首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundance and functional structure of soil micro- (nematodes) and mesofauna (collembolans and mites) in relation to species diversity and initial C:N ratio of plant litter were studied in a field mesocosm experiment. A total of five litter treatments were applied to generate an increasing diversity of plant species (one, three and 12 species) and/or differences in initial C:N ratio of the litter (low, intermediate and high ratio). Samples were taken 3, 6 and 24 months after the litter exposure. On each sampling date litter and underlying sand samples were taken. Our results showed that litter quality, but not litter diversity was the factor which affected the three animal groups under study. The effect of litter was dependent on the time of litter exposure. Nematode fauna colonized litter earlier than the two mesofaunal groups. Nematodes responded apparently to litter quality gradient at early stages of litter decomposition. Three months after the start of the experiment the highest density of nematodes was noticed in single species litter of Trifolium pratense. Bacterial-feeding nematodes dominated in all litter treatments; on the first sampling date their percent share in Trifolium litter reached even 99.9%. Opposite to nematodes at late stages of litter decomposition the two mesofaunal groups seemed to show some preferences for low quality litter of Festuca rubra. Collembolan and nematode diversity was affected in similar way by the litter quality; the lowest diversity of the animal communities was found in the litter of the lowest initial C:N ratio. Maturity index of nematode communities was found to be a good index to differentiate between litters of different quality. The abundance and community structure of the three animal groups in underlying sandy soil was not significantly influenced by experimental conditions.  相似文献   

2.
Energy crops are increasingly cultivated in agricultural management systems world-wide. A substitution of food crops (e.g. cereals) by energy crops may generally alter the biological activity and litter decomposition in soil due to their varying structural and chemical composition and subsequently modify soil functioning. A soil microcosm experiment was performed to assess the decomposition and microbial mineralization of different energy crop residues in soil compared to a food crop, with or without earthworms. Residues of the energy crops winter rape (Brassica napus), maize (Zea mays), miscanthus (Miscanthus giganteus) and the food crop oat (Avena sativa) were each provided as food source for a mixed earthworm population, each consisting of one individual of Lumbricus terrestris, Aporrectodea caliginosa, and Octolasion tyrtaeum. After 6 weeks, the rate of litter loss from the soil surface, earthworm biomass, microbial biomass-C and -N, microbial activity, and enzyme activities were determined. The results emphasized, that litter loss and microbial parameters were predominantly promoted by earthworms and were additionally influenced by the varying structural and chemical composition of the different litter. Litter decay by earthworms was highest in N-rich maize litter treatment (C-N ratio 34.8) and lowest in the case of miscanthus litter (C-N ratio 134.4). As a consequence, the microbial biomass and basal respiration in soils with maize litter were higher, relative to other litter types. MBC-MBN ratio in soil increased when earthworms were present, indicating N competition between earthworms and microorganisms. Furthermore, enzyme activities responded in different ways on the varying types of litter and earthworm activity. Enzymes involved in the N-cycle decreased and those involved in the C-cycle tended to increase in the presence of earthworms, when litter with high C-N ratio was provided as a food source. Especially in the miscanthus treatments, less N might remain for enzymatic degradation, indicating that N competition between earthworms and microorganisms may vary between different litter types. Especially, an expansion of miscanthus in agricultural management systems might result in a reduced microbial activity and a higher N deficit for microorganisms in soil.  相似文献   

3.
The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization experiment to investigate the long-term effect of Ca, N, PK, and NPK addition on the productivity and diversity of both vegetation and soil biota. Whereas plant diversity increased by liming and decreased by N and NPK, the diversity of nematodes, collembolans, mites, and enchytraeids increased by N, PK, or NPK. Fertilization with NPK and PK increased plant biomass and biomass of enchytraeids and collembolans. Biomass of nematodes and earthworms increased by liming. Our results suggest that soil diversity might be driven by plant productivity rather than by plant diversity. This may imply that the selection of measures for restoring or conserving plant diversity may decrease soil biota diversity. This needs to be tested in future experiments.  相似文献   

4.
Soil-engineering organisms (earthworms, termites and ants) affect the soil and litter environment indirectly by the accumulation of their biogenic structures (casts, pellets, galleries, crop sheetings nests…). An enzymatic typology was conducted on six types of biogenic structures: casts produced by two earthworms (Andiodrilus sp. and Martiodrilus sp.), a nest built by a soil-feeding termite (Spinitermes sp.), crop galleries built by another soil-feeding termite (Ruptitermes sp.) and soil pellets produced by two species of leaf-cutting ant (Acromyrmex landolti and Atta laevigata) and an control soil from a natural Colombian savanna. A total of 10 enzymes (xylanase, amylase, cellulase, α-glucosidase, β-glucosidase, β-xylosidase, N-acteyl-glucosaminidase, alkaline and acid phosphatases and laccase) were selected to characterize the functional diversity of the biogenic structures. Our results showed that (i) Martiodrilus casts were characterized by a broad enzymatic profile that was different from that of the soil. (ii) A. laevigata pellets and termite structures had a profile broadly similar to the soil only with some enzymes (iii) Andiodrilus casts had an enzyme profile very similar to that of the soil. These results suggest that the functional diversity of these structures is related to differences between species and not to differences between taxonomic groups. For the first time, we evaluated differences in enzyme typology between biogenic structures collected on the same site but produced by different organisms. These differences suggested species dependent pathways for the decomposition of organic matter.  相似文献   

5.
Two field experiments had been conducted in Huantai County, Shandong Province, east of China, with an effort to understand the impact of agricultural intensification on earthworm diversity and population density. Seven species of earthworms were identified in the two experiments. Average earthworm populations in the higher fertility soil (experiment B, 1.83% organic matter) were relatively abundant, with a population density of 105 indiv./m2 and biomass of 57 g/m2. Aporrectae trapezoids was the most dominant species. In the lower fertility soils (experiment A, 1.43% organic matter) the population density was only 51 indiv./m2 and the average biomass was 30 g/m2. Drawida gisti was the most dominant species. For both the experiments A and B, organic fertilizer (OF) and crop straw return increased earthworm abundance. The impact of chemical fertilizer (CF) on the earthworm population was found to depend on the amount of organic input. In experiment B, the earthworm biomass decreased when only winter wheat (Triticum aestivum) straw was input at three CF application levels. However, while both winter wheat straw (WS) and corn (Zea mays) stalk returned, there was no negative correlation between CF and earthworm density and biomass.  相似文献   

6.
The effect of different densities of Lumbricus rubellus on the nematode community was studied in a field experiment. The stand, a cultivated meadow on peat-muck soil developed from moderately decomposed alder peat, was located on drained fens in the central basin of the Biebrza valley in the north-eastern part of Poland. Samples were taken from soil isolators into which 0, 2, 4 or 6 earthworms were previously introduced. The abundance and trophic structure of the nematode fauna in the different treatments were compared 30, 60, 90 and 120 d after the introduction of L. rubellus. The effect of L. rubellus on soil nematodes was most pronounced at the beginning of the experiment. Thirty days after introduction of L. rubellus, the total number of nematodes in all trials with earthworms was significantly lower than in the control, and nematode numbers decreased with increasing L. rubellus density. On later sampling dates, the results were less clear and 120 d after introduction of L. rubellus no significant effect on the total number of nematodes was observed in the treatments. The abundance of the bacterial-, fungal- and plant-feeding nematodes in the treatments with earthworms was lower than in the control 30 d after introduction of L. rubellus, but significant differences were found only in the case of bacterial feeders.  相似文献   

7.
Imbalanced fertilizer use with intensive cropping has threatened the sustainability of agroecosystems, especially on acid soils. An understanding of the long-term effects of fertilizers and amendments on soil health is essential for sustaining high crop yields. The effects of application of fertilizers, and amendments for 46 years on soil properties and maize yield in an acid Alfisol were investigated in this study. Ten fertilizer treatments comprising different amounts of NPK fertilizers, farmyard manure (FYM) and lime, and one control, were replicated three times in a randomized block design. At 0–15 cm soil depth, bulk density was least (1.20 t/m3), porosity (49.8%) and water holding capacity (61.7%) were greatest in 100% NPK + FYM, corresponding to the largest organic carbon content (13.93 g/kg). Microbial biomass C and dehydrogenase activity in 100% NPK + FYM were 42% and 13.7% greater than 100% NPK, respectively. Available nutrients were significantly more with 100% NPK + FYM and 100% NPK + lime than control and other fertilizer treatments. At 15–30 cm depth, the effect of various treatments was comparable to the surface layer. Grain yield declined by 55% and 53% in 100% NPK(-S) and 100% NP, respectively, compared with 100% NPK, whereas 100% N as urea alone eventually led to crop failure. Soil porosity recorded the greatest positive correlation (r = .933**), whereas bulk density recorded a negative significant correlation (r = −.942**) with grain yield. The results suggest that integrated use of FYM/lime with chemical fertilizers is a sustainable practice in terms of crop yield and soil health, whereas continuous application of urea alone is detrimental to the soil health.  相似文献   

8.
Application of earthworm in soil re-cultivation and re-creation in post-industrial ecosystems make a big challenge for temporal applied zoology. The sediments of the Krakow Soda Works “Solvay” have undergone land reclamation in different ways: older sediments traps were left without any re-cultivation practices; meanwhile the newest ones were reclaimed using standard method (new soil cover planted with combination of grass and leguminous plants). The effect of different treatments on community and population structure of earthworm was estimated during consecutive years 1999–2000. Six localities differing in time of establishment, reclamation processes, vegetation type and soil properties were chosen. Nine species were recorded, among which Aporrectodea caliginosa occurred in all localities, being also the most abundant. Two other species, Lumbricus rubellus and Dendrobaena octaedra, which are epigeic species, become most important in forest assemblages and were characteristic for communities of older succession processes. Abundance of adult forms as well as total biomass were significantly affected by soil depth (r = 0.75, P < 0.05, r = 0.917, P < 0.001, respectively). Species richness however was connected with higher amount of macroelements and average plant height. Shannon diversity index and its evenness negatively correlated only with forestation (r = –0.67, P < 0.05, r = –0.68, P < 0.05, respectively). Niche overlap (α Pianka) for all analysed species extracted two groups differing in environmental requirements. First contained epigeic earthworms, closely related to plant succession (PCA results), the other one grouped endogeic and anecique species correlated significantly with soil depth and plant density. Community structure of earthworms do not reflects succession changes in post-industrial habitats, but is strongly affected by microhabitat factors in local scale (mainly soil depth and plant density).  相似文献   

9.
长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响   总被引:53,自引:3,他引:53  
以1990年建立的国家褐潮土土壤肥力与肥料效益长期监测基地(北京昌平站)的长期肥料定位试验为研究平台,研究了不同施肥制度对玉米产量和土壤肥力的影响。结果表明,长期均衡地施NPK肥或NPK与有机肥配施,可以显著提高玉米产量和土壤有机质、全氮、全磷、速效氮、速效磷、速效钾等肥力指标,并能提高土壤微量元素的含量;而不均衡施肥(N、NK、NP、PK)导致相应的营养元素的耗竭。相关分析表明,在褐潮土上增施磷肥和有机肥对提高玉米产量具有重要的作用。  相似文献   

10.
Endogeic earthworms play an important role in mobilisation and stabilisation of carbon and nitrogen in forest and arable soils. Soil organic matter is the major food resource for endogeic earthworms, but little is known about the size and origin of the organic matter pool on which the earthworms actually live. We measured changes in body mass of juvenile endogeic earthworms, Octolasion tyrtaeum (Savigny), in soils with different C and N contents resulting from different fertiliser treatments. The soil was taken from a long-term experiment (Statischer Düngungsversuch, Bad Lauchstädt, Germany). The treatments included (1) non-fertilised soil, (2) NPK fertilised soil, (3) farmyard manure fertilised soil and (4) NPK + farmyard manure fertilised soil. The soil was incubated in microcosms with and without one juvenile O. tyrtaeum for 80 days.Earthworm biomass decreased in non-fertilised soil by 48.6%, in NPK soil by 9.4%, but increased in farmyard manure soil by 19.7% and 42.8% (soil with additional NPK application). In farmyard manure treatments the biomass of bigger individuals decreased, but in smaller individuals it increased. In NPK fertilised soil without farmyard manure only small O. tyrtaeum increased in body mass, whereas in the non-fertilised soil all individuals decreased in body mass. Generally, soil respiration correlated positively with soil carbon content. Earthworms significantly increased soil respiration and nitrogen leaching and this was most pronounced in farmyard manure treatments. Microbial activity was generally higher in farmyard manure soil indicating that farmyard manure increases labile organic matter pools in soil. Also, biomass of earthworms and microorganisms was increased in farmyard manure soil. The presence of earthworms reduced microbial biomass, suggesting that earthworms feed on microorganisms or/and that earthworms and soil microorganisms competed for similar organic matter pools in soil. The results demonstrate that NPK fertilisation only is insufficient to sustain O. tyrtaeum, whereas long-term fertilisation with farmyard manure enables survival of endogeic species due to an increased pool of utilisable soil organic matter in arable soil.  相似文献   

11.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

12.
A comparative study of the spatial distributions and the quantity of biogenic structures produced by earthworms and termites (Odontotermes nilensis and Ancistrotermes guineensis) has been conducted in a mango orchard at Thiès (Senegal).This study showed that surface biogenic structures may represent a large amount of modified soil (up to 536.5 g m−2) which vary depending upon the seasons and the species. Whilst the quantity of casts was independent on the season (178.6 g m−2), O. nilensis sheetings fluctuated with the seasons. In addition, we show that the spatial organisation of surface biogenic structures fluctuates with seasons. It displays patches ranging from 5 to 15 m. There is a link between the distribution of earthworm casts and the vegetation. In addition, spatial distribution was also linked to the biology of constructing species. We observed that the A. guineensis’ filling structures were mainly located under the mango trees during the dry season where the stems and the brushwoods were abundant. It appears that the spatio-temporal distribution of the biogenic structures under study depended upon two main factors: season and vegetation. However, depending upon the biology of the engineer, these two factors influenced the spatial distribution of structures in different ways.  相似文献   

13.
The influence of earthworms on nematodes and protozoan communities was determined during the wheat phase of a six year rice-wheat rotation agro-ecosystem. Experimental plots in the rotation had five treatments, i.e. incorporation or mulching of maize residues with or without added earthworms and a control. The addition of maize residues to soil strongly affected the abundance and community structure of nematodes and protozoa in the absence of earthworms. The presence of earthworms gave significantly lower total nematode numbers at all soil depths following maize residue incorporation than the same treatment without earthworms, and also gave lower (although not significantly) total nematode numbers in the upper soil layer following maize residue mulching than the same treatment without earthworms. This was mainly due to a significant decrease in bacterial-feeding nematode numbers. Earthworms also strongly affected the distribution of the number of total nematodes and two trophic groups (bacterial and plant feeders) with soil depth. In the presence of earthworms, total protozoan and flagellate numbers significantly increased at all soil depths following both incorporation and mulching of maize residues, while numbers of amoebae increased only when maize residues were mulched. Additionally, in earthworm casts total nematode numbers (mainly bacterial and fungal feeders) were significantly higher, whereas total protozoa numbers (mainly flagellates and amoebae) were significantly lower than that in soil from 0 to 5 cm layer.These results indicated that earthworm activity could affect the abundance and community structure of microfauna, and change their distribution between soil layers and cast material, depending on the mode of application of organic residues.  相似文献   

14.
The aim of this work was to determine whether the endogeic earthworm Hormogaster elisae [1] is involved in the active or passive predation of microarthropods at El Molar (Madrid, Spain). Different techniques were employed to study the gut content, and the casts of H. elisae earthworms cultivated in the laboratory. The casts consisted mainly of mineral particles and plant remains as well as a few microarthropods, nematodes and their remains. The gut contents were similar in composition, although no microarthropod remains were found, except for a single springtail (order Poduromorpha) in one earthworm's gizzard. The results suggest that H. elisae may accidentally ingest microarthropods along with soil. The microarthropods found in the casts may have colonized them after their deposition since none were found in isolated casts.  相似文献   

15.
T.Z. Dawes 《Pedobiologia》2010,53(4):241-246
This study examines changes in the abundance and diversity of soil macroinvertebrate taxa and soil water storage across different disturbance treatments in a tropical savanna woodland in northern Australia. Nine plots representing three habitat disturbance treatments (uncleared savanna woodland; 25-year-old regrowth following past clearing; cleared areas) were sampled for macrofauna using soil pits in April 2003. Sub-surface soil moisture (0-0.4 m) was measured at 0.1 m intervals over the 2002/2003 wet season. Termites represented 55% of total individuals sampled. Abundance of soil macrofauna was greatest in uncleared plots and lowest in cleared plots, with the latter treatment also having the lowest taxon diversity. Mean abundances of termites, earthworms and ants were greatest in uncleared treatment plots. Five termite species from four genera were present, with Microcerotermes nervosus constituting 47% of termite species identified. Of the wood-, grass- and polyphagous-feeding termites present, wood-feeding species were restricted to uncleared treatment plots and grass-feeders to regrowth treatment plots. A shift in termite nesting habits from epigeal to hypogeal was observed from uncleared to cleared treatments. Soil water storage was lowest in the dry season and highest during the monsoon, and varied significantly across habitat disturbance treatments at the start and end of the wet season. Cleared plots were least effective in the capture of the first wet season rains, and uncleared treatment plots showed the greatest capacity to retain soil water during the transition from wet to dry season. The negative effects of habitat disturbance on soil water storage may have been partially mediated by the observed changes in soil macrofauna, especially termites.  相似文献   

16.
This present investigation took place on a continuing long-term fertilizer experiment, initiated in 1972 at the experimental farm of the College of Agriculture CSK HPKV, Palampur, aimed at studying nutrient dynamics of micronutrients, especially Zn, after continuous use of chemical fertilizers and amendments over the previous 36 years in an acid Alfisol under a maize–wheat system. Treatments investigated were as follows: T1: Control; 100% N; 100% NP; 100% NPK (optimal application - 120:26:33(maize)/25(wheat)); 100% NPK + FYM (10 t ha−1 to the maize crop); T6: 100% NPK + lime (900 kg ha−1); T7: 100% NPK + Zn (25 kg ha−1 as ZnSO4); T8: 100% NPK + Hand weeding; T9: 100% NPK (-S); T10: 150% NPK (super-optimal application); and T11: 50% NPK (sub-optimal application). Different forms of zinc in soil were determined through a sequential extraction method. Results revealed that previous applications of high-analysis fertilizers and amendments caused a marked depletion in the pools of Zn as compared to buffer plots. All pools of Zn as well as crop productivity and Zn uptake were noticeably greater in farmyard manure (FYM)-amended plots compared with plots not receiving fertilizer. The residual fraction was the dominant form but organically bound and exchangeable forms were found to play major role in nutrient supply, crop productivity and nutrient uptake. Correlation and regression analysis studies showed that organic forms constituted the most important pool contributing towards variation in yield and uptake by maize and wheat crops. Exchangeable and organically bound forms contributed significantly towards the availability of DTPA-extractable Zn in soil.  相似文献   

17.
《Applied soil ecology》2009,41(3):432-446
Insight is needed into how management influences soil biota when sustainable grassland systems are developed. A crop rotation of grass and maize can be sustainable in terms of efficient nutrient use. However, there is lack of information on the effect of such a crop rotation on soil biological quality. Earthworms, nematodes, bacteria and fungi were sampled over three years in a 36 years old experiment. Permanent arable land was compared with permanent grassland and with a ley-arable crop rotation. In the rotation, a period of three years of grassland (temporary grassland) was followed by a period of three years of arable land (temporary arable land) and vice versa. In the first year of arable cropping in the rotation, the number of earthworms was already low and not different from continuous cropping. In the three-year grass ley, the abundance of earthworms returned to the level of permanent grassland in the second year. However, the restoration of earthworm biomass took a minimum of three years. Furthermore, the anecic species did not recover the dominance they had in the permanent grassland. The numbers of herbivorous and microbivorous nematodes in the ley-crop rotation reached similar levels to those in the permanent treatments within one to two years. Although the same holds for the nematode genera composition, the Maturity Index and the proportion of omnivorous nematodes in the temporary treatments remained significantly lower than in their permanent counterparts. Differences in recovery were also found among microbial parameters. In the temporary treatments, bacterial growth rate and the capacity to degrade a suite of substrates recovered in the second year. However, the Community-Level Physiological Profiles in the permanent grassland remained different from the other treatments. Our results suggest that many functions of soil biota that are well established in permanent grassland, are restored in a ley-arable crop rotation. However, due to a reduction in certain species, specific functions of these soil biota could be reduced or lost. The ley-arable crop rotations were intermediate to permanent grassland and continuous arable land in terms of functioning of soil biota (e.g., N-mineralization). In terms of the functional aspects of the soil biota, permanent grassland might be preferable wherever possible. For maize cultivation, a ley-arable crop rotation is preferable to continuous arable land. However, a ley-arable crop rotation is only preferable to continuous arable cropping if it is not practised at the expense of permanent grassland at farm level.  相似文献   

18.
为了研究我国华北平原低肥力土壤条件下秸秆还田和施钾肥对作物产量和钾素平衡的影响,于2008年10月~2011年10月在中国农业科学院高新技术园区国家测土施肥中心实验室试验基地(河北省廊坊市),通过3年6季的定位试验,比较了施钾与秸秆还田的增产效应、钾素吸收利用和作物土壤系统的钾素平衡状况。结果表明:在氮、磷肥充足的情况下,施用钾肥(NPK)、秸秆还田(NP+St)和秸秆还田配施钾肥(NPK+St),均有明显的增产效应,表现为NPK+StNPKNP+StNP;不同施钾措施在夏玉米上的增产效果优于冬小麦;同一作物秸秆还田结合施钾肥的增产效果最好,降低了年度间的产量变异系数,在获得高产的同时,年际间产量稳定,有利于稳产;施钾肥和秸秆还田可显著提高小麦和玉米的钾素吸收总量; NPK+St、NPK、NP+St处理的钾素表观平衡系数分别为1.26,0.42,0.92。秸秆还田和施钾肥有利于钾素的收支平衡,减轻作物对土壤钾素的消耗,缓解土壤钾素肥力下降的程度,可维持土壤钾素肥力的稳定。  相似文献   

19.
为了研究我国华北平原低肥力土壤条件下秸秆还田和施钾肥对作物产量和钾素平衡的影响,于2008年10月~2011年10月在中国农业科学院高新技术园区国家测土施肥中心实验室试验基地(河北省廊坊市),通过3年6季的定位试验,比较了施钾与秸秆还田的增产效应、钾素吸收利用和作物-土壤系统的钾素平衡状况。结果表明:在氮、磷肥充足的情况下,施用钾肥(NPK)、秸秆还田(NP+St)和秸秆还田配施钾肥(NPK+St),均有明显的增产效应,表现为NPK+St>NPK>NP+St>NP;不同施钾措施在夏玉米上的增产效果优于冬小麦;同一作物秸秆还田结合施钾肥的增产效果最好,降低了年度间的产量变异系数,在获得高产的同时,年际间产量稳定,有利于稳产;施钾肥和秸秆还田可显著提高小麦和玉米的钾素吸收总量;NPK+St、NPK、NP+St处理的钾素表观平衡系数分别为1.26、0.42、0.92。秸秆还田和施钾肥有利于钾素的收支平衡,减轻作物对土壤钾素的消耗,缓解土壤钾素肥力下降的程度,可维持土壤钾素肥力的稳定。  相似文献   

20.
There is increasing evidence that microorganisms participate in soil C sequestration and stabilization in the form of resistant microbial residues. The type of fertilizers influences microbial activity and community composition; however, little is known about its effect on the microbial residues and their relative contribution to soil C storage. The aim of this study was to investigate the long-term impact (21 years) of different fertilizer treatments (chemical fertilizer, crop straw, and organic manure) on microbial residues in a silty clay loam soil (Udolls, USDA Soil Taxonomy). Amino sugars were used to indicate the presence and origin of microbial residues. The five treatments were: CK, unfertilized control; NPK, chemical fertilizer NPK; NPKS1, NPK plus crop straw; NPKS2, NPK plus double amounts of straw; and NPKM, NPK plus pig manure. Long-term application of inorganic fertilizers and organic amendments increased the total amino sugar concentrations (4.4–8.4 %) as compared with the control; and this effect was more evident in the plots that continuously received pig manure (P?<?0.05). The increase in total amino sugar stock was less pronounced in the straw-treated plots than the NPKM. These results indicate that the accumulation of soil amino sugars is largely influenced by the type of organic fertilizers entering the soil. Individual amino sugar enrichment in soil organic carbon was differentially influenced by the various fertilizer treatments, with a preferential accumulation of bacterial-derived amino sugars compared with fungal-derived glucosamine in manured soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号