首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
This paper develops a non-linear programming optimization model with an integrated soil water balance, to determine the optimal reservoir release policies, the irrigation allocation to multiple crops and the optimal cropping pattern in irrigated agriculture. Decision variables are the cultivated area and the water allocated to each crop. The objective function of the model maximizes the total farm income, which is based on crop–water production functions, production cost and crop prices. The proposed model is solved using the simulated annealing (SA) global optimization stochastic search algorithm in combination with the stochastic gradient descent algorithm. The rainfall, evapotranspiration and inflow are considered to be stochastic and the model is run for expected values of the above parameters corresponding to different probability of exceedence. By combining various probability levels of rainfall, evapotranspiration and inflow, four weather conditions are distinguished. The model takes into account an irrigation time interval in each growth stage and gives the optimal distribution of area, the water to each crop and the total farm income. The outputs of this model were compared with the results obtained from the model in which the only decision variables are cultivated areas. The model was applied on data from a planned reservoir on the Havrias River in Northern Greece, is sufficiently general and has great potential to be applicable as a decision support tool for cropping patterns of an irrigated area and irrigation scheduling.  相似文献   

2.
Continuous cropping of winter wheat and summer maize is the main cropping pattern in North China Plain lying in a seasonal frost area. Irrigation scheduling of one crop will influence soil water regime and irrigation scheduling of the subsequent crop. Therefore, irrigation scheduling of winter wheat and maize should be studied as a whole. Considering the meteorological and crop characteristics of the area lying in a seasonal frost area, a cropping year is divided into crop growing period and frost period. Model of simultaneous moisture and heat transfer (SMHT) for the frost period and model of soil water transfer (SWT) for the crop growing period were developed, and used jointly for the simulation of soil water dynamics and irrigation scheduling for a whole cropping year. The model was calibrated and validated with field experiment of winter wheat and maize in Beijing, China. Then the model was applied to the simulation of water dynamics and irrigation scheduling with different precipitation and irrigation treatments. From the simulation results, precipitation can meet the crop water requirement of maize to a great extent, and irrigation at the seeding stage may be necessary. Precipitation and irrigation had no significant influence on evaporation and transpiration of maize. On the other hand, irrigation scheduling of winter wheat mainly depends on irrigation standard. Irrigation at the seeding stage and before soil freezing is usually necessary. For high irrigation standard, four times of irrigation are required after greening. While for medium irrigation, only once (rainy year) or twice (medium and dry years) of irrigation is required after greening. Transpiration of winter wheat is very close for high and medium irrigation, but it decreases significantly for low irrigation and will result in a reduction of crop yield. Irrigation with proper time and amount is necessary for winter wheat. Considering irrigation quota and crop transpiration comprehensively, medium irrigation is recommended for the irrigation of winter wheat in the studying area, which can reduce the irrigation quota of over 150 mm with little water stress for crop growth.  相似文献   

3.
基于ISAREG模型的小麦间作玉米优化灌溉制度研究   总被引:1,自引:0,他引:1  
以内蒙古河套灌区农业综合节水示范区小麦间作玉米实测资料为基础,运用Penman-Monteith法确定了参考作物蒸发蒸腾量。考虑间作条件的立体种植特征,确定了小麦间作玉米的综合作物系数。同时利用ISAREG模型对小麦间作玉米灌溉制度进行了评价,得到连续中旱处理关键生育期97mm处理在全生育期深层渗漏量为2.67%,灌水效率为99.42%,产量下降11.50%,较其他7个处理合理。根据作物在不同时期作物需水强度运用ISAREG模型模拟优化灌溉制度,获得适合当地的优选灌溉制度,即全生育期灌水5次,灌水时间分别为5月10日、5月24日、6月17日、7月10日、7月30日,灌水定额分别为75、80、90、90、80mm,为灌区节水优化管理提供了技术支持。  相似文献   

4.
Cropping schemes have developed in east-central Argentina for rainfed soybean (Glycine max Merr.) production that invariably employ no-tillage management. Often these schemes include growing soybean in a sequence of crops including wheat (Triticum aestivum L.) and maize (Zea mays L.). The full impact of various rotation schemes on soil water balance through a sequence of seasons has not been explored, although the value of these rotations has been studied experimentally. The objective of this work was to investigate through simulations, potential differences in temporal soil water status among rotations over five years. In this study, mechanistic models of soybean (Soy), maize (Maz), and wheat (Wht) were linked over a five-years period at Marcos Juárez, Argentina to simulate soil water status, crop growth, and yield of four no-till rotations (Soy/Soy, Soy/Wht, Soy/Maz, and Soy/Maz/Wht). Published data on sowing dates and initial soil water contents in the first year from a no-till rotation experiment were used as inputs to the model. After the first year, soil water status output from the model was used to initiate the next crop simulation in the sequence. The results of these simulations indicated a positive impact on soil water balance resulting from crop residue on the soil surface under no-till management. Continuous soybean and the two-year soybean/maize rotation did not efficiently use the available water from rainfall. Residue from maize was simulated to be especially effective in suppressing soil evaporation. Thus, the Soy/Maz simulation results indicated that this rotation resulted in enhanced soil water retention, increased deep water percolation, and increased soybean yields compared with continuous soybean crops. The simulated results matched well with experimental observations. The three-crop rotation of Soy/Maz/Wht did not increase simulated soybean yields, but the additional water retained as a result of decreased soil evaporation resulting from the maize residue allowed the addition of a wheat crop in this two-year rotation. Simulated soybean yields were poorly correlated with both the amount of soil water at sowing and the rainfall during the cropping period. These results highlight the importance of temporal distribution of rainfall on final yield. These models proved a valuable tool for assessing the consequences of various rotation schemes now being employed in Argentina on temporal soil water status, and ultimately crop yield.  相似文献   

5.
The South-North Water Transfer (SNWT) project (upon completion) will deliver some 4.8 billion m3 of water per annum to Hebei, Beijing and Tianjin — greatly mitigating water shortage in North China. Surface water that is currently restricted to urban use could then become partly available for agricultural production. This will reduce the dependence of agriculture on groundwater, which will in turn retard groundwater depletion in the region. This study determines the spatial and temporal distributions of agricultural water requirement in Hebei Plain. This in turn lays the basis for surface water reallocation following the completion of the SNWT project. DSSAT and COTTON2K crop models are used along with crop coefficient methods to estimate required irrigation amounts for wheat, maize, cotton, vegetables and fruit trees in Hebei Plain. The study uses 20 years (1986-2006) of agronomic, hydrologic and climate data collected from 43 well-distributed stations across the plain. Based on the results, wheat accounts for over 40% of total irrigation water requirement in the plain. Similarly, wheat, maize and cotton together account for 64% of the total irrigation water requirement. The piedmont regions of Mount Taihang have the highest irrigation requirement due to high percent farm and irrigated land area. The months of April and May have the highest irrigation water requirement, respectively accounting for 18.1% and 25.4% of average annual irrigation. Spatial and temporal variations in our estimated irrigation water requirement are higher than those in the officially published statistics data. The higher variations in our results are more reflective of field conditions (e.g. precipitation, cropping pattern, irrigated land area, etc.). This therefore indicates a substantive improvement (in our study) over the average statistical data. Based on our simulation results, viable surface water reallocation strategies following the completion of the SNWT project are advanced and discussed.  相似文献   

6.
The primary objective of an agriculture water management system is to provide crop needs to sustain high yields. Another objective of equal or greater importance in some regions is to reduce agriculture impacts on surface and groundwater quality. Kandil et al. (1992) modified the water management model DRAINMOD to predict soil salinity as affected by irrigation water quality and drainage system design. The objectives of this study are to incorporate an algorithm to quantify the effects of stresses due to soil salinity on crop yields and to demonstrate the applications of the model. DRAINMOD-S, is capable of predicting the long-term effects of different irrigation and drainage practices on crop yields. The overall crop function in the model includes the effects of stresses caused by excessive soil water conditions (waterlogging), soil water-deficits, salinity, and planting delays. Three irrigation strategies and six drain spacings were considered for all crops. In the first irrigation strategy, the irrigation amounts were equal to evapotranspiration requirements by the crops, with the addition of a 10 cm depth of water for leaching applied during each growing season. In the second strategy, the leaching depth (10 cm) was applied before the growing season. In the third strategy, a leaching depth of 15 cm was applied before the growing season for each crop. Another strategy (4th) with more leaching was considered for bean which is the crop most sensitive to salinity. In the fourth strategy, 14 days intervals were used instead of 7 and leaching irrigations were applied: 15 cm before the growing season and 10 cm at the middle of the growing season for bean. The objective function for these simulations was crop yield. Soil water conditions and soil salinity were continuously simulated for a crop rotation of bean, cotton, maize, soybean, and wheat over a 19 years period. Yields of individual crops were predicted for each growing season. Results showed that the third irrigation strategy resulted in the highest yields for cotton, maize, soybean and wheat. Highest yields for bean were obtained by the fourth irrigation strategy. Results are also presented on the effects of drain depth and spacing on yields. DRAINMOD-S is written in Fortran and requires a PC with math-coprocessor. It was concluded that DRAINMOD-S is a useful tool for design and evaluation of irrigation and drainage systems in irrigated arid lands.  相似文献   

7.
基于ISAREG模型的小麦间作玉米灌溉制度设计   总被引:2,自引:0,他引:2  
将ISAREG模型与种植模式相结合研究小麦间作玉米的灌溉制度。对间作条件下灌溉制度模拟所需的各项参数进行了预处理和验证,分析评价了小麦间作玉米的实际灌溉制度,在此基础上根据小麦间作玉米的需水特性进行了多组合方案设计,分别得到了现状供水状况下和不受灌水日期约束时的优选灌溉制度。  相似文献   

8.
安徽淮北平原主要农作物的优化灌溉制度与经济灌溉定额   总被引:5,自引:2,他引:5  
依据安徽水科院新马桥农水综合试验站1996~2001年作物水分生产函数专项试验资料建立的小麦等4种主要农作物的“作物水模型”,结合分布于安徽淮北地区北、中、南部8个试验站(点)历年的试验统计资料,建立了作物优化灌溉制度的数学模型,并采用动态规划方法分别求出了该地区不同分区、不同水文年型小麦等4种作物的优化灌溉制度;分析确定了其经济灌溉定额以及优化灌溉的节水增产效果。为安徽淮北平原和类似地区科学、合理、高效利用灌溉水资源,实现向节水型农业的转变等提供了理论、技术指标依据和决策依据;同时对于正确指导该区农田水利规划与建设等具有重要的参考应用价值。  相似文献   

9.
泾惠渠灌区冬小麦夏玉米连作需水量及灌水模式研究   总被引:1,自引:1,他引:0  
为了寻求冬小麦-夏玉米连作下的节水高效灌溉制度,采用大田小区试验,在连作种植模式下,统筹分析了冬小麦和夏玉米的需水量及生育期内降雨量,并与当地传统灌溉制度进行了产量对比。结果表明,连作种植模式下,泾惠渠灌区冬小麦、夏玉米全生育期需水量分别为410 mm和400 mm。在年降雨量为490 mm时,连作种植1 a内的经济灌溉定额为305 mm,相比于传统灌溉能节水8.9%。连作条件下作物总产量为12 010 kg/hm~2,产量相对于传统单作种植增加了6.2%,达到了增产目的。在冬小麦抽穗期和夏玉米播种期减少灌水,可在保证产量的基础上有效提高水分利用效率,是更为优化的连作灌水模式。  相似文献   

10.
Scarcity of water is a critical limitation to adoption of modern technology for increasing productivity of traditional rainfed rice growing areas of eastern Madhya Pradesh, India. The shortage of water results from uneven distribution of rains, significant gaps between rain events and field water losses rather than from low seasonal or annual rainfall totals. A feasible strategy to alleviate this limitation is to harvest excess rainwater in a farm pond during the wet season and use the conserved water for crop production in both wet (as insurance against drought) and dry seasons by adopting suitable crop and cropping systems. The results of water balance in a 1.05 ha field, on which a farm pond was built using 0.09 ha area, showed that 28–37% of seasonal rainfall was available as surface runoff from microcatchment (0.66 ha growing soybean, peanut and pigeonpea) for collection in the pond. This was sufficient for saving rice in a 0.30 ha area (in the lower side of the field) from drought stress, and for establishment of chickpea and mustard (in 0.90 ha) in the post-rainy season after harvest of rainy season crops. Soybean, peanut and pigeonpea, grown in the microcatchment during the rainy season, utilized respectively 371–726, 364–733 and 535–920 mm water in evapotranspiration (E,) and deep percolation (P). Rice grown below the pond required 28–317 mm water in different seasons to save the crop from in-season drought stress which commonly occurred during vegetative and reproductive stages. Water requirement (E, + P) of rice was 816–1342 mm in different seasons. Residual soil moisture after rainy season soybean, peanut and rice was sufficient (172–203 mm) to support post rainy season crops of chickpea and mustard. However, the losses of moisture from the soil surface layer after harvest of rainy season crops were rapid (7–23 mm), which necessitated a light irrigation (21–45 mm) for establishment of chickpea and mustard in the post-rainy season. The water balance results of soybean-mustard, peanut-mustard and peanut-chickpea were near identical to soybean-chickpea cropping. Similarly the water balance of rice-mustard was identical to Corresponding author. rice-chickpea in the vertisols. Soybean-mustard and rice-chickpea were the suitable and economical cropping systems for the microcatchment and service area of the farm pond.  相似文献   

11.
Drainage water from the lower boundary of the root zone is an important factor in the irrigated agricultural lands for prediction of the water table behavior and understanding and modeling of water and chemical movement in the soil profile. The drainage coefficient is an important parameter for the design of subsurface drainage. On a 33,138 ha of the Nile Delta in Egypt, this study is conducted using 90 irrigation periods over a 3-year crop rotation to estimate the time-dependent drainage from the root zone and the design subsurface drainage coefficient with different cropping seasons and irrigation management levels.The results showed that the cropping seasons and the irrigation management levels as indicated by different irrigation efficiency are significantly affected the drainage rate from the root zone and the design value of subsurface drainage coefficient. Drainage rates from the root zone of 1.72 mm/d and 0.82 mm/d were estimated for summer and winter seasons, respectively. These rates significantly decreased in a range of 46% to 92% during summer season and 60% to 98% during winter season when the irrigation efficiency is increased in a range of 5% to 15%. The subsurface drainage coefficient was estimated to be 1.09 mm/d whereas the design drain pipe capacity was estimated to be 2.2 mm/d, based on the peak discharge of the most critical crop (maize), rather than 4.0 mm/d which is currently used. A significant decrease of the drainage coefficient and the drain pipe capacity ranges from 18% to 45% was found with the increase of irrigation efficiency in a range of 5% to 15%. The leaching requirement for each crop was also estimated.  相似文献   

12.
In the North China Plain (NCP), while irrigation using groundwater has maintained a high-level crop productivity of the wheat-maize double cropping systems, it has resulted in rapid depletion of groundwater table. For more efficient and sustainable utilization of the limited water resources, improved understanding of how crop productivity and water balance components respond to climate variations and irrigation is essential. This paper investigates such responses using a modelling approach. The farming systems model APSIM (Agricultural Production Systems Simulator) was first calibrated and validated using 3 years of experimental data. The validated model was then applied to simulate crop yield and field water balance of the wheat-maize rotation in the NCP. Simulated dryland crop yield ranged from 0 to 4.5 t ha−1 for wheat and 0 to 5.0 t ha−1 for maize. Increasing irrigation amount led to increased crop yield, but irrigation required to obtain maximum water productivity (WP) was much less than that required to obtain maximum crop yield. To meet crop water demand, a wide range of irrigation water supply would be needed due to the inter-annual climate variations. The range was simulated to be 140-420 mm for wheat, and 0-170 mm for maize. Such levels of irrigation applications could potentially lead to about 1.5 m year−1 decline in groundwater table when other sources of groundwater recharge were not considered. To achieve maximum WP, one, two and three irrigations (i.e., 70, 150 and 200 mm season−1) were recommended for wheat in wet, medium and dry seasons, respectively. For maize, one irrigation and two irrigations (i.e., 60 and 110 mm season−1) were recommended in medium and dry seasons, while no irrigation was needed in wet season.  相似文献   

13.
The salinity in the root zone increases with the application of relatively saline groundwater. Therefore, a limited water supply coupled with high pumping cost and salinity hazards, makes it more important than ever that irrigation water be used efficiently and judiciously. In the present study, farmer's practices of irrigation application methods (Field 1) were compared with the water saving techniques (Field 2) for crop yield and salinization for two years with maize–wheat–dhanicha cropping pattern. For maize crop, regular furrow method of irrigation was used in Field 1 and alternate furrow method of irrigation was used in Field 2. For wheat experiments, basin irrigation method of water application was compared with bed and furrow method. For dhanicha, basin irrigation was applied in both the fields. The results showed that about 36% water was saved by applying irrigation water in alternate furrows in each season without compromising the maize crop yield. The salt accumulation in root zone in alternate furrow field was less than that in regular furrow field. The salinity level near the surface increased substantially in both the fields. The water saving in wheat crop under bed and furrow was 9–12% in both seasons. The salinization process in both fields during wheat crop was almost same except redistribution of salts throughout the root zone in basin field of wheat. The salinity developed in root zone during two major growing seasons was leached in monsoon.  相似文献   

14.
大型水稻灌区高产节水灌溉优化配水模型研究   总被引:1,自引:0,他引:1  
根据江苏省北部地区水资源供需矛盾突出的现状,以大型水稻灌区为研究对象,研究水资源的优化分配问题,从水稻水分生产函数和作物需水模型入手,建立了外引河湖水、内提回归水两种水源供水条件下的水稻全生育期适时调度优化配水数学模型。以灌区典型年供水资料,对优化配水模型进行了复核验证。所建立的模型,与灌区实际用水条件基本相符,为水稻灌区用水管理提供了一条新路。  相似文献   

15.
花生-玉米轮作少耕种植模式可以解决玉米长期连作导致的土壤养分失调、病虫害连年爆发和经济效益低下等问题。介绍了该技术的主要作业环节,5年种植3茬花生2茬玉米,对于提高作物产值、改善生态环境和实现稳粮增效具有重要的意义,促进了农业生态的可持续发展。   相似文献   

16.
Comparative studies of drainage and leaching under tillage systems in irrigated tropical and sub-tropical Vertisols are sparse. The objective of this study was to quantify drainage under cotton-based cropping systems sown on permanent beds in an irrigated Vertisol. Drainage and soil water storage were measured with the chloride mass balance method and neutron moisture meter, respectively, during the 2002-03, 2004-05, 2006-07 and 2008-09 cotton seasons in an on-going experiment in a Vertisol in NW NSW. The experimental treatments were: cotton monoculture sown either after conventional tillage or on permanent beds, and a cotton-wheat rotation on permanent beds where the wheat stubble was retained as in situ mulch into which the following cotton crop was sown. Subject to in-crop rainfall, irrigation frequency varied between 7 and 14 days for cotton and 2-3 months for wheat. In 2005, a split-plot design was superimposed on the existing experiment such that the main-plot treatments were irrigation frequency (“frequent”, 7-14-day irrigation interval; “infrequent”, 14-21-day irrigation interval), and sub-plot treatments were the historical tillage system/crop rotation combinations. In comparison with cotton monoculture sown either after conventional tillage or on permanent beds, soil water storage, particularly during the early part of growing season when rainfall provided the major proportion of crop water requirements, and drainage were greatest when a cotton-wheat rotation was sown on permanent beds. Seasonal drainage out of the 1.2 m depth, averaged among all seasons, was of the order of 25 mm, 33 mm and 70 mm with cotton monoculture sown either after conventional tillage or on permanent beds, and a cotton-wheat rotation on permanent beds, respectively. Soil water storage and drainage were also greater when irrigation frequency was greater. Seasonal drainage out of the 1.2 m depth, averaged between the 2006-07 and 2008-09 seasons, was 54 mm with “frequent irrigation”, and 28 mm with “infrequent” irrigation. Infiltration was less in management systems which resulted in wetter soil; viz. frequent irrigation or a cotton-wheat rotation on permanent beds with in situ stubble retention. Drainage water losses in a furrow-irrigated Vertisol may be reduced and soil water storage increased (i.e. water conservation improved) by sowing a cotton-wheat rotation with in situ stubble retention under less frequent irrigation.  相似文献   

17.
华北平原农业灌溉用水非常紧缺,水资源日益缺乏与粮食需求日益增多之间的矛盾尖锐。充分利用微咸水资源是缓解这一矛盾的重要途径之一。该文以中国农业大学曲周试验站1997-2005年冬小麦和夏玉米微咸水灌溉田间长期定位试验为基础,研究了充分淡水、充分淡咸水、关键期淡水、关键期淡咸水和不灌溉等5个处理下土壤饱和电导率和含盐量的动态变化,探讨了微咸水灌溉对冬小麦和夏玉米产量的影响。结果表明:土壤水盐动态呈受灌溉和降雨影响的短期波动和受季节更替影响的长期波动;在正常降雨年份,使用微咸水进行灌溉是可行的,不会导致土壤的次生盐渍化;微咸水灌溉虽然导致冬小麦和夏玉米产量降低10%~15%,但节约淡水资源60%~75%。如果降雨量达到多年平均水平以及微咸水灌溉制度制订合理,微咸水用于冬小麦/玉米田间灌溉前景广阔。  相似文献   

18.
对喷灌条件下冬小麦对水肥的利用进行了研究,探讨了不同灌溉水量对冬小麦产量、耗水规律以及对土壤中硝态氮含量的影响,提出喷灌条件下冬小麦适宜的灌水定额。试验结果表明随着灌溉水量的增加,冬小麦消耗土壤水的份额逐渐减少,主要以消耗灌溉水为主;小麦生长期间对土壤中硝态氮的吸收随土壤深度的不同而有所区别;在3个灌溉水平下,随着灌水量的减少,灌溉水的利用效率逐渐升高,经济灌溉量为209.3 mm。  相似文献   

19.
王福增 《节水灌溉》2016,(12):116-119
利用遗传算法对非充分灌溉条件下冬小麦的最优灌溉制度设计进行求解,并提出了与之对应的约束条件及处理方法。以我国华北地区某试验站为例来说明该算法及处理方法的可行性。结果表明,该方法能够实现对冬小麦整个生育期灌溉水量进行合理分配,使冬小麦在缺水敏感期内得到充分灌溉,从而达到节约灌溉用水,提高水分利用效率的目的。  相似文献   

20.
The effect of three frequencies of irrigation with sodic (high residual alkalinity) and saline-sodic (high residual alkalinity and high NaCl concentration) waters in presence and absence of gypsum application on soil properties and crop yields were investigated under millet (fodder) — wheat — maize (fodder) rotation in a field experiment carried out for 6 years (1986–1992) on a well drained sandy loam Typic Ustochrept soil. Irrespective of the irrigation intervals, sustained use of sodic and salinesodic waters increased pH, electrical conductivity and ESP of the soil and hence significantly decreased crop yields. Application of gypsum decreased ESP and significantly improved crop yields. The beneficial effect of gypsum was lower under saline-sodic irrigation. There were no significant beneficial effects of increasing the frequency of sodic and saline-sodic irrigation, both in presence and absence of applied gypsum, on the yields of wheat and millet (f) crops grown during winter and monsoon seasons, respectively. But decrease in irrigation interval significantly improved yields of maize (f) grown during the hot dry summer period. Frequency of irrigation did not appreciably alter the effectiveness of applied gypsum in wheat and millet (f) but in maize (f), the gypsum treatment was more effective under more frequent irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号