首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the feasibility of earthworm introduction for increasing the macroporosity and permeability of arable heavy clay, deep-burrowing earthworms (Lumbricus terrestris L.) were inoculated into a tile drained experimental field in Jokioinen, S-W Finland in autumn 1996. Inoculation with the Earthworm Inoculation Unit technique was at the up-slope end of the field, in the field margins under permanent grass, and inside the four 0.46 ha plots of the field. The experiment was monitored on three occasions. In 1998 the L. terrestris population had persisted in low numbers only in field and plot margins. By 2003, when the field had been under set-aside grass for three years, density had grown in the margins and L. terrestris were also found inside the field at a very low density. The third monitoring was in autumn 2009, after a further four years as set-aside and a subsequent division of the field into no-till and ploughing management, and looked at the effects of management (margins, no-till, ploughing), distance from the inoculation and sub-drainage on L. terrestris abundance. The abundance displayed a clear gradient over the field, declining from 14 ind. and 18 g m?2 at 5–9 m from inoculation, to 1 ind. and 2 g m?2 at 56–60 m distance. Margins had the highest abundances (16 ind. and 32 g m?2), followed by no-till (4 ind. and 4 g m?2) and ploughing (1 ind. and 1 g m?2). Abundances were significantly higher above the tiles than between them (P < 0.05). The results demonstrate the importance of no-till and sub-drain line habitats as settlement supports for the inoculated population. Field margins proved to be decisive for inoculation success, by providing bridgeheads for population establishment and later by acting as source areas for the colonisation of the field. This finding highlights the general importance of field margins in the dispersal ecology of earthworms in arable landscapes.  相似文献   

2.
Earthworms can have positive effects upon crop growth in the tropics. If soils are to be managed sustainably, then more attention should be paid to the effects of cultivation and cropping practices upon earthworms. When forest vegetation is cleared, slashed, burned and land is tilled and cultivated, earthworm abundance, diversity and activity are reduced. Conversely, retaining trees in agroecosystems may maintain earthworm populations during the cropping phase.Here, we assessed the impact on earthworm species diversity and densities of crop cultivation in the understorey of timber plantations thinned to two tree densities and compared these with uncropped, undisturbed timber plantation controls. The plots were reassessed after two and a half years of fallow to see whether populations had recovered. The experiment was in central Cameroon.Seventeen earthworm species were recorded from Eudrilidae subfamilies Eudrilinae and Pareudrilinae, Ocnerodrilidae and Acanthodrilidae, most of which were endemics. This included two new species from two new genera from the sub-family Pareudrilinae, one new species from one new genus of Ocnerodrilidae, two new species of Dichogaster and one new species of Legonodrilus. Ten species were epigeic, six were endogeic and one was anecic.Generally, earthworm densities were lower in cropped plots than in the undisturbed plantation control. The most abundant species was a Legonodrilus sp. nov. with average densities of 49 individuals m−2 in the crop phase and 80 ind. m−2 in the fallow phase. By the fallow phase, densities in the low tree density (120 ind. m−2) were higher than in the high density (40 ind. m−2). The densities of the epigeic Acanthodrilidae were significantly reduced to 7 ind. m−2 in the cropped plots compared with 42 ind. m−2 in the control plots. The effects of cropping were thus species-specific and more work is required to identify which of these endemics are the ecosystem engineers in the system.  相似文献   

3.
A field experiment in managed woodland was set up to examine the effects of manipulated population density and resource availability on spatial distribution and dispersal of the anecic earthworm Lumbricus terrestris. Experiments over 2 years, made use of 1 m2 field enclosures with associated trapping units to assess emigration rates at control and enhanced L. terrestris densities and different levels of leaf litter availability. Densities were manipulated twice; at the outset and again after 1 year when visually tagged animals obtained from 2 origins were introduced. Population density had a significant effect on dispersal (p < 0.01, p < 0.05 in Year 1 and Year 2 respectively) with more captures (pro rata) at the higher density compared with controls over the experimental period. Food availability only had a significant effect during the initial week of the experiment. L. terrestris midden arrangement was found to be regular across 1 m2 plots and regularity increased with an increase in midden number. Mean (±S.E.) midden number was 30.34 ± 0.77 m−2 and 28.06 ± 0.5 m−2, during the first and second year of the experiment respectively and this was unaffected by additions. Inter-midden distance was recorded at 0.13 ± 0.0014 m. Results suggest that L. terrestris dispersal can be affected by population density and resource availability.  相似文献   

4.
Down House was Charles Darwin's home from 1842 until his death in 1882 and where he wrote “The Formation of Vegetable Mould through the Action of Worms”. The work described here is based upon passages from this book and from further observations on earthworms in this area. General observations were made in addition to systematic sampling in areas selected either from signs of earthworm activity, habitat type or in direct relation to Darwin's documented work.Greatest species richness (n = 9) was found in Middle Field. Greatest earthworm density was present in Darwin's Kitchen Garden (715 m−2) with the largest associated biomass (261 g m−2). Aporrectodea longa was the most abundant species. Lumbricus terrestris, described by Darwin in terms of its behaviour, but not directly named, was located in relatively low numbers, but its diagnostic middens and associated burrows were easily detected. Earthworms associated with Darwin's cinder and chalk application experiments were also examined. In total, 19 of Britain's 28 earthworm species were located within the nominated World Heritage Site.  相似文献   

5.
Endogeic and juvenile anecic earthworm abundance was measured in soil samples and anecic populations were studied by counting midden numbers at the sites of two long-term cropping systems trials in South-central Wisconsin. The three grain and three forage systems at each site were designed to reflect a range of Midwestern USA production strategies. The primary objectives of this work were to determine if the abundance of endogeic or anecic earthworms varied among cropping systems or crop phases within a cropping system and were there specific management practices that impacted endogeic or anecic earthworm numbers. The earthworms present in the surface soil were: Aporrectodea tuberculata (Eisen), A. caliginosa (Savigny), A. trapezoides (Dugés); and juvenile Lumbricus terrestris (L.). True endogeic abundance was greatest in rotationally grazed pasture [188 m?2 at Arlington (ARL) and 299 m?2 at Elkhorn (ELK)], and smallest in conventional continuous corn (27 m?2 at ARL and 32 m?2 at ELK). The only type of anecic earthworm found was L. terrestris L. There was an average of 1.2 middens per adult anecic earthworm and the population of anecics was greatest in the no-till cash grain system (28 middens m?2 at ARL, 18 m?2 at ELK) and smallest in the conventional continuous corn system (3 middens m?2 at ARL, 1 m?2 at ELK). Earthworm numbers in individual crop phases within a cropping system were too variable from year-to-year to recommend using a single phase to characterize a whole cropping system. Indices for five management factors (tillage, manure inputs, solid stand, pesticide use, and crop diversity) were examined, and manure use and tillage were the most important impacting earthworm numbers across the range of cropping systems. Manure use was the most important management factor affecting endogeic earthworm numbers; but no-tillage was the most important for the juvenile and adult anecic groups and had a significantly positive influence on endogeic earthworm counts as well. The pesticides used, which were among the most commonly applied pesticides in the Midwestern USA, and increasing crop diversity did not have a significant effect on either the endogeic or anecic earthworm groups in this study. Consequently, designing cropping systems that reduce tillage and include manure with less regard to omitting pesticides or increasing crop diversity should enhance earthworm populations and probably improve sustainability.  相似文献   

6.
Earthworms Allolobophora chlorotica and Aporrectodea longa were inoculated into Calvert landfill site in spring 1992, in conjunction with the planting of two tree species Alnus glutinosa and Acer pseudoplatanus. Monitoring has taken place over a period of 11 years. Sampling in 2003 revealed that earthworm distribution no longer equated to the inoculation treatments; the worms had spread extensively. The presence of A. glutinosa had a significant effect (p<0ċ01) on earthworm number (mean density 198 m−2) and biomass (34 g m−2) compared to plots where A. pseudoplatanus had been planted and subsequently died (mean density 118 m−2; biomass 21 g m−2). Results suggest that tree presence may be critical to earthworm community development. In 2002, the spread of A. chlorotica from the original points of inoculation had reached 60 m with the highest recorded population density at 108 m−2 with a mass of 18ċ6 g m−2. A. longa was recorded at a distance of 132 m from the nearest point of inoculation with the highest recorded population density at 70 m−2 with a mass of 49ċ3 g m−2, 10 m from the original inoculation grid. Other species recorded (and % of total) were Aporrectodea rosea (0ċ9) Lumbricus castaneus (7ċ4), Eiseniella tetraedra (21ċ5) and Lumbricus rubellus (4ċ5). The two inoculated species, A. chlorotica (40ċ4) and A. longa (25ċ3), accounted for two thirds of the earthworms found on site. The highest earthworm community density was 213 m−2 with a mass of 73ċ9 g m−2 at 10 m from original point of inoculation. In 1999, treatments of surface organic matter (OM), in the form of composted green waste, and rotavation were applied to non‐replicated plots of 50 m2 with the effects on earthworm distribution and abundance recorded in 2002. Addition of OM alone led to an increase in number and mass (331 m−2; 95 g m−2) compared to the control (233 m−2; 51 g m−2), while rotavation alone (111 m−2; 36 g m−2) had a detrimental effect over the given time period. This long‐term monitoring programme has demonstrated the development of sustainable earthworm communities on a landfill site. Natural nutrient accumulation and addition of OM on or into the soil‐forming material appeared to assist this process. This work may help to inform post‐capping treatment at similar landfill sites Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
《Applied soil ecology》2003,22(1):87-95
Allyl isothiocyanate (AITC), a natural breakdown product of glucosinolates in many Cruciferae and a component imparting the sharp taste to mustard, was tested for its effectiveness as a chemical expellant for sampling earthworms. Testing was performed in an arable field with earthworm populations dominated by Lumbricus terrestris Linnaeus, 1758 and Aporrectodea tuberculata (Eisen, 1874). The optimal concentration was found by comparing concentrations ranging from 5 to 250 mg l−1 in water. Total biomass and numbers of earthworms collected increased hyperbolically with increasing AITC concentration, with the highest biomass and numbers collected using 100 mg l−1 AITC. Biomass and numbers of earthworms collected using 250 mg l−1 AITC, but not 150 or 200 mg l−1 AITC, were significantly less than with 100 mg l−1 AITC. Less earthworm biomass was collected by hand sorting than with chemical expulsion using 100 mg l−1 AITC, but the number of earthworms collected by the two methods were not different. A comparison of hand sorting and 100 mg l−1 AITC expulsion using analysis of similarities (ANOSIM) showed that the two methods produced samples differing in the distribution of both numbers and biomass of species-by-size classes. Hand sorting collected more of the smallest size class of L. terrestris and the largest size classes of A. tuberculata than AITC expulsion, whereas AITC expulsion recovered more of the largest size classes of L. terrestris than hand sorting. When 100 mg l−1 AITC expulsion was compared with chemical expulsion using 200 mg l−1 formalin, no differences were found in the total number, total biomass or in the species-by-size class distribution of the earthworms collected. This suggests that the AITC method may be a favorable alternative to formalin expulsion for sampling earthworms. Further studies under other environmental conditions and with other species of earthworms are warranted to establish its general utility.  相似文献   

8.
It is well known that earthworm populations tend to increase under no-tillage (NT) practices, but abundances tend to be highly variable. In the present study, data from the literature together with those on earthworm populations sampled in six watersheds in SW Paraná State, Brazil, were used to build a classification of the biological soil quality of NT systems based on earthworm density and species richness. Earthworms were collected in 34 farms with NT aging from 3 to 27 yr, in February 2010, using an adaptation of the TSBF (Tropical Soil Biology and Fertility) Program method (hand sorting of five 20 cm × 20 cm holes to 20 cm depth). Six forest sites were also sampled in order to compare abundances and species richness with the NT systems. Species richness in the 34 NT sites and in the 6 forests ranged from 1 to 6 species. Most earthworms encountered were exotics belonging to the genus Dichogaster (D. saliens, D. gracilis, D. bolaui and D. affinis) and native Ocnerodrilidae (mainly Belladrilus sp.), all of small individual size. In a few sites, individuals of the Glossoscolecidae (P. corethrurus, Glossoscolex sp., Fimoscolex sp.) and Megascolecidae (Amynthas gracilis) families were also encountered, in low densities. Urobenus brasiliensis (Glossoscolecidae) were found only in the forest fragments. In the NT farms, earthworm abundance ranged from 5 to 605 ind m−2 and in the forest sites, from 10 to 285 ind m−2. The ranking of the NT soil biological quality, based on earthworm abundance and species richness was: poor, with <25 individuals per m−2 and 1 sp.; moderate, with ≥25–100 individuals per m−2 and 2–3 sp.; good, with >100–200 individuals per m−2 and 4–5 sp.; excellent, with >200 individuals per m−2 and >6 sp. About 60% of the 34 farms fell into the poor to moderate categories based on this classification, so further improvements to the NT farm's management system are needed to enhance earthworm populations. Nevertheless, further validation of this ranking system is necessary to allow for its wider-spread use.  相似文献   

9.
《Soil biology & biochemistry》2001,33(7-8):983-996
We investigated the influence of earthworms on the three-dimensional distribution of soil organic carbon (SOC) in a chisel-tilled soil. By burrowing, foraging, and casting at the surface and throughout the soil, anecic earthworms such as Lumbricus terrestris L. may play a major role in regulating the spatial distribution of organic matter resources both at the surface and within the soil. In the fall of 1994, we manipulated ambient earthworm communities, which were without deep burrowing species, by adding 100 earthworm individuals m−2 in spring and fall for 3 years. Overall, the biomass of L. terrestris was increased with earthworm additions and total earthworm biomass declined compared with ambient control treatments. To investigate the spatial variability in soil organic carbon due to this shift in earthworm community structure, we sampled soil on a 28×24 cm grid from the surface to 40 cm in four layers, 10 cm deep. Samples were analyzed for total carbon. We found that additions of anecic earthworms significantly increased average soil organic carbon content from 16.1 to 17.9 g C kg−1 for the 0–10 cm soil, and from 12.4 to 14.7 g kg−1 at 10–20-cm depth, and also changed the spatial distribution of soil organic carbon from uniform to patchy, compared with the ambient treatment.  相似文献   

10.
Two field experiments had been conducted in Huantai County, Shandong Province, east of China, with an effort to understand the impact of agricultural intensification on earthworm diversity and population density. Seven species of earthworms were identified in the two experiments. Average earthworm populations in the higher fertility soil (experiment B, 1.83% organic matter) were relatively abundant, with a population density of 105 indiv./m2 and biomass of 57 g/m2. Aporrectae trapezoids was the most dominant species. In the lower fertility soils (experiment A, 1.43% organic matter) the population density was only 51 indiv./m2 and the average biomass was 30 g/m2. Drawida gisti was the most dominant species. For both the experiments A and B, organic fertilizer (OF) and crop straw return increased earthworm abundance. The impact of chemical fertilizer (CF) on the earthworm population was found to depend on the amount of organic input. In experiment B, the earthworm biomass decreased when only winter wheat (Triticum aestivum) straw was input at three CF application levels. However, while both winter wheat straw (WS) and corn (Zea mays) stalk returned, there was no negative correlation between CF and earthworm density and biomass.  相似文献   

11.
《Applied soil ecology》1999,11(2-3):189-197
Senescent leaves of Miscanthus sinensis contained 36% soluble polysaccharides, 26% cellulose and had a C/N ratio of 45. In 11 wild flower species contents of soluble polysaccharides (21–30%), cellulose (3–16%) and C/N ratio (13–31) were lower. Decomposing leaves of M. sinensis lost weight at a rate of 0.002 day−1, increased the C/N ratio from 45 to about 100, the bacterial biomass from 0.4 to 1 μg C mg−1 dry weight, and decreased the tensile strength from 35 to 10 N. The withdrawal rate of Lumbricus terrestris with senescent leaves of M. sinensis was 30 mg g−1 week−1; the feeding rate was lower. With most senescent wild flowers withdrawal and feeding rates were higher. During decomposition of M. sinensis withdrawal rates increased to about 90, and feeding rates to about 30 mg g−1 week−1. The rates were not related to soluble polysaccharides, cellulose, acid-insoluble residue, C/N ratio and the presence of trichomes on the leaves. The abundance of L. terrestris decreased in a meadow turned into a field of M. sinensis from 55 to 26 earthworms m−2 and increased in a rotational maize field turned into wild flower strips from 28 to 46 earthworms m−2. The species richness of earthworms decreased with M. sinensis from 7.2 to 4.7 and increased with wild flowers from 4.7 to 6.7 species per sampling unit.  相似文献   

12.
Earthworms play an important role in many soil functions and are affected by soil tillage in agricultural soils. However, effects of tillage on earthworms are often studied without considering species and their interactions with soil properties. Furthermore, many field studies are based on one-time samplings that do not allow for characterisation of temporal variation. The current study monitored the short (up to 53 days) and medium term (up to 4 years) effects of soil tillage on earthworms in conventional and organic farming. Earthworm abundances decreased one and three weeks after mouldboard ploughing in both conventional and organic farming, suggesting direct and indirect mechanisms. However, the medium-term study revealed that earthworm populations in mouldboard ploughing systems recovered by spring. The endogeic species Aporrectodea caliginosa strongly dominated the earthworm community (76%), whereas anecic species remained <1% of all earthworms in all tillage and farming systems over the entire study. In conventional farming, mean total earthworm abundance was not significantly different in reduced tillage (153 m−2) than mouldboard ploughing (MP; 130 m−2). However, reduced tillage in conventional farming significantly increased the epigeic species Lumbricus rubellus from 0.1 m−2 in mouldboard ploughing to 9 m−2 averaged over 4 years. Contrastingly, in organic farming mean total earthworm abundance was 45% lower in reduced tillage (297 m−2) than MP (430 m−2), across all sampling dates over the medium-term study (significant at 3 of 6 sampling dates). Reduced tillage in organic farming decreased A. caliginosa from 304 m−2 in mouldboard ploughing to 169 m−2 averaged over 4 years (significant at all sampling dates). Multivariate analysis revealed clear separation between farming and tillage systems. Earthworm species abundances, soil moisture, and soil organic matter were positively correlated, whereas earthworm abundances and penetration resistance where negatively correlated. Variability demonstrated between sampling dates highlights the importance of multiple samplings in time to ascertain management effects on earthworms. Findings indicate that a reduction in tillage intensity in conventional farming affects earthworms differently than in organic farming. Differing earthworm species or ecological group response to interactions between soil tillage, crop, and organic matter management in conventional and organic farming has implications for management to maximise soil ecosystem functions.  相似文献   

13.
European earthworms are invading many ecosystems worldwide and fundamentally transform habitats by acting as dominant ecosystem engineers. However, there is little knowledge of the consequences of earthworm invasion on the composition and diversity of native soil organisms. Particularly functionally similar groups, such as enchytraeids (Annelida: Enchytraeidae), may be affected through changes in the chemical and physical properties of the soil, but also due to competition for resources. In 2010–2011, we studied the impact of earthworm invasion on enchytraeids at two sites in the northern hardwood forests of North America: one site within the Chippewa National Forest in northern Minnesota and one site in the Chequamegon-Nicolet National Forest in northern Wisconsin, USA. At each site, three plots were sampled along a transect, representing (1) a non-invaded or very slightly invaded area, (2) the leading edge of earthworm invasion and (3) a heavily invaded area with an established population of the anecic earthworm Lumbricus terrestris (among other species). In total, 29 enchytraeid (morpho)species were identified (some yet to be formally described, several first or second records for the continent); of those 24 occurred at the Minnesota site and 17 at the Wisconsin site. The structure of enchytraeid assemblages differed significantly among the three invasion stages, although this was not equally pronounced at the two sites. Each stage was characterized by one or several indicator species. Mean enchytraeid densities (10,700–30,400 individuals/m2) did not differ significantly among the invasion stages, but were lowest at the leading edge of earthworm invasion at both sites. In the heavily invaded plot at the Minnesota site, the mean enchytraeid density and biomass in L. terrestris middens were significantly higher than in soil in-between the middens. This was due to a pronounced effect of L. terrestris middens in the uppermost 3 cm of soil. Differences in biomass among earthworm invasion stages were most apparent for mean individual biomass. This was significantly higher in the heavily invaded area than at the leading edge or in the non-invaded area at the Minnesota site. Compositional changes of the enchytraeid assemblage are likely to result in changes in the functioning of soil foods webs. Our results suggest that earthworm invasions can cause a loss of native species in soil, including heretofore unknown ones, that might go unnoticed.  相似文献   

14.
Subsurface drainage induces systematic spatial variability in soil properties which may be reflected in the abundance and distribution of soil organisms. We compared the population density of the deep burrowing earthworm Lumbricus terrestris L. above and between tile subdrains in 41 sample pairs on an eight hectare grass field. Above the drains the median number of  individuals was twice as high and their total fresh mass five times as high as between the drains (4.5 vs. 2.1 individuals m-2  and 9.6 vs. 1.9 g m-2, respectively). The mean difference (above drain – between drains) was 2.5 individuals m-2  (95% CI = 1.0 to 4.0) and 6.6 grams m-2 (95% CI = 3.6 to 9.6). The relatively larger difference in fresh mass was due to a high proportion of adult individuals above drains. One likely explanation for the pattern of abundance is that the lowered water table level near the drains provides an environment beneficial for the population growth of L. terrestris. Due to the role of L. terrestris burrows as flow paths of percolating water the observations may have implications on subdrain function.  相似文献   

15.
Earthworms are important soil animals in grassland ecosystems and are considered to be important to soil quality. The overall impact of earthworms on soil properties and plant diversity, however, depends on earthworm species, functional group and the type of ecosystem. The primary purpose of this study was to document the relationship among earthworms, key soil properties and native and exotic plant diversity in the little studied, Palouse prairie grassland (Idaho, USA). A secondary objective was to determine the effectiveness of three methods commonly used to sample earthworms. A hillslope characterized by Palouse prairie vegetation, well-expressed, hummocky (mounded) topography and known to support both exotic and native earthworm species was selected for study. The hillslope was divided into three zones [annual-dominated (AD), mixed (MX) and perennial-dominated (PD)] based on characteristics of the inter-mound plant communities described in previous research. Total earthworm biomass in the MX zone (53.5 g m−2) was significantly greater than in the PD zone (14.7 g m−2) (P = 0.0384), but did not differ from the AD zone. Earthworm density ranged from 52 to 81.1 individuals m−2 but was not significantly different across zones. Total C and N at 0 to 10 and 30 to 50 cm depths were significantly greater in the AD and PD zones as compared to the same depths in the MX zone. Soil textural class was silt loam within all zones and the soil silt fraction was positively correlated with total exotic earthworm density (R = 0.783, P = 0.0125) and biomass (R = 0.816, P = 0.0072). Native earthworms were only found in the zone with the greatest total and native plant diversity (PD). Total soil C and N were not correlated to earthworm density, but soil total C and N were significantly negatively correlated with exotic plant density, which indicates that invasive plants may be decreasing soil total C (R = −0.800) and N (R = −0.800). Calculated earthworm densities using data from the electroshocker were generally lower than those based on the hand-sorting method. Electroshocking, however, created lower disturbance and was the only method that resulted in the collection of the deep-burrowing, native species Driloleirus americanus.  相似文献   

16.
Anecic earthworms have been shown to collect, concentrate and bury seeds in their burrows. Moreover, recent studies suggest that earthworms function as granivores and seedling herbivores thereby directly impacting plant community assembly. However, this has not been proven unequivocally. Further, it remains unclear if earthworms benefit from seed ingestion, i.e., if they assimilate seed carbon. We set up a series of three laboratory experiments in order to test the following hypotheses: (1) anecic earthworms (Lumbricus terrestris L.) not only ingest seeds but also seedlings, (2) ingestion of seedlings is lower than that of seeds due to a ‘size refuge’ of seedlings (i.e., they are too big to be swallowed), and (3) seeds and seedlings contribute to earthworm nutrition. L. terrestris readily consumed legume seedlings in the radicle stage, whereas legume seeds and seedlings in the cotyledon stage, and grass seeds and seedlings in the radicle and cotyledon stage were ingested in similar but lower amounts. Importantly, ingestion of seedlings, in contrast to seeds, was lethal for all plant species. Moreover, earthworm weight change varied with the functional identity and vitality of seeds and natural 15N signatures in earthworm body tissue underlined the importance of seedlings for earthworm nutrition. The results indicate that the anecic earthworm L. terrestris indeed functions as a granivore and seedling herbivore. The selectivity in seedling ingestion points at the potential of direct earthworm effects on plant community assembly. Further, seeds and seedlings most likely contribute significantly to earthworm nutrition potentially explaining the collection and concentration of seeds by L. terrestris in its middens and burrows; however, the present results call for experiments under more natural conditions.  相似文献   

17.
《Applied soil ecology》2003,22(2):181-190
The relative importance of reduced soil disturbance and increased food supply in supporting large earthworm populations in cereal–legume intercropping systems was investigated in two replicated field experiments over a 3-year period. In the first experiment, the effects of the absence of tillage and the presence of a permanent white clover understorey on earthworm populations were assessed in three winter wheat cropping systems. The mean earthworm abundance as assessed by electrical extraction in conventional wheat, direct drilled wheat and direct-drilled wheat–clover intercrops was 211, 280 and 572 individuals m−2 and the corresponding earthworm biomass was 62, 92 and 203 g m−2. In the second experiment, the effects of dairy cattle slurry and mineral fertilizer applications on earthworm populations in wheat–clover intercropping systems were assessed. Neither the input of additional organic matter (as slurry) nor mineral N fertilization increased earthworm population levels which were already remarkably high, averaging 1097 individuals m−2 and 266 g biomass m–2 in the third year of the experiment. These results suggest that while the absence of ploughing alone had only a modest effect, the combination of absence of ploughing and presence of a clover understorey increased earthworm populations greatly. It is concluded that cereal–legume intercrops support large earthworm populations primarily because the organic matter input from such systems is favourable for earthworms in terms of quantity, quality and continuity of food supply throughout the year.  相似文献   

18.
《Applied soil ecology》2011,47(3):355-371
Secondary succession of nematodes was studied in 1–48-year-old abandoned fields on cambisols in South Bohemia, Czech Republic, and compared with cultivated field and sub-climax oak forests. Bacterivores were the predominant group in the cultivated field whereas in forests root-fungal feeders (mainly Filenchus) were almost as abundant as bacterivores. The total abundance of nematodes in the cultivated field averaged 868 × 103 ind m−2. During the first three years of succession the abundance practically did not change (775 × 103 ind m−2), the fauna was still similar to that in cultivated field but the biomass increased mainly due to Aporcelaimellus. Then the abundance increased up to 3731 × 103 ind m−2 in 7–8-year-old abandoned fields, plant parasites (Helicotylenchus) dominated and the fungal-based decomposition channel was activated. Later the abundance stabilised at between 1086 and 1478 × 103 ind m−2 in 13–25-year-old successional meadow stages with high population densities of omnivores and predators. The total abundance of nematodes was low in the 12–13-year-old willow shrub stage (594 × 103 ind m−2), increased in the 35–48-year-old birch shrub stage (1760 × 103 ind m−2) and the nematode fauna developed towards a forest community. The diversity and maturity of nematode communities generally increased with the age of abandoned fields but the highest values were in meadow stages (81–113 species, 57–68 genera, MI 2.73–3.30). The development of meadow arrested succession towards forests or diverted succession towards a waterlogged ecosystem. The succession of nematodes was influenced by the method of field abandonment (bare soil vs. legume cover, mowing) that affected the formation of either a shrub or meadow stage, and by the soil water status. The composition of the nematode fauna indicated that the soil food web could recover faster from agricultural disturbance under successive meadows than under shrubs.  相似文献   

19.
In North America, many species of European earthworms have been introduced to northern forests. Facilitative or competitive interactions between these earthworm species may result in non-additive effects on native plant and animal species. We investigated the combined versus individual effects of the litter-dwelling earthworm Dendrobaena octaedra Savigny, 1826 and the deep-burrowing species Lumbricus terrestris L., 1758 on microarthropod assemblages from boreal forest soil by conducting a mesocosm experiment. Soil cores from earthworm-free areas of northern Alberta, Canada, were inoculated with D. octaedra alone, L. terrestris alone, both worm species together, or no earthworms. After 4.5 months, microarthropods were extracted from the soil, counted, and identified to higher taxa. Oribatid mites were further identified to family and genus. Abundance of microarthropods was significantly lower in the treatment containing both species than in the no earthworm treatment and the L. terrestris treatment. Oribatida and Prostigmata/Astigmata differed significantly among treatments and were lowest in the treatment containing both earthworm species, followed by the D. octaedra treatment, although post-hoc pairwise comparisons were not significant. Within the Oribatida, composition differed between the control and L. terrestris treatments as compared to the D. octaedra and both-species treatments, with Suctobelbella and Tectocepheus in particular having higher abundances in the control treatment. Effects of the two earthworm species on microarthropods were neither synergistic nor antagonistic. Our results indicate that earthworms can have strong effects on microarthropod assemblages in boreal forest soils. Future research should examine whether these changes have cascading effects on nutrient cycling, microbial communities, or plant growth.  相似文献   

20.
During the last several decades, colonization of soil by exotic earthworms and their effects on soil properties and biodiversity have been reported in forests of North America. In some northern hardwood stands, acid soils or harsh climate may have prevented earthworm colonization. However, climatic change and the increasing use of liming to restore the vigor of declining sugar maple (Acer saccharum Marsh.) stands, situated on base-poor soils in USA and Canada, could make many of these sites more suitable for earthworm colonization. We tested survival and reproduction of two exotic earthworm species (Lumbricus terrestris and Amynthas hawayanus) in unlimed and limed soils at the northern limit of the northern hardwood forest distribution in Canada. Improving soil parameters of base-poor, acidic soils by liming positively influenced activity, survivability and reproductive output of L. terrestris in this northern hardwood forest. In contrast, the high mortality and low vigor of L. terrestris observed in the unlimed plots show that soils in this area with a pH of 4.3 are not favorable to this species. Our results suggest that A. hawayanus was very active prior to winter at both soil pHs, but was not able to complete its life cycle during one year at this latitude. Both earthworm species significantly reduced organic C and total N, and increased the C/N ratio of the forest floor. Given that forest liming activities are increasing in proximity to human activities, there is high probability that some earthworm species, such as L. terrestris, will invade limed northern hardwood forests in the next decades, with possible consequences for soil organic matter turnover, nutrient cycling and forest biodiversity and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号