elevated [CO2] for grain yield or any other parameters observed despite well expressed genotypic variability in many traits of interest. Biomass accumulation from flowering to maturity was considerably increased by elevated [CO2] (a 50% increase) which suggests that the indeterminate growth habit of lentils provides vegetative sinks in addition to reproductive sinks during the grain-filling period.  相似文献   

20.
The aim of the present work was to evaluate the effect of soil water availability and nitrogen fertilization on yield, water use efficiency and agronomic nitrogen use efficiency of giant reed (Arundo donax L.) over four-year field experiment.After the year of establishment, three levels for each factor were studied in the following three years: I0 (irrigation only during the year of establishment), I1 (50% ETm restitution) and I2 (100% ETm restitution); N0 (0 kg N ha−1), N1 (60 kg N ha−1) and N2 (120 kg N ha−1).Irrigation and nitrogen effects resulted significant for stem height and leaf area index (LAI) before senescence, while no differences were observed for stem density and LAI at harvest.Aboveground biomass dry matter (DM) yield increased following the year of establishment in all irrigation and N fertilization treatments. It was always the highest in I2N2 (18.3, 28.8 and 28.9 t DM ha−1 at second, third and fourth year growing season, respectively). The lowest values were observed in I0N0 (11.0, 13.4 and 12.9 t DM ha−1, respectively).Water use efficiency (WUE) was significantly higher in the most stressed irrigation treatment (I0), decreasing in the intermediate (I1) and further in the highest irrigation treatment (I2). N fertilization lead to greater values of WUE in all irrigation treatment.The effect of N fertilization on agronomic nitrogen use efficiency (NUE) was significant only at the first and second growing season.Giant reed was able to uptake water at 160–180 cm soil depth when irrigation was applied, while up to 140–160 cm under water stress condition.Giant reed appeared to be particularly suited to semi-arid Mediterranean environments, showing high yields even in absence of agro-input supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号